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As an important variant of membrane computing models, fuzzy reasoning spiking neural P systems (FRSN P systems) were
introduced to build a link between P systems and fault diagnosis applications. An FRSNP systemo�ers an intuitive illustration based
on a strictly mathematical expression, a good fault-tolerant capacity, a good description for the relationships between protective
devices and faults, and an understandable diagnosis model-building process. However, the implementation of FRSN P systems is
still at a manual process, which is a time-consuming and hard labor work, especially impossible to perform on large-scale complex
power systems. �is manual process seriously limits the use of FRSN P systems to diagnose faults in large-scale complex power
systems and has always been a challenging and ongoing task for many years. In this work we develop an automatic implementation
method for automatically ful	lling the hard task, named membrane computing fault diagnosis (MCFD) method. �is is a very
signi	cant attempt in the development of FRSN P systems and even of the membrane computing applications. MCFD is realized by
automating input and output, and diagnosis processes consists of network topology analysis, suspicious fault component analysis,
construction of FRSN P systems for suspicious fault components, and fuzzy inference. Also, the feasibility of the FRSN P system is
veri	ed on the IEEE14, IEEE 39, and IEEE 118 node systems.

1. Introduction

As a branch of natural computing, membrane computing was
introduced by Păun in 1998 [1, 2]. �e distributed parallel
computational model is called a membrane system or a P
system. Membrane computing aims to investigate the com-
putational models and their applications abstracted from the
structure and functioning of cells [2–5]. A large number
of studies [6–10] show that many variants of P systems are
Turing complete [11–14]. Moreover, distribution, maximally
parallel, and expansibility [3, 15–18] make P systems suitable
for solving a variety of practical problems, like engineering
optimization [3, 19], combinatorial optimization [20], and
membrane controllers [21–24].

With the development of membrane computing, many
types of membrane systems were proposed [12, 13, 25, 26],
of which spiking neural P systems (SN P systems) are a hot

research topic covering language generation [27, 28], com-
puting power [29, 30], fuzzy reasoning [31–33], and NP-hard
problems [28, 30, 34]. SN P systems were introduced by
Ionescu et al. in 2006 [13]. As a typical application type of SN
P systems, fuzzy reasoning spiking neural P systems (FRSN
P systems) were introduced to build a bridge between the
P systems and fault diagnosis for complex power systems
[3, 24]. An FRSN P system o�ers an intuitive illustration
based on a strictly mathematical expression, a good fault-
tolerant capacity, a good description for the relationships
between protective devices and faults, and an understandable
diagnosis model-building process [3, 35]. According to the
investigations reported in literature, FRSN P systems have
been successfully used to diagnose the faults occurring in
transformers [24, 36], power transmission networks [35, 37–
39], traction power supply systems of high-speed railways
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Figure 1: Schematic structure of MCFD.

[40], metro traction power systems[41], and fault classi	ca-
tion of power transmission lines [39].

Until now, the implementation of FRSN P systems is still
at a manual process, which seriously limits the use of FRSN
P systems to diagnose faults in large-scale complex power
systems. For example, in [3, 24, 35–37, 42], only a small-scale
power system was considered. Furthermore, it is impossible
to perform complexity analysis for FRSN P systems with
a manual diagnosis process. �ese problems result in the
di�culty in the process of comparisons of FRSN P systems
with other diagnosis methods. �us, the automatic imple-
mentation of FRSN P systems has always been a challenging
and ongoing task for many years.

In this paper, an automatic implementation method has
been developed for automatically ful	lling the task and
it is called membrane computing fault diagnosis (MCFD)
method. �is is a very signi	cant step in this research direc-
tion. �e method automatizes input, output, and four diag-
nosis processes: network topology analysis, suspicious fault
component analysis, construction of FRSN P system for
suspicious fault components, and fuzzy inference.

�e article is arranged in the following manner: Section 2
discussesMCFD, Section 3 discusses the experimental results
of the system performed on IEEE14, IEEE 39, and IEEE 118
node system, Section 4 analyzes the complexity of the system,
and Section 5 concludes this work.

2. MCFD

Membrane computing fault diagnosis (MCFD) method
automatizes mainly three components, i.e., input, output, and
diagnosis process. �e main components of the diagnosis
process consist of network topology analysis, suspicious fault
component analysis, construction of FRSN P system for
suspicious fault components, and fuzzy inference. �e input
data is composed of topology data of power systems and pro-
tection con	guration data. �e outputs include fault compo-
nent information, protective relays information, and circuit
breakers operation evaluation. �e schematic structure of
MCFD is shown in Figure 1.

2.1. Automatized Input. �e information source of the fault
diagnosis program is the grid static data and switch state
data based on fault information system. In this paper we use
access database to store network topology information and

protection con	guration information. �e static topology
information and protection con	guration information of the
power network are given as input into the access database to
form the topology table and protection con	guration table.
�erefore, the input data of FRSN P system for fault diagnosis
consists of two parts: topology data of a power system and
protection con	guration data.

2.1.1. Topology Data of Power Systems. In this paper we
mainly discuss the fault diagnosis methods in power trans-
mission network. Moreover, this paper improves the tradi-
tional line analysis [43] and rede	nes the components, i.e.,
transmission lines, busbars, transformers, and generators.
�e circuit breakers (CBs) work as switches.

�e “Component” and “Switch” that appear in the follow-
ing sections are de	ned in the following manner. A power
system is made up of components and switch devices which
connect a variety of other equipment. So, the whole electric
power system grid network can be represented by the power
transmission network topology as shown in Figure 2. �e
components shown in the 	gure refer to the transmission
lines, busbars, transformers, and generators. �e switches
refer to the circuit breakers with two states: open and closed.

A�er there is a failure, because of the grid power system
components and complex wiring, it is very di�cult to 	nd the
faults in huge systems. But whenever fault occurs in a power
system, the protective relays and circuit breakers will operate
to isolate the fault. We investigate the actions of protective
relays and tripped circuit breakers in the network and the
connection relationship between them. Figure 2 shows a
simple and clear power transmission network topology of
the connection relation between components and circuit
breakers. �en the fault component is searched according to
the tripped circuit breakers.

�e topology table (Table 1) is constructed from the
components and switches of the entire power transmission
network topology. �e table stores the data of the main
components and switches along with their connection rela-
tionships and the protection number associated with each
component.

2.1.2. Protection Con�guration Data. �eSCADA system can
provide the tripped circuit breakers and operated protective
relays information whenever there is a fault in the grid.
Moreover, the data of the components, protective relays,
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Figure 2: Schematic diagram of power transmission network topology.

Table 1: �e topology table.

ID number
Switches
operation

Component/switch Type Type number
Associated

components/switches

Associated
protective

relays

10108 - - B08 Bus 101 CB0807.CB08G2
10110108.
21310214

Table 2: �e protection con	guration table.

ID
number

Protective
relay

Relays operation
Operated
switches

Protected equipment

10110113
Main protective

relay
0 010426.10438.10439 B13

and circuit breakers are used to construct the correlation
database.�e correlation relationships are introduced in [44–
46] in the following manner:

“Component - Protective” relay means that the protective
relays can be divided into the main protective relays of the
component and one of the 	rst backup protective relays.

“Protective relay – Switch” means that the circuit breaker
can trip in principle once the protective relays operation is
performed.

“Component1 - Component2” relates to the scope of pro-
tection of the second backup protective relay of component1
which can protect component2.

With these correlations, the protection con	guration
table can be described as in Table 2.

2.2. Automatized Network Topology Analysis. A�er the fail-
ure in the power system transmission network, the fault
component is eventually isolated by tripped circuit breakers.
Moreover, the fault component will be isolated in the pas-
sive network. We have elaborated in Section 2.1 the entire
topology database and protective relay database. Also, we
have established the corresponding topology table which
represents the correlation between the whole transmission
network topology structure and protective relays. Whenever
a failure occurs in the power system transmission network,
at 	rst the information is received from SCADA system
by circuit breaker opening and closing state, and then the
suspicious fault component is found by using the network

topology analysis method [47, 48]. �e speci	c network
topology analysis method is as follows:

(1) Set up M and store all component IDs into M.

(2) Set up the subset N. Take a component from the set
M and put it in the subset N. Find all closed circuit
breakers connected to it. If there is no closed circuit
breaker, then turn to step (5).

(3) Identify the components connected to the closed
circuit breaker and add the found components to the
subset N.

(4) Continue to search for closed circuit breakers that are
connected to the components in step (3) (except for
circuit breakers used in step (3)). If there is a closed
circuit breaker, go to step (3).

(5) Remove all components in the set M that appear in
the subset collection N. If the set M is not empty, then
transfer to step (2).

(6) List all the subsets N.

In fault diagnosis, the network topology analysis method
is used to search all subsets, and then the passive networks
are found from these subsets. �ese passive networks are the
outage areas. In this way, the diagnosis scope can be reduced
and then the suspicious fault component is diagnosed. It also
reduces the amount of operations and improves the e�ciency
of fault diagnosis. �e process of the searching of the passive
networks is shown in Figure 3.
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2.3. Automatized Suspicious Fault Component Analysis. �e
network topology analysis method is used to 	nd a passive
network and the diagnosis of the suspicious fault components
in the passive network. �e modeling of FRSN P systems is
very complex because of the existence ofmany components in
the complex grid network. In order to improve the diagnosis
e�ciency and accuracy of the algorithm, in this paper, we
introduce the concept of suspected fault component logic
analysis. At 	rst a logic diagram is constructed in such a
manner that the suspected fault component is considered
as the starting point. �en it searches and builds towards
each connection to protect the component within the scope
of the protection of all components and switches. �e
FRSN P system model is constructed according to the fault
production rules of the suspected fault components. Hence
the fault area is reduced and the fault component is identi-
	ed.

In the logic diagram the suspicious component alongwith
other system components and switches in the passive network
are represented by a node and the edge between the two
nodes represents the connection between the components
and switches. Moreover, the condition of the path search
termination is

(1) �e search is complete when all the protective relays
and switches that can protect the suspicious fault
components are searched on di�erent paths.

(2) If the search path is disconnected from the periph-
eral device due to normal operations (such as the
operation of the blade, etc.), then the search will be
terminated.

(3) If the search direction is opposite to the rule, the
search path will terminate.

(4) Search for a loop structure or parallel edge structure
on the search path, and if it exists then terminate this
direction search.

�e logic diagram of the suspected fault component
describes the topological association of the suspected fault
components and its associated protection in the power grid.
�e following example illustrates the method of forming the
logic diagram of the suspected component. In Figure 4, it is
assumed that the suspicious fault component is B3 by the
method of network topology analysis. �e logic diagram of
the suspected fault component is established by bus B3 in
three outgoing line paths: �3 �→ ��5 �→ �3 �→ ��2;
�3 �→ ��6 �→ �4 �→ ��7; �3 �→ ��9 �→ �5 �→ ��10,
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Figure 5: Suspect fault components FRSN P system model.

respectively. Moreover, the mutual cooperation between the
protective relay and circuit breaker will cut o� the connection
with the whole grid.

2.4. Automatized Modeling Suspicious Fault Components with
FRSNP System. Before performing the reasoning algorithm,
we need to build a FRSN P system diagnosis model. A local
grid is shown in Figure 4 and the network topology analysis
subsystem obtains the bus �3 as the suspicious component.
Also, the bus �3 and line �4 are used to build the FRSN P
system fault diagnosis model.

At 	rst, the bus �3 in Figure 4 is used to describe the
model where the fault con	dence level of bus �3 is the value
of output of the FRSN P system. Moreover, we discussed the
mutual cooperation between the protective relay and circuit
breaker by the suspicious fault component logic diagram in
Section 2.3.�e fault production rules of bus�3 are described
as follows:
�1: IF (�3� operates and ��5 trips) OR (�3��operates and

��2 trips) THEN �3faults (�� = ��),

�2: IF (�3� operates and��6 trips) OR (�4�� operates and
��7 trips) THEN �3 faults (�� = ��),
�3: IF (�3� operates and��9 trips) OR (�5�� operates and

��10 trips) THEN �3 faults (�� = ��).
�e following fault diagnosis model based on FRSN P

system for bus �3 is built according to these fault production
rules shown in Figure 5(a). �e FRSN P system Π is a
construct of the form

Π = (�, ��1, . . . , ��20, �	1, . . . , �	10, 
��, ��, ���) (1)

where

(1) � = {�} is the singleton alphabet (� is called spike);

(2) ��1, . . . , ��20 are proposition neurons correspond-
ing to the propositions with fuzzy truth values
�1, �2, . . . , �22;

(3) �	1, . . . , �	10 are rule neurons, where �	1, . . . , �	6, and
�	10 are ��� rule neurons and �	7, �	8, and �	9 are
�� rule neurons. A real number ���[0, 1] is used
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Table 3: Con	dence levels of operate protective devices.

Components
Name

Main First backup Second backup

Relays CBs Relays CBs Relays CBs

Bus 0.8564 0.9833 - - 0.7 0.75

Line 0.9913 0.9833 0.8 0.85 0.7 0.75

Table 4: Con	dence levels of nonoperate protective devices.

Components
Name

Main First backup Second backup

Relays CBs Relays CBs Relays CBs

Bus 0.2 0.2 - - 0.2 0.2

Line 0.2 0.2 0.2 0.2 0.2 0.2

to represent the certainty factor (��) of the fuzzy
production rule associated with �	�(1 ≤ � ≤ 10);

(4) 
�� ⊆ {1, 2, . . . , 22} × {1, 2, . . . , 10} with � ̸= � for all
(�, �) ∈ 
��, 1 ≤ �, � ≤ 22, is a directed graph of
synapses between the linked neurons;

(5) �� = {��1, . . . , ��12}, ��� = {�	10}.

�e transmission line �4 in Figure 4 is used to describe
model building of transmission line, where the fault con	-
dence level of transmission line�4 is the value of output of the
FRSN P system. �e fault production rules of transmission
line �4 are described as follows:
�1: IF (�4�� operates and ��6 trips) OR (�4��operates

and ��6 trips) OR (second backup protection operates and
�� trips) THEN �4 faults (�� = ��),
�2: IF (�4
� operates and ��7 trips) OR (�4
� operates

and ��7 trips) OR (second backup protection operates and
�� trips) THEN �4 faults (�� = ��).

�erefore, fault diagnosis model based on FRSN P system
for transmission line �4 is built according to the fault
production rules shown in Figure 5(b).

In order tomake the reasoning re�ect the operation of the
actual power grid more accurately, the uncertain factors in
the protection and the circuit breaker action information are
obtained from the power system dispatching center. In this
paper, the initial value of the con	dence level for operate and
nonoperate protective relays and circuit breakers are given in
[49], as shown in Tables 3 and 4, respectively. At the same
time, considering the uncertainty of the rule credibility, the
certainty factor �� of each fuzzy production rule is considered
to be 0.95.

In this paper, a proposition neuron is used for all second
backup protective relays and circuit breakers at both ends of
the line. If there are multiple second backup protective relays,
a factor �1, �2 as (2), (3) is applied before the con	dence level
of the proposition neuron, and the two ends of the line (S end
and R end), respectively.

�1

=  �!"#� �$ %���#���V# �#&��
 (��) $�� ' #�� �%#������ �!"#� �$ �&& %���#���V# �#&��
 (��
) �� �ℎ# ' #��
(2)

�2

=  �!"#� �$ %���#���V# �#&��
 (��) $�� + #�� �%#������ �!"#� �$ �&& %���#���V# �#&��
 (��
) �� �ℎ# + #��
(3)

�e automatic generation of the FRSN P system model is
shown below.

Step 1. According to the suspected fault component logic
diagram, take one path of the suspected fault compo-
nent logic diagram, and the components and switches
involved in the path can be expressed as a fault production
rule.

Step 2. Set up two set � and -, where � is the proposition neu-
ron corresponding to the proposition with fuzzy truth values.
�e initial value setting of the corresponding protective relay
and circuit breaker of the 	rst layer of proposition neurons
in the FRSN P system model is set by the information of the
input from SCADA system. - is the certainty factor which is
added to describe the credibility of the fuzzy generated rules
of the neuron.

Step 3. Store the values of � and - according to the con	dence
levels of operate and nonoperate protective relays and circuit
breakers in the 	rst path.

Step 4. Repeat the 	rst three steps until all the values of � and
- represented by the paths are added corresponding to one
branch direction.

2.5. Automatized Fuzzy Inference. A�er obtaining the con	-
dence level of the proposition expressed by the proposition
neuron and the certainty factor value of the rule neuron,
the next step is to carry out the reasoning operation. By
executing the following reasoning algorithm, the fuzzy values
of the propositions are represented by the output proposition
neurons which can be obtained quickly and simply. Speci	c
algorithm steps [35] are as follows (where 
 represents the
number of proposition neurons, � represents the number of
rule neurons and 
 + � = !).

Step 1. Set the initial state to 3 = 0. Set the termination

condition to 01 = (0, . . . , 0)�1×�. �e initial values of � and -
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are set to �
 = (�1
, �2
, . . . , ��
)� and -
 = (-1
, -2
 . . . , -�
)�,
respectively.

Step 2. 3 is increased by one.

Step 3. �e 	ring condition of each input neuron 3 = 1 or
each proposition neuron (3 > 1) is evaluated. If the condition
is satis	ed and there is a presynaptic rule neuron, the neuron
	res and transmits a spike to the next rule neuron. Compute
the fuzzy truth value vector -
 according to (4):

-
 = 4�1 ⊗ �
−1 + 4
�
2 ⊕ �
−1 + 4

�
3 ⊙ �
−1 (4)

Step 4. If -
 = 01, then the algorithm stops and output the
reasoning results. Otherwise, the algorithm continues.

Step 5. Evaluate the 	ring condition of each rule neuron.
If the condition is satis	ed, then the rule neuron 	res and
transmits a spike to the next proposition neuron. Next,
compute the fuzzy truth value vector �
 according to (5).
�en, the algorithm goes to Step 2:

-
 = 8� ⊙ (� ⊗ -
) (5)

Parameter vectors and matrices are described in the
following manner:

(1) � = (�1, �2, . . . , ��)� is a real truth value vector of s
proposition neurons. ��(1 ≤ � ≤ 
) is a real number
in [0, 1] and represents the potential value contained
in the �th proposition neuron. If there is no spike in a
proposition neuron, its potential value is 0.

(2) � = (-1, -2 . . . , -�)� is a real truth value vector of t
rule neurons. -�(1 ≤ � ≤ �) is a real number in [0, 1]
and represents the potential value contained in the �th
rule neuron. If there is no spike in a rule neuron, its
potential value is 0.

(3) � = diag(�1, �2, . . . , ��) is a diagonal matrix, where
��(1 ≤ � ≤ �) is a real number in [0, 1] representing
the certainty factor of the �th fuzzy production rule.

(4) �1 = (���)�×� is a synaptic matrix representing the

directed connection from proposition neurons to
general rule neurons. If there is a directed arc
(synapse) from the proposition neuron �� to the
general rule neuron ��, ��� = 1; otherwise, ��� = 0.

(5) �2 = (���)�×� is a synaptic matrix representing the

directed connection from proposition neurons to and
rule neurons. If there is a directed arc (synapse) from
the proposition neuron �� to the and rule neuron ��,
��� = 1; otherwise, ��� = 0.

(6) �3 = (���)�×� is a synaptic matrix representing the

directed connection from proposition neurons to and
rule neurons. If there is a directed arc (synapse) from
the proposition neuron �� to the or rule neuron ��,
��� = 1; otherwise, ��� = 0.

(7) � = (#��)�×� is a synaptic matrix representing the

directed connection between rule neurons and

proposition rule neurons. If there is a directed arc
(synapse) from the rule neuron �� to the proposition
neuron ��, #�� = 1; otherwise, #�� = 0.

Subsequently, we introduce the following three multipli-
cation operations:

(1) 4� ⊗� = (�1, �2, . . . , ��)
�
, where �� = �1� ∗�1 +�2� ∗

�2 + ⋅ ⋅ ⋅ + ��� ∗ ��, � = 1, 2, . . . , �.

(2) 4� ⊕ � = (�1, �2, . . . , ��)
�
, where �� = min(�1� ∗

�1, �2� ∗ �2, . . . , ��� ∗ ��), � = 1, 2, . . . , �.

(3) 4� ⊙ � = (�1, �2, . . . , ��)
�
, where �� = max(�1� ∗

�1, �2� ∗ �2, . . . , ��� ∗ ��), � = 1, 2, . . . , �.

2.6. Automatized Output. �e outputs include fault compo-
nent information, protective relays information, and circuit
breakers operation evaluation. A�er the fuzzy value of the
output proposition neuron is obtained according to the fault
threshold, the suspected fault components can be determined
if a failure has occurred. If it is a faulty component, the
system outputs the fault component information and fault
credibility value and goes to the reasoning process to estimate
whether the protection and circuit breaker has the situation
of misoperation and misoperation or not. If it is a normal
component, the output appears normal.

�us, the network topology analysis algorithm to 	nd
the passive region and the diagnosis of the suspected fault
components in the passive region are repeated. At 	rst, the
suspicious fault component analysis subsystem is called to
form the logic diagram of the suspicious fault components,
and then the FRSN P system diagnosis model is performed
by using the query protection con	guration data. Finally,
by calling FRSN P system inference algorithm, the fault
con	dence levels of the suspected fault components are
obtained and the fault of the components is determined to
realize the whole diagnosis process.

3. Experiments

To verify the e�ectiveness of the automatic implementation,
the IEEE14 node power system network model shown in
Figure 6 is tested. It is a 14-bus system containing �01∼�14
14 buses and �0102∼�1314 20 lines. �e protective device
consists of 134 protective relays and 40 circuit breakers,
and �01�, . . . , �14� are the main protective relays of the
buses. Moreover, ���� and ��
� are the main protective
relays on both ends of the line, ���� and ��
� are the
	rst backup protective relays on both ends of the line, and
���� and ��
� are the second backup protective relays on
both ends of the line (where < represents the ID of the
line). Before diagnosing the suspected fault component, the
components and switches of the entire power transmission
network must adopt the method described in the input
data section to construct their respective topology table. �e
detailed protection con	guration of various components, as
well as the relationship between the protective relays and the
circuit breakers, has been represented by the corresponding
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Figure 6: IEEE14 node power system network.

C＂1314 C＂1306

C＂1312

C＂1213C＂1413 C＂0613

L0613L1213L1314

＂13

Figure 7: �13 Logic diagram.

database in Tables 5 and 6. Furthermore, the whole diagnosis
process is carried out in the MATLAB environment. We give
an example to illustrate the steps of MCFD method.

Case. Bus �13 has a fault

(I) Operated relays: �13�; tripped circuit breakers:
��1306 , ��1312 , ��1314 .

(II) Call the network topology analysis algorithm to get
the passive zone {13}.

(III) To query the topology database of power system,
the corresponding logic diagram of suspected fault
components is formed, as shown in Figure 7.

(IV) According to logic diagram of suspected fault com-
ponents, query protection con	guration database is
used to form a FRSN P system model, as shown in
Figure 8.

(V) �e FRSN P system algorithm is invoked to perform
inference operations on suspicious fault components.

(VI) �e FRSN P system algorithm is invoked to per-
form inference operations on suspicious fault compo-
nents.

�e reasoning process is as follows:

(1) Parameter initialization: 3 = 0, �0 and -0 are
set according to the pulse values contained in
each neuron; i.e., the pulse values can be set
according to the initial con	dence level in
Tables 3 and 4. �erefore, �0 = (0.9833,
0.8564, 0.2, 0.2, 0.9833, 0.8564, 0.2, 0.2, 0.9833,
0.8564, 0.2, 0.2 0, . . . , 0)�, -0 = (0, 0, 0, 0, 0,
0, 0, 0, 0, 0)�.

(2) 3 = 1, �1 = (0, . . . , 0, 0.8136, 0.19, 0.8136, 0.19,
0.8136, 0.19, 0, 0, 0, 0)�, -1= (0.8564, 0.2, 0.8564,
0.2, 0.8564, 0.2, 0, 0, 0, 0)�.

(3) 3 = 2, �2 = (0, . . . , 0, 0.7729, 0.7729, 0.7729)�,
-2 = (0, 0, 0, 0, 0, 0, 0.8136, 0.8136, 0.8136, 0)�.
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Figure 8: �13 FRSN P system model.

Figure 9: IEEE14 node power system fault diagnosis program simulation results (B� represents the bus, L�� represents the line between the
bus B� and B�, CB�� represents the circuit breaker connecting the B� bus and the L� line, and G� represents the generator).

(4) 3 = 3, �3 = (0, . . . , 0, 0.7343)�, -3 = (0, 0, 0, 0, 0,
0, 0, 0, 0, 0.7729)�.

(5) 3 = 4, -4 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)� = 0. �e
termination condition is satis	ed and output is
obtained.

�e fault component con	dence level of bus �13 is
0.7343, according to the decision rule. Bus �13 is the
fault component. �e diagnostic results in the form
of a graphical user interface have been displayed in
Figure 9.

(VII) Protective relays and circuit breakers perform all
operations normally.

In addition, this method is also applicable to the large-
scale power grid. In this paper, the IEEE39 node power system
(show as Figure 10), and the IEEE118 node power system
(show as Figure 11) are tested in the sameway, whether there is
a single fault ormultiple faults, even if the protective relay and
circuit breaker information are lost. �e faulty component
can still be quickly diagnosed.

4. Complexity Analysis

It is assumed that there are � busbars, lines, transformer
components, and switches in a given power grid. If each of
these components and switches is treated as a node, the power



12 Complexity

Figure 10: IEEE39 node power system fault diagnosis program simulation results (B� represents the bus, L�� represents the line between the
bus B� and B�, CB�� represents the circuit breaker connecting the B� bus and the L� line, and G� represents the generator).

Figure 11: IEEE118 node power system fault diagnosis program simulation results (B� represents the bus, L�� represents the line between the
bus B� and B�, CB�� represents the circuit breaker connecting the B� bus and the L� line, and G� represents the generator).

grid can be viewed as a topology with � nodes. For a given
power grid, the number of outgoing lines of each component
is determined by a constant set as 	. In this paper, we mainly
analyze the complexity of this automatic implementation
method with busbar components as an example. For busbar
components with 	 outgoing lines, the protection settings
are 1 bus main protection, 	 backup protection on line
components with di�erent outgoing directions, a total of 	 +
1 protections, and the number of circuit breakers involved
which is 2∗	. Analysis of each algorithm module is described
as follows.

In the suspicious fault component analysis algorithm
module (as shown in Pseudocode 1), according to the protec-
tion con	guration of bus components, the relation between
the number of nodes and the number of outgoing lines in
the formed logical graph is 3	 + 1. At the same time, each
node in the logic diagram needs to determine whether it is
the component associated with the protection of the suspect
fault component. �erefore, (3	 + 1) ∗ (	 + 1) steps need
to be performed for the formation of logical diagram of

each suspect fault component, and a total of (3	 + 1) ∗
(	 + 1) ∗ � steps need to be performed for an �-node sys-
tem.

In the modeling suspicious fault components with FRSN
P system algorithm module (as shown in Pseudocode 2),
there are 	 branches in the logic diagram for the suspect
fault component. At the same time, 	 + 1 protections are
con	gured. In these protections, either the main protec-
tion action or the backup protection action will cause the
related 	 circuit breakers to trip. �erefore, obtaining the
initial value �0 of FRSN P system diagnostic model from
logic diagram need performs a total of (	 + 1) ∗ 	 ∗ 	
steps.

In the fuzzy inference module (as shown in Pseudocode
3). In the FRSN P system diagnosis model, there are 7	 +
1 proposition neurons and 3	 + 1 rule neurons. In order
to obtain the pulse value of the output proposition neu-
ron, the algorithm performs a total of (7	 + 1) ∗ (3	 +
1) steps. �erefore, when the proposed method diagnoses
the faulty component, the algorithm performs a total of
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Input: Suspicious fault component node set N, Component node-switch node adjacent matrix G
Output: Information about each component node and breaker node in the logic diagram
1: Set stop condition: All associated protection of suspicious fault components are accessed, %���#���V# !��F = (1, 1, . . . , 1)�;
2: Set Initialize state: %���#���V# !��F = (0, 0, . . . , 0)�, � = 0;
3: Add the suspicious fault component node to set '#�0;
4: while (all %���#���V# !��F ̸= 1) do
5: for each node � in set '#�� do
6: for each node � in node-switch adjacent matrix G do
7: if node adjacent matrix G(�, �) == 1 then
8: �e searched node � are added to set '#��+1;
9: G(�, �) = 0;
10: Add the node � to logic diagram;
11: for each associated protection of suspicious fault component F do
12: if� is the node of protection F-switch association set then
13: %���#���V# !��F� = 1;
14: end if

15: end for
16: end if
17: end for
18: end for
19: � = � + 1;
20: end while

Pseudocode 1: �e suspicious fault component analysis algorithm.

Input: Suspicious fault component logic diagram adjacent matrix '�, Information about each component node and breaker
node in the logic diagram
Output: �e fuzzy truth values of the input proposition neurons �0
1: Set stop condition: All outgoing line directions of the suspicious fault component logic diagram are access completed;
2: Set Initialize state: Set initialize access outgoing line direction number F = 1, set all outgoing line directions number of
suspicious fault componentH;
3: while (F ≤ H) do
4: for each associated protection of suspicious fault components � do
5: if associated protection � is the main protection then
6: query the protection database, obtain breaker ID number that should be tripped when protection � is active;
7: for the must trip breaker � when main protection � action do

8: if � is the breaker in the outgoing line direction F then
9: According to the operation information of breaker � and protection � set the fuzzy truth value vector �0;
10: end if
11: end for
12: else associated protection � is the backup protection then
13: query the protection database, obtain breaker ID number that should be tripped when protection � is active;
14: for the must trip breaker � when backup protection � action do
15: if � is the breaker in the outgoing line direction F then
16: According to the operation information of breaker � and protection � set the fuzzy truth value vector �0;
17: end if
18: end for
19: end if

20: F = F + 1;
21: end for
22: end while

Pseudocode 2: �e modeling suspicious fault components with FRSN P system algorithm.

(3	2) ∗ � + 	2 + 22	2 + 10	 + 1 steps, so the time complexity
of the proposed algorithm is�(�), which is very competitive
to other power system diagnosis techniques like Petri nets
[43–46, 48].

5. Conclusions

In this paper, the whole diagnosis process of power system
fault diagnosis based on FRSN P systems is realized by an
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Input: �e fuzzy truth values of the input proposition neurons �0
Output: �e fuzzy truth value of the output proposition neurons �

1: Set stop condition: 01 = (0, 0, . . . , 0)�� , 01 = (0, 0, . . . , 0)

�
� ;

2: Set reasoning step: 3 = 1;
3: while (�
 ̸= 01 �� -
 ̸= 02) do
4: for each input neurons (g = 1) or proposition neurons (3 > 1) do
5: if the condition of 	re 8 = �� is satis	ed then

6: Compute the fuzzy value vector -g, -
 = 4�1 ⊗ �
−1 + 4
�
2 ⊙ �
−1 + 4

�
3 ⊛ �
−1;

7: if this proposition neurons have a postsynaptic neuron then

8: Transmits a spike to the next rule neuron;
9: else
10: this proposition neurons only accumulates spike values;
11: end if
12: end if

13: end for
14: for each rule neurons do
15: if the condition of 	re 8 = �� is satis	ed then

16: Compute the fuzzy truth value vector �
 , �
 = 8� ⊛ (� ⊗ -
);
17: Transmits a spike to the next proposition neuron;
18: end if
19: end for

20: 3 = 3 + 1;
21: end while

Pseudocode 3: �e fuzzy inference algorithm.

automatic implementation method. �e whole diagnostic
algorithm includes data structure module, power grid topol-
ogy analysis algorithm module, suspicious fault component
logic analysis algorithm module, and FRSN P system infer-
ence algorithm module. IEEE14, IEEE39, and IEEE118 node
systems are discussed to verify the diagnosis algorithm pro-
gram. �e diagnosis of the results is consistent with manual
calculation results, which veri	es the feasibility and reliability
of automatic diagnosis algorithm procedures. �e FRSN P
system is used for fault diagnosis of the entire program
diagnostic algorithmand also the speed and complexity of the
various modules have been studied. Moreover, this method
can be used to improve the automation of fault diagnosis and
to explore the superiority of the fault diagnosis method based
on FRSN P system in the large-scale grid fault diagnosis with
more nodes in comparison with other methods.
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Kezunovic. Implementing fuzzy reasoning Petri nets for fault
section estimation, IEEETransactions onPowerDelivery, vol.
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