
J Math Imaging Vis (2007) 29: 141–162

DOI 10.1007/s10851-007-0035-4

Automatic Image Segmentation by Tree Pruning

Felipe P.G. Bergo · Alexandre X. Falcão ·

Paulo A.V. Miranda · Leonardo M. Rocha

Published online: 9 November 2007

© Springer Science+Business Media, LLC 2007

Abstract The Image Foresting Transform (IFT) is a tool

for the design of image processing operators based on con-

nectivity, which reduces image processing problems into an

optimum-path forest problem in a graph derived from the

image. A new image operator is presented, which solves

segmentation by pruning trees of the forest. An IFT is ap-

plied to create an optimum-path forest whose roots are seed

pixels, selected inside a desired object. In this forest, ob-

ject and background are connected by optimum paths (leak-

ing paths), which cross the object’s boundary through its

“most weakly connected” parts (leaking pixels). These leak-

ing pixels are automatically identified and their subtrees are

eliminated, such that the remaining forest defines the ob-

ject. Tree pruning runs in linear time, is extensible to mul-

tidimensional images, is free of ad hoc parameters, and re-

quires only internal seeds, with little interference from the

heterogeneity of the background. These aspects favor solu-

tions for automatic segmentation. We present a formal def-

inition of the obtained objects, algorithms, sufficient condi-

tions for tree pruning, and two applications involving auto-

matic segmentation: 3D MR-image segmentation of the hu-
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man brain and image segmentation of license plates. Given

that its most competitive approach is the watershed trans-

form by markers, we also include a comparative analysis

between them.

Keywords Image segmentation · Graph-search

algorithms · Image foresting transform · Image processing ·
Watershed transform

1 Introduction

The problem of defining the precise spatial extent of a de-

sired object in a given image, namely image segmentation, is

addressed. The difficulties stem from the absence of global

object information (location, shape, appearance) and the

similarities between object and background with respect to

image features (color and texture). These difficulties usu-

ally call for user assistance [3, 6, 7, 9, 15, 20], making auto-

matic segmentation viable only in an application-dependent

and tailored fashion. Methods for automatic segmentation

should separate the part that is application-dependent from

the application-independent part, such that the former can

be easily tailored for different applications. We present a

method, called tree pruning, which is consistent with this

strategy.

Tree pruning uses the Image Foresting Transform (IFT)—

a tool for the design of image processing operators based on

connectivity [13]. The IFT has been applied to compute dis-

tance transforms, multiscale skeletonizations, morphologi-

cal reconstructions, watershed transforms, boundary track-

ing, fractal dimension, and shape saliences [11, 12, 14, 23,

24, 30, 31]. Tree pruning is the first IFT-based operator that

exploits a combinatorial property of the forest—the number

of descendants that each node has in the image’s border.
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In the IFT framework, an image is interpreted as a graph

whose nodes are image pixels and whose arcs are defined

by an adjacency relation between pixels. For a given set

of seed pixels and suitable path-cost function, the IFT com-

putes an optimum-path forest in the graph whose roots are

drawn from the seed set. Each tree in the forest consists of

pixels more strongly connected to its root than to any other

seed. In tree pruning, the seeds are chosen inside the object

and the choice of the path-cost function intends to connect

object and background by optimum paths (leaking paths),

which cross the object’s boundary through its “most weakly

connected” parts (leaking pixels). The above combinatorial

property is exploited to automatically identify the leaking

pixels and eliminate their subtrees, such that the remaining

forest defines the object.

Tree pruning runs in time proportional to the number of

pixels, is extensible to multidimensional images, is free of

ad hoc parameters, and requires only internal seeds, with

little interference from the heterogeneity of the background.

These aspects favor solutions which exploit image features

and object information for automatic segmentation. For ex-

ample, we can estimate seeds using approaches for object lo-

cation [34]. Candidate seeds can otherwise be used to obtain

a set of possible objects, and the desired one can be chosen

based on objective functions [21, 29, 35] or object features

and pattern classifiers [8, 19, 22]. One can also exploit some

combination between tree pruning and deformable mod-

els [4, 6, 7, 20] in order to achieve a better agreement be-

tween the geometry of the model and local image features.

Even in the context of interactive segmentation, it is highly

desirable to make the user’s actions simple and minimal.

Tree pruning reduces user intervention to a few markers in

the image.

In comparison with region-growing approaches based on

optimum paths from internal seeds [26, 32], the criterion

to disconnect object and background does not use the costs

of the optimum paths but the above combinatorial property.

Optimum paths that reach object pixels are assumed to not

pass through the background, instead of having costs strictly

lower than the costs of paths that reach the background. In

tree pruning, internal seeds compete among themselves and

only a few seeds become roots of leaking paths. Other ap-

proaches based on optimal seed competition [2, 23, 27,

28, 33] can be roughly described in three steps: (i) seed

pixels are selected inside and outside the objects, (ii) each

seed defines an influence zone that contains pixels which

are more strongly connected to that seed than to any other,

and (iii) each object is defined by the union of the influ-

ence zones of its internal seeds. The absence of boundary

information and/or heterogeneity of the background usually

cause invasion (leaking) of object seeds in influence zones

of background seeds and vice-versa. In interactive segmen-

tation, the user corrects leaking by adding and removing

seeds. In the context of the IFT, these corrections can be

done in sublinear time [1, 9] (e.g., by differential water-

shed transforms). Tree pruning exploits the leaking prob-

lem and also favors solutions for automatic segmentation,

as discussed above. On the other hand, tree pruning and the

IFT-watershed transform by markers [23] use the same im-

age graph and path-cost function which makes them com-

petitive approaches when the external seeds for watershed

can be found automatically. This aspect is also evaluated in

Sect. 6.

Approaches for image segmentation usually exploit im-

age features and some object information to emphasize the

discontinuities between object and background. It is desir-

able, for example, that the external energy in snakes be lower

along the object’s boundary than inside and outside it [20];

the arc costs in live wire be lower along the object’s bound-

ary than within a neighborhood around it [15]; the local

affinities in relative fuzzy connectedness [28] be higher in-

side and outside the object than on its boundary; the gradi-

ent values in watershed transform be higher for pixels on the

object’s boundary than inside and outside it [2, 23, 33]; and

the arc weights in graph-cut segmentation be lower across

the object’s boundary than inside and outside it [3, 21, 29].

Additionally, the energy minimization in [3, 21] using min-

cut/max-flow algorithms from source to sink nodes [16] also

requires lower arc-weights between source and object pix-

els, higher arc-weights between sink and object pixels, lower

arc-weights between sink and background pixels, and higher

arc-weights between source and background pixels. Clearly

the effectiveness of these approaches is affected when the

above desirable conditions are not fully satisfied, but they

can still work under certain hard constraints (usually, involv-

ing the user). For example, Boykov and Jolly [3] allow the

user to force the arc weights with source and sink by select-

ing seed pixels inside and outside the object.

Tree pruning can take advantage of the same image fea-

tures and object information to create a gradient-like image

(Fig. 1a) in which pixel values are higher on the object’s

boundary than inside it and, at least, in a neighborhood out-

side it. The cost of a path in tree pruning is given by the

maximum gradient value along it. Considering all possible

paths from the internal seed set to a given pixel, the IFT as-

signs a path of minimum cost to that pixel. Therefore, the

leaking pixels will be those with lower values along the ob-

ject’s boundary and the leaking paths will reach all back-

ground pixels around the object with costs equal to their

leaking pixel values. By connectivity, the rest of the back-

ground will be also conquered by leaking paths that pass

through the same leaking pixels. As explained above, the

automatic identification of these leaking pixels solves the

problem (Fig. 1b). Under the same conditions, the water-

shed transform may fail whenever the heterogeneity of the

background results in gradient values similar to those of the
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Fig. 1 a A gradient-like image

where the object is an egg.

b Segmentation result with tree

pruning and the white marker as

internal seeds.

c–d Segmentation results with

watershed under the same

conditions and using the

image’s border and the black

marker (indicated by the arrow)

as external seeds

desired boundary, because the costs of optimum paths from

external seeds may saturate before these paths reach the in-

ternal ones at the object’s boundary (Fig. 1c). This will make

the location of the external seeds more important to solve

the problem in watershed-based approaches (see arrow in

Fig. 1d).

Tree pruning was first presented in [10], with two ap-

proaches to detect leaking pixels. One is interactive where

the user can visually identify leaking pixels and select them

with the mouse pointer. The other is automatic, but relies on

a parameter that is difficult to be adjusted in real applica-

tions. In [25], we revisited the method to propose an auto-

matic solution for leaking pixel detection, which is free of

ad hoc parameters, and to provide a comparative analysis of

tree pruning and watershed transform for automatic segmen-

tation, including one experiment for license plate segmenta-

tion. In this paper, we provide more details in the presen-

tation of the method (formal definition of the obtained ob-

jects, different examples, algorithms, sufficient conditions,

gradient-like images, and geometrical issues), improve the

license plate segmentation method and presentation, and add

another application (automatic 3D MR-brain segmentation),

in which the methods are compared with a template-based

approach widely used for medical research [17].

We give the main definitions and instantiate the IFT for

tree pruning and watershed transform in Sect. 2; describe

tree pruning with algorithms in Sect. 3; discuss sufficient

conditions and geometrical issues in Sect. 4 and gradient-

like images in Sect. 5; evaluate the methods in Sect. 6; and

state conclusions in Sect. 7.

2 Background

Tree pruning (TP) and watershed (WS) algorithms rely on

a gradient-like image (gradient image for short), being both

approaches extensible to multidimensional and multipara-

metric images. In several situations, the gradient image can

be simply the magnitude of some gradient operator, such as

the Sobel’s gradient (Fig. 1a). In other situations, it is better

to assign an image feature vector to each pixel and compute

the gradient image as a function of the differences between

feature vectors of adjacent pixels (Sect. 5).

Gradient Condition In WS, it is desirable to have a gradi-

ent image with higher pixel values on the object’s boundary

than inside and outside the object. In TP, the lower pixel

values outside the object are desirable only within a small

neighborhood around the object’s boundary. These gradient

conditions are important to understand the methods, but they

are not necessary conditions (see Sect. 4).

In the following, we present the image foresting trans-

form and its algorithm for TP and WS.

2.1 Image Foresting Transform

A gradient image Î is a pair (DI , I ) where DI ⊂ Z2 is

the image domain and I (p) assigns to each pixel p ∈ DI
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Fig. 2 a An 8-connected image

graph, where the numbers

indicate the pixel values and the

object is the shaded square.

Internal and external seeds for

WS are shown with distinct

node patterns (non-black

labels). b The optimum-path

forest, where the numbers

indicate minimum costs and

distinct labels separate object

and background. The arrows

link each node to its predecessor

in the forest

a scalar value. The gradient image is interpreted as a graph

(DI ,A) whose nodes are the pixels in DI and whose arcs are

defined by an adjacency relation A between pixels [13]. We

are interested in 4- or 8-connected relations for 2D region-

based image segmentation (Fig. 2a). A path in the graph is

a sequence of adjacent pixels and a path-cost function c as-

signs to each path π a path cost c(π).

Definition 1 (Optimum path) A path π is optimum if

c(π) ≤ c(τ ) for any other path τ with the same destination

of π .

For both WS and TP, the cost c(π) of a path is defined as

the maximum gradient value of its pixels, when π starts in a

set S of seed pixels; and as infinity cost otherwise.

c(π) =
{

max∀p∈π {I (p)} if org(π) ∈ S,

+∞ otherwise
(1)

where org(π) is the origin of path π . Marker imposition [2,

23, 33] is important in most situations and it is implemented

by setting I (p) to 0 for pixels p ∈ S.

The IFT assigns one optimum path (Definition 1) from S

to every pixel p ∈ DI . These paths form an optimum-path

forest rooted in S which is stored in a predecessor map P ,

such that WS can separate object and background by prop-

agating distinct root labels to their respective trees in the

forest (Fig. 2b).

Definition 2 (Optimum-path forest) A predecessor map P

is a function that assigns to each pixel p /∈ S its predecessor

P(p) in the optimum path from S or a marker nil when

p ∈ S (in which case p is said to be a root of the forest). An

optimum-path forest is a predecessor map which contains no

cycles—in other words, one which takes every pixel to nil in

a finite number of iterations.

The IFT algorithm, as presented next, computes at the

same time an optimum-path forest in P and a label map in L,

being the former useful for TP and the latter applicable for

WS.

2.2 The IFT Algorithm

Let S = So ∪Sb be the union of two sets of seed pixels, such

that So and Sb contain only object and background seeds,

respectively. Then, Sb is empty for TP and WS requires Sb

not empty.

Algorithm 1 runs in linear time when Q is implemented

as described in [14]. Lines 1–3 initialize maps and insert

seeds in Q. The main loop computes an optimum path

from S to every pixel p in a non-decreasing order of cost

(Lines 4–11). At each iteration, a path of minimum cost

C(p) is obtained in P when we remove its last pixel p

from Q (Line 5). Ties are broken in Q using first-in-first-

out (FIFO) policy. That is, when two optimum paths reach

an ambiguous pixel p with the same minimum cost, p is as-

signed to the first path that reached it. The rest of the lines

evaluate if the path that reaches an adjacent pixel q through

p is cheaper than the current path with terminus q and up-

date Q, C(q), L(q) and P(q) accordingly.

The label propagation in L assigns 1 to pixels that belong

to the trees rooted inside the object and 0 to pixels of the

trees rooted in the background. In WS, it is expected that the

object be defined by image components with label 1, which

can be directly obtained from L (Figs. 1d and 2b).

Clearly, WS solves segmentation by seed competition for

object and background pixels. It also allows simultaneous

multiple object segmentation by modifying Algorithm 1 to

propagate a distinct label per object. TP requires the identi-

fication of leaking pixels in an optimum-path forest P with

no external seeds. The object is obtained by pruning all sub-

trees rooted in the background (Fig. 1b).
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Algorithm 1 Image Foresting Transform for WS and TP

The term “subtree of a node” is used in several parts of

the text. A subtree of a node p is a tree rooted at a child node

q (i.e., P(q) = p), which is obtained by removing from P

the arc (p, q).

3 Tree-Pruning Segmentation

Figure 3a shows the same image of Fig. 2a, except that the

image’s border is not used as external marker. Therefore,

the optimum-path forest connects object and background

through the leaking pixel (5,6)1 in Fig. 3b. The object can

be obtained by removing the subtrees of this leaking pixel.

Note that the IFT algorithm computes optimum paths in a

non-decreasing order of costs. Therefore, the optimum paths

from So will reach object pixels before background pixels

whenever the gradient condition for TP (Sect. 2) is satisfied.

Moreover, if a pixel p is the only one with lowest value I (p)

on the object’s boundary, then all pixels around the object

will be reached by leaking paths with minimum cost I (p),

which pass through the leaking pixel p. By connectivity, the

rest of the background will be also conquered by leaking

paths that pass through p. When the gradient condition is

not fully satisfied, the method may still work (Fig. 4). The

same property can be verified when there are multiple leak-

ing pixels, which can be automatically detected for object

definition as follows.

1Pixel locations are given as (x, y) pairs and the top left pixel is (1,1).

3.1 Object Definition

Let R be the set of the roots in the optimum-path forest (De-

finition 2). By removing the roots of the forest, we get a for-

est of subtrees. Each tree of this new forest is classified as

being either an object tree or as a leaking tree.

Definition 3 (Object tree) An object tree is a subtree of the

root nodes, which is contained within the object.

Definition 4 (Leaking tree) A leaking tree is a subtree of the

root nodes, which also contains optimum paths that reach

the background (leaking paths).

Figure 3b shows several object trees (e.g., one rooted at

pixel (4,4)) and a single leaking tree rooted at pixel (5,5),

each one with a distinct node pattern. Let B ⊂ DI be the

image’s border. We compute the number of descendants that

every node of the new forest has in B to obtain a descendant

map D (Fig. 3c). This combinatorial property of the forest

allows the identification of the leaking pixels. The map D is

different from the one presented in [10], which computes all

descendants in the forest.

Definition 5 (Descendant map) A descendant map is a

function D that assigns to each pixel p ∈ DI\R the num-

ber of descendants of p in B .
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Fig. 3 a The same image graph

of Fig. 2a. Internal seed and

pixels in the image’s border B

are shown with distinct node

patterns. b Optimum-path forest

in TP, where the numbers

indicate minimum costs. Object

and leaking trees are shown

with distinct node patterns.

c The numbers indicate the

descendant count in B for each

pixel, except for the root node.

d After pruning, the remaining

forest defines the object

Each leaking tree is supposed to cross the object’s bound-

ary through a single pixel, named leaking pixel, and the

paths that reach B must pass through all leaking pixels

(Fig. 3b).

Definition 6 (Leaking pixel) A leaking pixel is defined as

an object pixel whose successors in the leaking paths belong

to the background.

The leaking pixels can be usually detected from the pre-

decessor and descendant maps as the last one with the high-

est descendant value along an optimum path that reaches B .

That is, by following backwards any optimum path in P ,

which has terminal node in B , the leaking pixel is the first

one with the highest descendant value in the way back to

the root of its tree (pixel (5,6) in Fig. 3c). We can repeat

this procedure for all nodes in B to detect all leaking pixels

automatically.

This property usually holds at the object’s boundary

thanks to the FIFO tie-breaking policy of the priority

queue Q. After leaking, the gradient condition makes am-

biguous the pixels in the neighborhood outside the object,

ramifying the leaking path into several branches (Fig. 5).

This ramification drastically reduces the descendant count

for pixels of the subtrees rooted at the leaking pixels. The

object is finally obtained by removing the subtrees of the

leaking pixels from the original forest (Figs. 3d, 4f and 5c).

Definition 7 (Object by tree pruning) Let P be the set of

pixels that belong to the subtrees of leaking pixels, Tl be the

set of pixels that belong to the leaking trees, and To be the

set of pixels that belong to the object trees. The object is

defined as R∪ To ∪ {Tl\P}.

3.2 Algorithms

Algorithm 2 computes the descendant map D (Definition 5)

in linear time. It visits all pixels of the forest in reverse

breadth-first order, accumulating the number of descendants

from the leaf pixels to the root pixels. Lines 1–3 insert the
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Fig. 4 a A gradient image

where the object is a bone of the

wrist. b–e The region growing

of the IFT from internal seeds.

The leaking occurs before filling

the entire object, but these

leaking paths surround the

object, avoiding further

connections between object and

background. f The object is

obtained by automatic leaking

pixel detection

Fig. 5 a A gradient image. b The original image overlaid by the de-

scendant map. The leaking path ramifies into several branches on the

object’s boundary, provoking a decreasing in D (the lines become

darker) and avoiding further connections between object and back-

ground. c The resulting segmentation with TP
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Algorithm 2 Descendant Map Computation (Linear Time)

Algorithm 3 Descendent Map Computation (Alternative)

forest roots in a FIFO queue Q and initialize the descen-

dant count map D. Lines 4–8 traverse the optimum-path for-

est in breadth-first order, inserting every visited pixel in the

stack S. Lines 9–13 use the stack S to visit the forest in

reverse breadth-first order, calculating and propagating the

descendant count up to the roots of the forest. The resulting

map D counts, for each pixel, the number of descendant pix-

els in the optimum-path forest that belong to B . Algorithm 2

visits each pixel exactly three times, and its running time is

Θ(|DI |).

Algorithm 3 computes the same descendant map D with

a different approach: For each pixel in B , the algorithm fol-

lows backwards its optimum-path up to the root, updating

the descendants-in-the-border count. In the worst case—an

unlikely situation in which all pixels of B belong to a same

optimum-path that contains all image pixels—Algorithm 3

will visit each pixel |B| times, leading to O(|DI | |B|) per-

formance. For 2D images, |B| ∝ √|DI |, and its running

time becomes O(|DI |
3
2 ). For 3D images, |B| ∝ 3

√|DI |2,

and its running time becomes O(|DI |
5
3 ).
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Algorithm 4 Leaking Pixel Detection

In real applications, Algorithm 3 visits much less than

|DI | pixels since most pixels belong to optimum paths that

do not reach set B , and thus they are never visited. While Al-

gorithm 2 guarantees linear performance, Algorithm 3 leads

to reduced running times in practical applications. Experi-

mental comparison of these algorithms in real 3D segmenta-

tion applications showed that Algorithm 3 is 1.8 times faster

than Algorithm 2. The implementation of Algorithm 3 is

also shorter and simpler than the implementation of Algo-

rithm 2.

The descendant map D is used to detect the leaking pixel

associated with each node in B . For every backwards path

from B to its root, the first pixel with the highest value in D

along the backwards path is a leaking pixel. The set Lk of

leaking pixels is computed by Algorithm 4.

4 Sufficient Conditions and Geometrical Issues

This section discusses the main aspects to understand the

differences between watershed transform (WS) and tree

pruning (TP), their advantages and limitations. In all exam-

ples, we use the same gradient image and internal seeds So

for WS and TP. Additionally, WS uses the image’s border

as external seeds Sb and TP uses the image’s border B to

extract the descendant map D. Therefore, the role of the im-

age’s border is very different in these approaches.

The gradient conditions are desirable but not necessary

conditions (Sect. 2). In WS, it is not difficult to see that

the optimum paths from So and Sb will meet at the object’s

boundary, regardless of seed location, whenever the gradient

values are strictly higher on the object’s boundary than in-

side and outside the object. Indeed, WS will work even with

one external seed and one internal seed. The gradient con-

dition for TP is more relaxed, but its sufficient conditions

are:

(C1) All subtrees of leaking pixels must belong to the back-

ground.

(C2) Each leaking tree may have at most one leaking pixel.

(C3) Each leaking pixel must have at least two children

nodes with descendants in B .

The object by Definition 7 is a set of pixels resulting from

the union of the roots, object trees, and leaking trees after

removing the subtrees of all leaking pixels (background).

By definition, roots and object trees belong to the object.

Therefore, conditions (C1)–(C3) are sufficient to guarantee

that object pixels will not belong to subtrees of leaking pix-

els and Algorithm 4 will detect all leaking pixels. If (C1)

is violated, then object pixels may belong to the subtree

of some leaking pixel (because some leaking path left and

then returned to the object or a leaking pixel also belongs to

some non-leaking path). Condition (C2) guarantees that Al-

gorithm 4 will not detect the highest descendant count inside

the object (a false leaking pixel). If a leaking tree has two or

more leaking pixels, then the respective leaking paths must

have common ancestor nodes inside the object with descen-

dant count strictly higher than the leaking pixels. However,

(C2) does not prevent Algorithm 4 to detect a false leaking

pixel outside the object. Then (C3) together with (C2) guar-

antee that all leaking pixels are detected by Algorithm 4.

(C3) implies by induction that all leaking pixels have de-

scendant count strictly higher than any of their descendant

nodes. Given that the only entrance to the object is through a

leaking pixel, the first highest descendant count is detected

on the object’s boundary for any backwards path from B .

Therefore, conditions (C1)–(C3) guarantee the correctness

of the method. On the other hand, if the method segments the

object then it is not difficult to prove that conditions (C1)–

(C3) hold.

Condition (C1) may hold even when the gradient condi-

tion for TP is not satisfied (Fig. 4), but the gradient condition

implies in (C1). This can be easily verified because the IFT

algorithm computes optimum paths in a non-decreasing or-

der of costs with FIFO tie-breaking policy (Sect. 2.2). This
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Fig. 6 a A gradient image. b–d Results of segmentation with TP and incremental seed sets (white markers). e–f WS requires the image’s border

and additional external seeds (black markers) to work

guarantees that under the gradient condition all object pix-

els will be reached by optimum paths before the background

pixels and pixels on the object’s boundary will be reached by

optimum paths from interior pixels before other boundary

pixels.

In interactive segmentation, we may correct the results of

TP by adding seeds to So whenever (C1) and (C2) fail. This

forces object pixels to be reached before background pixels

in (C1) and breaks leaking trees with multiple leaking pixels

into object trees and/or trees with a single leaking pixel each.

Similarly (C3) can be satisfied when a leaking pixel has no

descendants in B , by adding pixels of its subtrees to set B .

In the worst case, the predecessor of the leaking pixels are

added to So and their children nodes are added to B , forcing

the first highest descendant value to be at the leaking pixel.

In [10], the descendant map highlights all leaking paths and

not only those that reach B . This is better for 2D interactive

segmentation, because the user can see exactly where the

leaking occurs and cut the leaking paths.

Figures 6a–d illustrate the case that requires more inter-

nal seeds to satisfy (C1) and (C2) in TP. The same exam-

ple does not satisfy the gradient condition for WS. Figu-

res 6e–f show that, besides the image’s border, additional ex-

ternal seeds are needed in Sb to correct segmentation in WS.

Figures 7a–b illustrate the case that requires additional ex-

ternal pixels in B to satisfy (C3). The same example shows

in Figures 7c–d that WS may require more external seeds

in Sb for correction than the pixels in B .

On the other hand, Fig. 8 suggests that TP may be more

sensitive to the location of the internal seeds than WS. TP

fails in Fig. 8c due to violation of (C2) (the dot in the bigger

fragment is a disk with multiple pixels in B). One seed close

to the leaking pixel corrects segmentation.

Note that in the gradient condition for WS, both methods

should provide similar results. We will show this experimen-

tally in Sect. 6.2. Condition (C1) is satisfied as described

above and the lower gradient values outside the object to-

gether with the FIFO tie-breaking policy favor (C3), as ex-

plained in Sect. 3.1. In order to favor (C2), either we select

seeds close to the leaking pixels or, in the case of automatic

segmentation, estimate as large as possible the seed set.

4.1 Heterogeneity of the Background

The examples in Figs. 1, 6, and 7 suggest that TP may be

more robust than WS with respect to the heterogeneity of

the background. Figure 9a shows a gradient image of a cir-

cular object, which satisfies the gradient condition for TP

but not for WS. Ambiguous regions are shown in Fig. 9b as

white pixels. These regions are plateaus of cost (tie zones in

WS) whose pixels are reached by optimum paths with costs

greater than or equal to the leaking pixel values. The water-

shed lines might be anywhere on these plateaus (Fig. 9c).

Given that TP does not depend on the costs of the optimum

paths outside the object, it is less susceptible to the hetero-

geneity of the background (Fig. 9d).

The Variant of Maximum Gradient A problem may occur

when multiple objects with similar gradient values are very
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Fig. 7 a A gradient image.

b Resulting segmentation with

TP, internal seeds (white

markers) and additional pixels

in B (black markers).

c–d Resulting segmentation

with WS and additional external

seeds, besides the image’s

border (black markers)

close to each other. The absence of space in between the

objects to ramify the path at the leaking pixel may create a

false pruning point outside the object (Fig. 10a), failing con-

dition (C3). If the gradient condition for TP is satisfied, we

may assume that the correct location of a leaking pixel is

always at the maximum gradient value in the path segment

between the detected point and its root. We call this vari-

ant of maximum gradient. Note that it does not affect the

location of the true leaking pixels, but solves the problem

as illustrated in Fig. 10b. This variant has been used in all

examples and experiments of this paper.

4.2 Geometrical Issues

The failure probability of the TP conditions increases with

the number of leaking pixels. The competition among seeds

might prevent some leaking trees to reach set B , failing (C3),

and leaking trees might have multiple leaking pixels, fail-

ing (C2). Although the gradient condition for TP is not nec-

essary, these observations and its implication in (C1) indi-

cate that it is at least desirable.

The number of leaking pixels achieves the worst case for

perfect boundaries and perfect gaps (Fig. 11), but there are

alternative solutions. Figures 11a and 11b show a perfect

boundary and a wrong segmentation result with TP. A sim-

ple solution is to order the pixels by their gradient values

such that pixels with the same intensities are randomly or-

dered (Figs. 11c and 11d). In perfect gaps (Fig. 11e), we

can add internal seeds in So and external pixels in B around

the gaps to solve segmentation (Fig. 11f). A similar solu-

tion is required for WS. However, a more elegant solution

is to run an edge detection method, compute the Euclidean

distance transform to the edges, and create an edge distance

map as the complement of the pixel distances to the edges.

By adding the edge distance values to the original gradient

value, we obtain a new gradient image in which the number

of leaking pixels is drastically reduced (Fig. 11g), solving

the problem with perfect gaps (Fig. 11h).

Fortunately, images usually have noise that considerably

reduces the number of leaking pixels. Therefore, we never

needed to use these solutions in practice.

Condition (C3) may also fail in the case of nested bound-

aries, being them a problem for WS as well. External (true

or false) closed boundaries may prevent leaking paths of in-

ternal boundaries to reach set B . The problem can be solved

with an alternative pixel in B , which should be selected be-

tween the boundaries. Similar solution can be obtained with

Sb in WS. In [25], we proposed an alternative solution for

TP which iteratively searches the desired boundary (leaking

pixel) by matching candidates with a template. This solu-

tion goes backwards along the optimum path from the first

detected pixel to its root, looking for a next pixel whose gra-

dient value is maximum in the remaining segment. A third

and probably best option is to improve gradient computation

in order to avoid such situations (Fig. 12).
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Fig. 8 a Result of segmentation

with TP. WS obtains similar

result with the image’s border as

external marker. b WS segments

the object with one additional

external seed (black dot). c TP

fails with the same seed

selection. d TP works when we

change the location of the

internal seed (white dot)

5 Gradient Images

It should be clear that under the gradient condition for WS,

TP and WS provide similar results, except for some pixels

on the object’s boundary because WS divides the boundary

between influence zones of internal and external seeds. In

order to create suitable gradient images for both methods,

we should be able to exploit image features which distin-

guish object and background.

Let 
f (p) = (f1(p), f2(p), . . . , fn(p)) be a vector at

pixel p such that the values fi(p), i = 1,2, . . . , n, are

the brightness values of p and of its 8-neighbors, for in-

stance. The differences dj (p, qj ), j = 1,2, . . . ,8, measure

the brightness variations around arcs (p, qj ) between p and

each of its 8-neighbors.

dj (p, qj ) = 1

n

n
∑

i=1

fi(qj ) − fi(p). (2)

The vector 
dj (p, qj ) = dj (p, qj )
qj −p

|qj −p| represents the

brightness variation in the direction of (p, qj ). The gradient

vector 
G(p) at p is obtained by the sum of its projections

on these directions.


G(p) =
8

∑

j=1


dj (p, qj ). (3)

The magnitude of 
G is used as gradient image Î . In the case

of colored images (the originals of Figs. 6, 7, 8, and 10), we

obtain one gradient image for each channel; red Îr , green

Îg , and blue Îb; and compute the final gradient value I (p) =
max{Ir(p), Ig(p), Ib(p)} for all pixels p ∈ DI .

6 Evaluation

TP and WS require some approach for seed selection (object

location) in automatic segmentation. We present two appli-
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cations in which robust procedures exist for object location:

(i) license plate segmentation and (ii) 3D MR-image seg-

mentation of the human brain.

The experiments compare the results with some ground

truth, which was obtained by interactive differential water-

shed segmentation [9] for both applications. Let O and G

be the pixel sets that represent segmented object and ground

truth. We use three normalized measurements: false nega-

Fig. 9 a A synthetic gradient image of a circular object, where the

heterogeneity of the background is given by a random external noise.

b Watershed tie zones in white. c–d Respective segmentation results

by WS (c) and TP (d) for a same internal seed (white dot)

tives (FN), false positives (FP), and error (E).

FN = |G \ O|
|G| , (4)

FP = |O \ G|
|O| , (5)

E = |(O \ G) ∪ (G \ O)|
|O ∪ G| (6)

where |X| is the cardinality of the set X.

6.1 License Plate Segmentation

The experiments used 990 images (352 × 240 pixels) from

a database of license plates. The goal is to find the precise

location and spatial extent of the plates (Fig. 13a). Seed se-

lection is a difficult task, because any attempt to estimate

seeds inside a plate is likely to find seeds in other parts of

the image. Besides, we need to estimate seed pixels outside

the plate numbers to avoid problems with nested boundaries

(Fig. 13b).

6.1.1 Seed Selection and Gradient Image

For automatic seed selection, we chose a method proposed

by Zheng et al. [36]. This approach is very effective for plate

location, but could not be used as baseline for segmentation.

The reason is that they ignore shape deformations which do

not occur in their database, but are very common in ours

(Fig. 14a). The magnitude of the Sobel’s operator was cho-

sen as gradient image. This choice illustrates our observa-

tion that WS is more dependent of the heterogeneity of the

background than TP.

The original image is first enhanced, then vertical edges

are extracted using Sobel’s operator (Fig. 14b). An edge

density map is computed using a rectangular window

Fig. 10 Image with one object

fragment marked for detection.

a The detected pixel is outside

the fragment due to its

proximity to the other

fragments. b The correct leaking

pixel is automatically detected

using the variant of maximum

gradient
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Fig. 11 a Synthetic gradient with perfect boundary. b TP fails because it missed several leaking pixels. c A randomly ordered gradient. d TP

works on (c) with a single seed. e Synthetic gradient with perfect gaps. f A hard solution using markers around the gaps. g A gradient image with

edge distance map. h TP works on (g) with a single seed

Table 1 License plate

segmentation: Mean and

standard deviation of the

average values of error (E),

false negatives (FN) and false

positives (FP) for each method

with respect to the ground truth

Method Error (E) False negatives (FN) False positives (FP)

TP 2.72% ± 0.07% 0.89% ± 0.09% 1.90% ± 0.10%

WS 4.84% ± 0.10% 2.09% ± 0.07% 2.85% ± 0.11%

PTP (T = 1%) 5.85% ± 0.74% 3.34% ± 0.76% 2.61% ± 0.03%

PTP (T = 3%) 4.15% ± 0.07% 0.56% ± 0.06% 3.66% ± 0.10%

PTP (T = 5%) 5.37% ± 0.05% 0.56% ± 0.02% 4.90% ± 0.06%

(Fig. 14c). The center of the plate is expected to be at the

highest value in this map.

Seed estimation around the point detected by Zheng’s ap-

proach is done by “supervised learning”. The training set

consists of 15% of the plates randomly selected from the

database. We compute the average of their binary images

(ground truths), with all plates translated to a same reference

point (a common geometric center). The pixels with average

value 1 are interior pixels in these plates, and so they are

assumed to be interior pixels of the remaining plates in the

database. To avoid seeds on the border of the plates, their

erosion with a disk of radius 1 is used as internal seed set

for TP and WS (Fig. 14d). Pixels of the image’s border are

used as external seeds Sb for WS and set B for TP.

The seed estimation based on Zheng’s approach found

seed sets inside 93.3% of the plates in our database. We

could further improve this result to 96.4% by taking into ac-

count the fact that there is no license plate in the top region

of the image (30% of the height) in our database.

6.1.2 Experiments and Results

We compare the segmentation results of TP, WS, and a pre-

vious version of TP [10] (PTP—previous TP), which re-

quires a parameter T for leaking pixel detection. In order to

show robustness with respect to the seed estimation process,

we executed segmentation 10 times for each method, using

a distinct training set each time, and computed mean and

standard deviation of the average values of E, FN, and FP

(see (4–6)). Table 1 summarizes the results of each method

using as test set the images where seed estimation was inside

the plates (i.e., 96.4% of the 990 plates).

Note that TP was more accurate than PTP for any fixed

value T , because it is difficult to adjust T in this application.

Figures 15a–b illustrate cases of errors in seed estimation. In

some cases Zheng’s method detects a point outside the plate

and in other cases the detected point is far from the center

of the plate (as consequence, internal seeds are wrongly es-

timated outside the plate). Table 1 also shows that WS was

more sensitive than TP with respect to the heterogeneity of

the background (Figs. 15c–d). Figures 15e–i show correct

segmentation results using TP under various conditions.
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Fig. 12 a–b Results of TP for a

fragment and a bone of the wrist

using the magnitude of the

Sobel’s gradient and c–d the

improved gradient presented in

Sect. 5

Fig. 13 a Original image with

the result of TP. b The

magnitude of the Sobel’s

gradient

If we consider the maximum error E = 0.10 (10%) as an

acceptable segmentation, 93% of the 990 plates are detected

with TP and 91% are detected with WS.

Deformable models [7, 20] could also be used to segment

the plates from the detected location. However, the edges

inside and outside the plates might present a local minima

problem (Fig. 13b) and the model should take into account

shape deformations and imperfect plates (Figs. 15e–h). In

this case, it seems at least simpler to use approaches like TP

and WS.

In comparison with the TP-based plate segmentation

method presented in [25], the current version gives similar

results but works faster (55 ms per image on an Athlon XP

2400+) using a more elegant procedure for seed estimation

and a single tree pruning execution per image.

6.2 3D MR-Image Segmentation of the Brain

Segmentation of the human brain from Magnetic Resonance

(MR) images has been addressed in several different ways,

each one with its pros and cons [18]. Figure 16 shows an
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Fig. 14 a Original image with

the result of the method

proposed by Zheng. b Vertical

edges after filtering. c The edge

density map. d Internal seed set

Fig. 15 a–b Errors in the seed

selection procedure.

c Watershed fails segmentation.

d Tree pruning correctly

segments the same image in (c).

e–i License plate segmentations

by TP under shape distortions,

scale changes and lighting

effects

MR-T1 slice image of the brain, where some structures and

tissues are indicated. The goal is to separate the gray mat-

ter (GM) and white matter (WM), as a single object, from

the rest of the image. We have evaluated tree pruning using

phantom MR-T1 images (which are available at the Brain-

Web site2 [5] together with their ground truth) and real MR-

T1 images from control subjects.

2URL: http://www.bic.mni.mcgill.ca/brainweb/.
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6.2.1 Seed Selection and Gradient Image

Figure 17a shows an MR-T1 slice image of the brain. Note

that GM and WM can not be obtained by automatic thresh-

olding on Fig. 17a and simple morphological operations on

Fig. 17b. On the other hand, a morphological erosion on

Fig. 17b with a sphere of radius 5 mm can assuredly sep-

arate GM and WM from other structures, and the largest

connected component resulting from erosion can be used

as a seed set inside the brain (Fig. 17c). The gradient im-

Fig. 16 Tissues in MR-T1 images of the brain. CSF is the cere-

brospinal fluid (liquor)

age is computed as described in Sect. 5, but using a three-

dimensional 6-neighborhood instead of the two-dimensional

8-neighborhood (Fig. 17d). This choice illustrates our ob-

servation that WS and TP produce similar results when the

gradient condition for WS is satisfied.

6.2.2 Experiments with Phantoms

On the first set of experiments, we generated 8 MR-T1 phan-

toms with varying noise and inhomogeneity (INU) settings

(Fig. 18), and automatically segmented them with tree prun-

ing (TP) and watershed (WS), using the same internal seeds,

gradient image, and the image’s border as background seeds

for WS and set B for TP. The results were compared with

the available ground truth.

Since TP and WS detect the external boundary of the

brain, the resulting objects still contain small CSF regions

(sulci and ventricles). To properly classify them as back-

ground, we take the intersection between the pruned object

and the voxels with intensities above the Otsu’s threshold.

6.2.3 Experiments with Real MR-T1 Images

On the second set of experiments, we selected 20 MR-T1

images of control subjects with no known anomalies, ac-

quired with a 2T Elscint scanner and voxel size of 0.98 ×
0.98×1.00 mm3. All volumes were interactively segmented

Fig. 17 a Sample slice of

MR-T1 image of the brain.

b Binary slice resulting from

Otsu’s thresholding overlaid on

image (a). c Binary slice of seed

voxels overlaid on image (a).

d Slice of the gradient image
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Fig. 18 Sample slices of the phantoms with different degrees of noise

(N ) and inhomogeneity (INU): a N = 3% and INU = 20%, b N = 5%

and INU = 20%, c N = 7% and INU = 20%, d N = 9% and

INU = 20%, e N = 3% and INU = 40%, f N = 5% and INU = 40%,

g N = 7% and INU = 40%, and h N = 9% and INU = 40%

with differential watersheds [9] in order to provide a basis

for comparison (a ground truth). The images were automat-

ically segmented by 3 methods: TP, WS (with the image’s

border as external seeds), and SPM2 [17]—a widely used

template-based approach for medical research.

6.2.4 Results

Table 2 shows the segmentation errors of TP and WS for the

phantoms with respect to the available ground truth. Fig-

ure 19 shows 3D renditions of the obtained segmentations.

Table 3 shows the segmentation errors for the 3 meth-

ods on real images, using the interactive segmentation as the

basis for comparison. Figure 20 shows renditions of the seg-

mented brains.

Table 2 Brain phantom segmentation errors with tree pruning and wa-

tershed

Noise / INU Tree pruning Watershed

Error (FN,FP) Error (FN,FP)

3% / 20% 5.16% (3.20%,2.09%) 4.58% (2.53%,2.15%)

5% / 20% 5.03% (3.14%,2.01%) 4.41% (2.55%,1.95%)

7% / 20% 5.26% (3.65%,1.74%) 4.69% (2.96%,1.84%)

9% / 20% 6.00% (4.48%,1.66%) 5.42% (3.85%,1.70%)

3% / 40% 5.26% (3.16%,2.23%) 4.61% (2.45%,2.27%)

5% / 40% 5.18% (3.44%,1.86%) 4.70% (2.73%,2.08%)

7% / 40% 5.67% (4.06%,1.75%) 5.09% (3.38%,1.83%)

9% / 40% 6.68% (5.23%,1.61%) 6.14% (4.66%,1.64%)

Average 5.53% (3.80%,1.87%) 4.96% (3.14%,1.93%)

We can observe the high degree of agreement among

TP, WS and the ground truths in both experiments. Note

that SPM2 provided segmentations with noticeable arti-

facts, such as disconnected components outside the brain

(Fig. 20). This illustrates how difficult is to segment our im-

ages.

TP and WS not only provided better segmentation re-

sults than SPM2 on the real images, but also were much

faster. The entire segmentation task with TP (marker extrac-

tion, gradient computation, optimum-path forest computa-

tion, leaking point detection and tree pruning), for exam-

ple, took 25 seconds for a 181 × 217 × 181 MR-T1 volume,

while SPM2 took 5 minutes, on the same Athlon64 3200+
workstation.

The background is homogeneous in most part of these

MR-brain images and there are no strong barriers between

the brain’s border and the image’s border. This favored gra-

dient images that satisfy the gradient condition for WS. As

we expected, such a situation makes TP and WS to provide

similar results. The segmentation differences were mostly

the segmentation of excess tissue (false positives) near the

cerebellum (as seen in Fig. 20 for subjects 9, 17 and 20) and

near the optical nerve (as seen in Fig. 20 for subjects 6, 8, 9

and 19), as well as a thin layer of misclassified voxels over

the brain’s cortex, indicating off-by-one errors in the loca-

tion of the object’s boundary. These mistakes can be mini-

mized with the design of better application-dependent meth-

ods for the computation of the gradient image, with stronger

barriers between object and background in the problematic

regions. In the case of real images, the slight advantages

of WS in performance are also related to the fact that the

ground truth was created using the interactive watershed on

the same 3D gradient image [9].
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Table 3 Real brain segmentation errors with tree pruning, watershed and SPM2

Subject Tree pruning Watershed SPM2

Error (FN,FP) Error (FN,FP) Error (FN,FP)

01 6.63% (2.88%, 2.69%) 5.62% (2.51%, 2.16%) 10.49% (4.87%, 3.92%)

02 8.79% (1.62%, 6.94%) 8.28% (1.42%, 6.75%) 14.56% (5.85%, 6.77%)

03 7.83% (2.33%, 4.82%) 7.30% (1.80%, 5.08%) 13.00% (4.31%, 7.62%)

04 11.60% (3.46%, 6.07%) 7.62% (3.04%, 2.32%) 15.10% (6.39%, 4.46%)

05 9.85% (2.34%, 6.71%) 10.24% (2.06%, 7.74%) 19.51% (10.21%, 4.04%)

06 9.59% (2.39%, 6.02%) 8.32% (2.05%, 5.27%) 16.47% (4.05%, 10.71%)

07 7.98% (1.55%, 6.17%) 8.24% (1.27%, 6.88%) 11.70% (3.89%, 6.71%)

08 8.37% (3.36%, 3.75%) 7.05% (2.87%, 3.12%) 13.20% (5.37%, 6.15%)

09 9.32% (2.70%, 5.74%) 9.35% (2.33%, 6.45%) 12.36% (5.21%, 5.20%)

10 13.96% (1.80%,12.21%) 13.46% (1.56%,12.05%) 15.50% (5.70%, 7.92%)

11 6.82% (1.82%, 4.67%) 6.77% (1.56%, 4.98%) 12.68% (5.09%, 6.40%)

12 12.88% (2.22%,10.51%) 12.93% (1.82%,11.14%) 15.78% (5.20%, 9.01%)

13 8.51% (1.98%, 6.22%) 8.12% (1.56%, 6.47%) 12.41% (4.62%, 6.56%)

14 8.96% (3.89%, 4.15%) 8.49% (3.43%, 4.27%) 12.36% (6.00%, 5.09%)

15 7.00% (2.07%, 3.96%) 6.02% (1.78%, 3.42%) 11.82% (4.99%, 4.22%)

16 9.71% (2.45%, 6.44%) 12.61% (2.20%,10.25%) 14.70% (5.20%, 7.14%)

17 7.66% (2.94%, 3.51%) 7.30% (2.61%, 3.65%) 12.57% (5.01%, 5.81%)

18 7.15% (2.81%, 2.62%) 6.41% (2.61%, 2.08%) 16.43% (7.92%, 3.93%)

19 9.14% (1.41%, 7.87%) 8.26% (1.29%, 7.00%) 13.01% (4.17%, 8.38%)

20 16.03% (1.85%,14.71%) 14.31% (1.70%,12.97%) 18.34% (3.31%, 14.87%)

Average 9.39% (2.39%, 6.29%) 8.83% (2.07%, 6.20%) 14.10% (5.37%, 6.74%)

Fig. 19 Renditions of the 8

brain phantom segmentations by

tree pruning (first and second

columns), watershed (third and

fourth columns) and of the

provided ground truth (fifth

column)



160 J Math Imaging Vis (2007) 29: 141–162

Fig. 20 Brain segmentation results with tree pruning, watershed and SPM2 for 20 control subjects, shown as 3D renditions

7 Conclusion

We have presented a considerably extended version of our

previous work on tree-pruning segmentation [10, 25], which

adds a formal definition of the obtained objects, several

new examples, algorithms, sufficient conditions, geomet-

rical issues, an improved gradient computation with re-

spect to the Sobel’s operator, and experiments for auto-
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matic license plate image segmentation and 3D MR-image

segmentation of the human brain. The experiments show

that TP can provide good results in both applications, is

less sensitive than WS with respect to the heterogeneity

of the background, and that both approaches provide sim-

ilar results when the gradient condition for WS is satis-

fied.

We may see image segmentation as consisting of two

tightly coupled tasks: recognition and delineation. Delin-

eation aims to define the precise spatial extent of an object in

the image while its approximate location (e.g., seed estima-

tion) is a recognition task. Recognition also involves other

cognitive tasks, such as to verify the segmentation correct-

ness or to identify a desired object among candidate ones.

While computers usually outperform human beings in de-

lineation, the other way around has been verified for recog-

nition [15].

TP and WS are essentially delineation methods. At same

time, model-based approaches [6, 7] have been proposed

for recognition and delineation. While they are effective

recognition methods, it is usually very difficult to model all

possible variations of a given object. In this sense, we be-

lieve that methods such as WS and TP, which provide de-

lineation based on optimum criteria, should be combined

with object location by model-based approaches for auto-

matic segmentation. Our future work follows in this direc-

tion.
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