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Automatic In-Text Keyword Tagging based on Information Retrieval 
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Abstract: As shown in Wikipedia, tagging or cross-linking through major keywords in a document 
collection improves not only the readability of documents but also responsive and adaptive navigation 
among related documents. In recent years, the Semantic Web has increased the importance of social 
tagging as a key feature of the Web 2.0 and, as its crucial phenotype, Tag Cloud has emerged to the 
public. In this paper we provide an efficient method of automated in-text keyword tagging based on 
large-scale controlled term collection or keyword dictionary, where the computational complexity of 
O(mN) – if a pattern matching algorithm is used – can be reduced to O(mlogN) – if an Information 
Retrieval technique is adopted – while m is the length of target document and N is the total number of 
candidate terms to be tagged. The result shows that automatic in-text tagging with keywords filtered by 
Information Retrieval speeds up to about 6 ~ 40 times compared with the fastest pattern matching 
algorithm. 
 
Keywords: Automatic In-Text Keyword Tagging, Information Retrieval, Pattern Matching, Boyer-Moore-
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1. Introduction 
 
Since the World Wide Web has emerged, tagging or 

linking across the HTML texts has played a crucial role in 
the success of the Internet. In the late 1990s, Google 
noticed the importance of such tags (in-text content hyper-
links) in HTML texts and made a successful improvement 
in web page search algorithms, in the form of PageRank 
[1], resulting in a paragon in the Internet business. Further-
more, Web2.0 has increased tags or tagging as one of the 
biggest issues in the Internet society. Tagging as a phenol-
menon corresponds with a Web 2.0 mentality that users can 
create not only contents but a richer, more adaptive and 
responsive way to navigate and search both existing and 
new media. However, the problem is that most tagging 
activities remain manual due to immature techniques in the 
natural language processing arena. For example, Wikipedia‡ 
is regarded as one of the most successful Web 2.0 services, 
but tagging or cross-linking related items with each other 
in Wiki articles is still created manually.  

In this paper, we present an efficient method of auto-
mated in-text keyword tagging which can replace or supple-
ment manual tagging processes (in the scope of this paper, 
in-text tagging can be regarded as automated creation of 

                                            
‡ http://www.wikipedia.org 
 
 
 
 
 
 
 

keyword-level links among articles in encyclopedia or in a 
bunch of documents such as Wikipedia). Automatic in-text 
keyword tagging is important since the cost of manual in-
text keyword tagging is very expensive. For example, the 
Encyclopedia of Korean Local Culture§ is a compilation of 
XML documents of which major keywords such as people 
and location are fully tagged manually [2]. In this project, 
all proper nouns are in-text tagged to enhance hypertext-
based cross-referencing. However, the cost of tagging a 
document is higher than that of writing itself (personal 
communication). In this case, for example, person name 
entries of proper nouns related to the city can be easily 
collected and constructed to a proper noun dictionary. 
Using this vocabulary, it is expected that an automated in-
text keyword tagging process can be applied. And then by 
supplementing the manual tagging with automated in-text 
keyword tagging, the cost and time of tagging can be 
remarkably reduced. Furthermore by reducing human born 
errors, tagging precision is expected to be improved, too. 

Another example is a bibliography database of scientific 
journal articles. Usually, each bibliographic data contains a 
KEYWORDS section usually assigned by the authors, and 
by using this field, the bibliographic information can be 
improved with flourished hypertext links for keywords in 
abstract or even in the full text fields. Introducing a dic-
tionary of scientific terms may also enrich the readability 
and responsive navigation of the journal articles. 

This study presents experimental results of an automated 
in-text keyword tagging technique with a large-scale key-
                                            
§ http://www.grandculture.net 
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word dictionary. Then we analyze some analyses of the 
complexity reduction based on experimental results. The 
feasibility of our in-text tagging method implies that auto-
mated in-text keyword tagging can be applied to various 
areas such as XML compilation systems, context-based 
advertising, automated in-text keyword links on the fly, 
automatic keyword extraction based on controlled vocabulary, 
cross-referencing in encyclopedia [3], and HTML documents 
transformed automatically from plain texts [7-10]. 

 
 

2. Related Work 
 
There are two kinds of keyword tagging approaches 

depending on location of the tagged keywords: out-of-text 
keyword tagging and in-text keyword tagging. Out-of-text 
keyword tagging approaches maintain tagged keywords 
externally to the text as shown in cases such as book index, 
author-assigned keywords in scientific journal articles, and 
Web2.0 tags. On the contrary, in-text keyword tagging marks 
up keywords in the text directly as shown in HTML texts. 
Among information sharing frameworks, for another example, 
FTP and GOPHER are protocols based on out-of-text key-
word tags, while HTTP allows document navigation through 
in-text keyword tags. 

 
2.1 Out-of-text Keyword Tagging 

 
Out-of-text tags refer to metadata about a document which 

are placed out of the text body. Bibliographic databases, 
author keywords in journal articles, and indexes of books 
are easily noticeable examples of out-of-text tags. In the 
advent of Web2.0, tagging systems allow users to annotate 
digital resources with tags (keywords) and share their anno-
tations with other users [11]. This kind of tagging is re-
ferred to by several names such as collaborative tagging, 
social classification, social indexing, and folksonomy. This 
is the most well-known example of out-of-text keyword tag-
ging and currently draws deep interest in research communities. 

Out-of-text keyword tags are usually maintained manually 
in practical tagging systems [11]. To resolve the problem, recent 
research interests include automatic tagging for blog posts 
[12,13], real-time recommendation in the tag space [14,15, 
18], automating the process of tag assignment and automated 
annotation [16,17], etc. Other research issues on tagging 
services include improving the quality of searching [18] 
and analyzing the usage patterns of tagging systems [19]. 

 
2.2 In-text Keyword Tagging 

 
In-text tags are keywords that are tagged directly in the 

text body. They are expressed as hypertext links in the 

HTML texts. As the World Wide Web grows exponentially, 
the hypertext links connect heterogeneous digital resources 
with HTML’s inherent feature of in-text content links. 
Since these links are manually generated in-context text links, 
web search engines have noticed their importance and have 
exploited them as one of the major features of the ranking 
algorithms. Though in-text content links in HTML texts are 
manually generated, there has been research of off-line 
techniques to automatically transform mass plain texts to 
HTML documents with cross-referencing links [7-10]. 

The in-text advertising, which is one of the on-line in-
text keyword tagging services, has also been noticed for its 
importance by advertising companies such as Kontera**, 

 
Brown Argus Butterfly Sees Positive Effects Of 

Climate Change 
 
Global warming is generally thought to have a nega-

tive affect on the habitats of many animals and plants. 
Not for the Brown Argus butterfly, however. This insect 
seems to be bucking the trend and expanding its numbers 
quicker and more effectively, according to new research.

 
The Brown Argus butterfly Aricia agestis has 

expanded northwards in Britain during the last 30 years. 
It is thought that the recent expansion of the species is 
due to the increasing summer temperatures caused by 
global warming. 

(a) Palin Text 
 

Brown Argus Butterfly Sees Positive Effects Of 
Climate Change 

 
Global warming is generally thought to have a 

negative affect on the habitats of many animals and 
plants. Not for the Brown Argus butterfly, however. 
This insect seems to be bucking the trend and expanding 
its numbers quicker and more effectively, according to 
new research. 

 
The Brown Argus butterfly Aricia agestis has 

expanded northwards in Britain during the last 30 years. 
It is thought that the recent expansion of the species is 
due to the increasing summer temperatures caused by 
global warming. 

(b) Text with in-text keyword tagging 
Fig. 1. An example of improved readability of a document 

by tagging major keywords in-text 

                                            
** http://www.kontera.com 
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LinkAdAge††, LinkXL‡‡, and Vibrant§§. In-text advertising 
is a form of contextual advertising where links to sponsor 
sites appear in the middle of normal web pages on a 
website as part of the content by linking to specific words 
within the text. It analyzes given HTML text, selects seman-
tically appropriate lists of keywords or phrases extracted 
from the HTML text, and assigns link(s) to the sponsor 
sites. In most in-text advertising, the text associated with 
an advertisement is identified by a double-underline to 
differentiate it from regular hyperlinks, and clicking it or 
positioning the mouse cursor over it pops-up an in-page 
window containing advertising content.  

Although out-of-text keyword tagging is a major issue in 
Web2.0, there have been little research on the efficacy and/ 
or efficiency of automatic in-text keyword tagging algorithms. 
In this paper, we will present an efficient method of on-line 
in-text keyword tagging with a large-scale keyword dic-
tionary using information retrieval. 

 
 

3. Automatic In-Text Keyword Tagging 
 
Tags can serve as informal metadata for objects such as 

web pages and multimedia data. If a method to automa-
tically generate tagged keywords in a text can be given, it 
is possible to provide more adaptive and responsive ways 
to navigate among related documents. Figure 1 shows an 
example of improved readability of a document by tagging 
the major keywords in-text. Just glancing the tagged text in 
Figure 1 (b), readers may be able to catch that the subject 
of the document is, “Global warming and its effect on Brown 
Argus butterfly (Aricia agestis)”. Furthermore, in-context 
                                            
†† http://www.linkadage.com 
‡‡ http://www.linkxl.com 
§§ http://www.vibrantmedia.co.uk 

cross-referencing in Figure 1 (b) will be able to aid users 
to navigate more related documents in the text collection. 

This study presents an efficient method of automatic in-
text keyword tagging which consists of two steps; (1) 
selection of candidate keywords and (2) keyword tagging 
using candidates from the first step (see Figure 2). 

As shown in Figure 2 (see also Algorithms 1&2 at the 
end of this section), the first step selects candidate key-
words from the keyword dictionary by comparing the input 
document and whole terms in the dictionary. The second 
step extracts exact keywords and tags those in the input 
text. In the first step, if a string matching algorithm is used, 
selection of candidates from the dictionary is proportional 
to the length (m) of the input document and the number (N) 
of keyword entries in the keyword dictionary, resulting in 
the computational complexity of O(mN). At the second stage, 
tagging with given keywords is proportional to the docu-
ment length, m, hence the complexity is O(m). Since, m is 
to be much smaller than N, overall complexity of auto-
mated keyword tagging is overwhelmed by the first step, 
hence the overall complexity of O(mN). 

As this brief analysis of the computational complexity 
shows, the bottleneck of automated keyword tagging is the 
first step, where a set of candidate keywords is constructed 
by comparing input text and terms in the keyword dic-
tionary. To evaluate possible solutions for this problem, we 
tested three methods; (A) a general pattern matching algorithm 
by applying string::find() function*** in C++’s standard 
string class, (B) an advanced string matching method by 

                                            
*** In addition to C++’s string::find(), string matching functions from other 
programming languages such as C language’s strstr() function and JAVA’s 
String:: matches() was tested. C strstr() is slightly faster than C++’s 
string::find() and JAVA’s String:: matches() is two to three times slower than 
C++’s string:: find() function. Due to implementation issue, we used C++’s 
string::find() in this experiment. 

 
Fig. 2. Two steps of Automated In-Text Keyword Tagging: (1) selection of candidate keywords; and (2) keyword tagging

(and/or extraction) 
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implementing Boyer-Moore-Horspool (BMH) algorithm 
[4,5], and (C) filtering whole terms to build a set of 
candidate keywords using inverted index of an information 
retrieval system. In methods A and B, as mentioned above, 
the time complexity for comparing the input document and 
keyword dictionary is O(mN) since the basic pattern 
matching algorithm has O(m) complexity and it should be 
executed N times (Algorithm 1). In method C, an open-
source Information Retrieval & Management System 
KRISTAL-IRMS [6] was used to store and index whole 
terms in the keyword dictionary, and to retrieve candidate 
terms using a vector space model by querying the whole 
text of the input document as a query (Algorithm 2). 

In method C, the inverted index contains, in sorted order, 
all the unique strings which appear in the text collection 
(all terms in the keyword dictionary in this study), together 
with a pointer to posting list. Since the index is accessed by 
a binary ‘divide and conquer’ search algorithm, the time 
complexity of retrieval for each keyword is O(klogL) 
where k is the average number of unique tokens in each 
document and L is the total number of unique tokens in the 
text collection. In this study, k is a small constant since 
each document is a scientific term which consists of only a 
few words and k << logL, the time complexity of building 
a set of candidate keywords using information retrieval is 
O(logL). And then, since L is proportional to the total 
number of scientific terms, N, we can conclude that 
O(logL) = O (logN). Hence, the time complexity of the first 
step in method C is O(log N) where N is the size of the 
database i.e. the number of documents in the database [5]. 
Therefore, given a document with length m, the overall  

 
Algorithm 1. Automated In-Text Keyword Tagging 

with Pattern Matching 
On-line computation: 
 
[Step 1: selection of candidate keywords] 
1: Given a collection of keywords, K = {k1, k2, k3, …, kN} 
2:   For each keyword of K, 
          Extract all tokens, Q={q1, q2, q3, …, qr} 
3a:   Add to candidate keyword set C, if all q exists in 
 the input text t by checking with C++  
string::find() 
3b:  Add to candidate keyword set C, if all q exists in 
 the input text t by checking with 
Boyer-Moore-Horspool algorithm 
 
[Step 2: keyword tagging] 
4: Sort C according to descending order of byte lengths 
of keywords. 
5: For each keyword of C, find all locations and make 
link(s) in the input text t. 

Algorithm 2. Automated In-Text Keyword Tagging 
with Information Retrieval(IR) 

Off-line computation: 
 
1: Given a collection of keywords, D = {k1, k2, k3, …, kN} 
2:    Apply stemming on tokens of all keywords. 
3:    Build inverted index with KRISTAL; I = {<t1, K1>, 
<t2, K2>, <t3, K3>, …, <tm, Km>} where Ki is set of 
keywords that include term ti. 
 
On-line computation: 
 
[Step 1: selection of candidate keywords] 
1: Given an input text t, 
2:    Extract all tokens and apply stemming on them; 
T={w1, w2, w3, …, wn} 
3:    Select top-r high frequency tokens from T; 
Q={q1, q2, q3, …, qr} 
4: With vector space model, retrieve top-k keywords 
with the highest similarities; 
 C  = Q  ∩ I where k ≤ 2,000. 
 
[Step 2: keyword tagging] 
5: Sort C according to descending order of byte lengths
 of keywords. 
6: For each keyword of C, find all locations and make 
link(s) in the input text t. 

 
order of time complexity in method C is O(mlogN). The 
experimental result supports this kind of significant reduc-
tion in computational complexity. 

 
 

4. Experiments 
 

4.1 Experimental Environment 
 
All experiments were conducted on a PC with a 2.6GHz 

Pentium IV CPU, 1GB of RAM, 80GB SATA (Serial ATA) 
HDD and Linux operating system. Test programs were 
written with C++ language and compiled with GNU g++ 
compiler. All the tests were carried out while the machine 
was under light load. 

 
4.2 Test Data 

 
Input documents were prepared from scientific journal 

articles according to their lengths. We extracted text parts 
of PDF files and made the test documents, the lengths of 
which were 1kb, 5kb, 10kb, 50kb, and 100kb, respectively. 
The content of each input text is written in English. These 
documents were used to evaluate the effect of document 
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length on automatic in-text keyword tagging. 
 

4.3 Keyword Dictionary 
 
A Keyword dictionary was constructed by extracting 400 

thousand terms from a dictionary of science and technology. 
This dictionary has been built by KISTI and consists of 
about 400 thousand English terms and their corresponding 
Korean terms. We randomly extracted 10,000, 50,000, 
100,000, 200,000, and 400,000 English terms and used 
them to evaluate the effect of dictionary size in the auto-
mated in-text keyword tagging.  

 
4.4 Selection of Candidate Keywords 

 
• Method A. Simple String Matching between input 

document and whole terms in the keyword dictionary 
 
The string class of C++ programming language provides 

a substring search function, string::find(). In Method A, 
each term in the keyword dictionary was tokenized by 
blanks and checked whether it occurs in the input docu-
ment using string::find() function. If all tokens occur in the 
text, the term is regarded as a candidate keyword (line 3a 
of Algorithm 1). The keyword dictionary was stored in a 
text file with each term in a line. The time to read this file 
was not included in the experimental results. 

 
• Method B. Advanced String Matching between input 

document and whole terms in the keyword dictionary 
 
This method is the same as Method A except that the 

Boyer-Moore-Horspool (BMH) string matching algorithm 
is applied, instead of string::find() to compare input text 
and terms in the keyword dictionary (line 3b of Algorithm 
1). The BMH algorithm was implemented with C++ language 
slightly modified from the source code given in [5]. 

 
• Method C. Information Retrieval to filter whole 

terms in the keyword dictionary to build a set of candidate 
terms by querying the input document as query 

 
In this method, all terms from the keyword dictionary 

are stored into and indexed by an open-source information 
retrieval engine, KRISTAL-IRMS [6]. Upon tagging request, 
the input document is used to query the dictionary database 
and to retrieve top-ranked documents (keywords in this case) 
using the vector space model supplied in the KRISTAL 
engine. These retrieved documents are regarded as the can-
didate keywords. In this paper, we restricted the number of 
candidate keywords to 2,000 top-ranked terms returned by 
the KRISTAL system (step 1 of Algorithm 2). The Memory 

database feature provided by KRISTAL was also used to 
speed up fetching result terms from the dictionary database. 

 
 

5. Experimental Results 
 

5.1 Input Document Length (m) vs. Automated In-
Text Keyword Tagging 

 
The first experiment is to measure the effect of the text 

length (m) of the input document on the efficiency of in-
text keyword tagging. In Figure 3, results are shown 
according to three methods of building the set of candidate 
keywords. In this experiment, the number of terms in the 
keyword dictionary was fixed to 50,000 entries and the 
length of input text was varied from 500 bytes to 200 kilo 
bytes. 

Method B with BMH algorithm used in filtering can-
didate keywords from whole term collection outperforms 
Method A with C++ string::find() function by 2.8 times on 
average. Method C with IR filtering in candidate keywords 
outperforms Method A and Method B by 13.8 and 5.0 
times on average, respectively. For all three methods, tag-
ging time was approximately linearly proportional to the 
text size (m) as shown in Figure 3, meaning that the time 
complexity of automated in-text keyword tagging is pro-
portional to O(m). 
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Fig. 3. Text size vs. in-text tagging time (dictionary size = 

50,000 terms) 
 
 

5.2 Number of Dictionary Items (N) vs. Automated 
In-Text Keyword Tagging 

 
This experiment is to measure the effect of the keyword 

dictionary size (N) on the efficiency of automated in-text 
keyword tagging. In Figure 4, results are shown according 
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to three methods of building the set of candidate keywords. 
In this experiment, the text length of the input document 
was fixed to 5 kilo bytes and the size of the keyword 
dictionary was varied from 10,000 to 400,000 entries of 
scientific terms. 

Method B (BMH algorithm) outperforms Method A 
(string::find()) by 3.2 times on average. Method C (IR 
filtering) outperforms Method A and Method B by 17.8 and 
5.6 times on average, respectively. For string matching 
algorithms (Methods A and B), tagging time is approximately 
linearly proportional to the dictionary size (N) as shown in 
Figure 4. On the contrary, compared with Methods A and 
B, Method C shows nearly constant tagging time for all 
dictionary sizes. At the dictionary size of 50,000 entries, 
Method B outperforms Method A by 2.7 times, but at 
400,000 entries, Method C is more than 40 times faster 
than Method A. 
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Fig. 4. Dictionary size vs. in-text tagging time (input text 

length = 5kb) 
 
Figure 5 compares a more detailed view of the effect of 

dictionary size on automatic in-text keyword tagging for 
Methods B and C. For BMH algorithm (Figure 5(a)), 
tagging time is linearly proportional to dictionary size. On 
the contrary, Method C shows logarithmic graph between 
tagging time and dictionary size (Figure 5(b)). This result 
supports our analysis that string matching based candidate 
keyword selection has time complexity of O(N) and IR-
based filtering’s time complexity is reduced to O(logN). 

 
 

6. Conclusions and Future Directions 
 
Figures 3, 4, and 5 show that the time complexity of 

string matching algorithms for filtering whole term collec-
tion to build the candidate keyword set is O(mN) and that 
of IR filtering is reduced to O(mlogN). Even for general 

PCs, if the IR technique is applied, automated in-text 
keyword tagging shows tagging times of 0.5~2.0 seconds 
for 5~20kb (usually the length of a scientific article falls in 
this range) of texts and a keyword dictionary of 400 
thousand entries. Using high end servers, IR-based in-text 
keyword tagging is supposed to be practical in many 
information services. 

In the scope of this paper, recall and precision were not 
considered due to lack of test collections for in-text key-
word tagging. From our qualitative analysis, it is expected 
that recall is high for pattern matching algorithms since 
substring can be selected as candidate keywords, while 
precision is high for IR-based keyword tagging since can-
didate keyword selection is based on token-based comparison 
between input text and keyword collection. We hope that 
we can build a test set for in-text tagging in the near future 
and evaluate our method quantitatively. 

The IR-based automated in-text keyword tagging 
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Fig. 5. Detailed view of dictionary size vs. in-text tagging 
time for (a) BMH algorithm and (b) IR filtering (input 
text length = 5kb) 
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method has been successfully applied to a web site for in-
text highlighting and hyperlinking of documents in the 
Animal Picture Archive†††. As shown in this example, IR-
based in-text keyword tagging can be applied to on-line 
cross-referencing. Also, we hope that our method can be 
applied even to off-line keyword tagging tools for XML 
compilations, generation of cross-references in encyclo-
pedia articles, and HTML documents transformed auto-
matically from plain text collection [7-10]. In addition to 
these kinds of in-context cross-referencing (XRIC), we hope 
that our method also can be applied to out-of-context cross-
referencing (XROC) such as automatic extraction of major 
keywords and building book indexes. 
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