
 Journal of Information Processing Systems, Vol.5, No.3, September 2009 159

Automatic In-Text Keyword Tagging based on Information Retrieval

Jinsuk Kim*, Du-Seok Jin*, KwangYoung Kim* and Ho-Seop Choe*

Abstract: As shown in Wikipedia, tagging or cross-linking through major keywords in a document
collection improves not only the readability of documents but also responsive and adaptive navigation
among related documents. In recent years, the Semantic Web has increased the importance of social
tagging as a key feature of the Web 2.0 and, as its crucial phenotype, Tag Cloud has emerged to the
public. In this paper we provide an efficient method of automated in-text keyword tagging based on
large-scale controlled term collection or keyword dictionary, where the computational complexity of
O(mN) – if a pattern matching algorithm is used – can be reduced to O(mlogN) – if an Information
Retrieval technique is adopted – while m is the length of target document and N is the total number of
candidate terms to be tagged. The result shows that automatic in-text tagging with keywords filtered by
Information Retrieval speeds up to about 6 ~ 40 times compared with the fastest pattern matching
algorithm.

Keywords: Automatic In-Text Keyword Tagging, Information Retrieval, Pattern Matching, Boyer-Moore-
Horspool Algorithm, Keyword Dictionary, Cross-Referencing, in-text content link

1. Introduction

Since the World Wide Web has emerged, tagging or

linking across the HTML texts has played a crucial role in
the success of the Internet. In the late 1990s, Google
noticed the importance of such tags (in-text content hyper-
links) in HTML texts and made a successful improvement
in web page search algorithms, in the form of PageRank
[1], resulting in a paragon in the Internet business. Further-
more, Web2.0 has increased tags or tagging as one of the
biggest issues in the Internet society. Tagging as a phenol-
menon corresponds with a Web 2.0 mentality that users can
create not only contents but a richer, more adaptive and
responsive way to navigate and search both existing and
new media. However, the problem is that most tagging
activities remain manual due to immature techniques in the
natural language processing arena. For example, Wikipedia‡
is regarded as one of the most successful Web 2.0 services,
but tagging or cross-linking related items with each other
in Wiki articles is still created manually.

In this paper, we present an efficient method of auto-
mated in-text keyword tagging which can replace or supple-
ment manual tagging processes (in the scope of this paper,
in-text tagging can be regarded as automated creation of

‡ http://www.wikipedia.org

keyword-level links among articles in encyclopedia or in a
bunch of documents such as Wikipedia). Automatic in-text
keyword tagging is important since the cost of manual in-
text keyword tagging is very expensive. For example, the
Encyclopedia of Korean Local Culture§ is a compilation of
XML documents of which major keywords such as people
and location are fully tagged manually [2]. In this project,
all proper nouns are in-text tagged to enhance hypertext-
based cross-referencing. However, the cost of tagging a
document is higher than that of writing itself (personal
communication). In this case, for example, person name
entries of proper nouns related to the city can be easily
collected and constructed to a proper noun dictionary.
Using this vocabulary, it is expected that an automated in-
text keyword tagging process can be applied. And then by
supplementing the manual tagging with automated in-text
keyword tagging, the cost and time of tagging can be
remarkably reduced. Furthermore by reducing human born
errors, tagging precision is expected to be improved, too.

Another example is a bibliography database of scientific
journal articles. Usually, each bibliographic data contains a
KEYWORDS section usually assigned by the authors, and
by using this field, the bibliographic information can be
improved with flourished hypertext links for keywords in
abstract or even in the full text fields. Introducing a dic-
tionary of scientific terms may also enrich the readability
and responsive navigation of the journal articles.

This study presents experimental results of an automated
in-text keyword tagging technique with a large-scale key-

§ http://www.grandculture.net

DOI : 10.3745/JIPS.2009.5.3.159

Copyright ⓒ 2009 KIPS (ISSN 1976-913X)

Manuscript received June 16, 2009; revised August 6, 2009;
accepted August 24, 2009.
Corresponding Author: Ho-Seop Choe
* Department of Information Technology Research, Knowledge Information

Center, Korea Institute of Science & Technology Information (KISTI),
Gwahangno 335, Yuseong-gu, Daejeon, Republic of Korea ({jinsuk, dsjin,
kykim, hschoe}@kisti.re.kr)

160 Automatic In-Text Keyword Tagging based on Information Retrieval

word dictionary. Then we analyze some analyses of the
complexity reduction based on experimental results. The
feasibility of our in-text tagging method implies that auto-
mated in-text keyword tagging can be applied to various
areas such as XML compilation systems, context-based
advertising, automated in-text keyword links on the fly,
automatic keyword extraction based on controlled vocabulary,
cross-referencing in encyclopedia [3], and HTML documents
transformed automatically from plain texts [7-10].

2. Related Work

There are two kinds of keyword tagging approaches

depending on location of the tagged keywords: out-of-text
keyword tagging and in-text keyword tagging. Out-of-text
keyword tagging approaches maintain tagged keywords
externally to the text as shown in cases such as book index,
author-assigned keywords in scientific journal articles, and
Web2.0 tags. On the contrary, in-text keyword tagging marks
up keywords in the text directly as shown in HTML texts.
Among information sharing frameworks, for another example,
FTP and GOPHER are protocols based on out-of-text key-
word tags, while HTTP allows document navigation through
in-text keyword tags.

2.1 Out-of-text Keyword Tagging

Out-of-text tags refer to metadata about a document which

are placed out of the text body. Bibliographic databases,
author keywords in journal articles, and indexes of books
are easily noticeable examples of out-of-text tags. In the
advent of Web2.0, tagging systems allow users to annotate
digital resources with tags (keywords) and share their anno-
tations with other users [11]. This kind of tagging is re-
ferred to by several names such as collaborative tagging,
social classification, social indexing, and folksonomy. This
is the most well-known example of out-of-text keyword tag-
ging and currently draws deep interest in research communities.

Out-of-text keyword tags are usually maintained manually
in practical tagging systems [11]. To resolve the problem, recent
research interests include automatic tagging for blog posts
[12,13], real-time recommendation in the tag space [14,15,
18], automating the process of tag assignment and automated
annotation [16,17], etc. Other research issues on tagging
services include improving the quality of searching [18]
and analyzing the usage patterns of tagging systems [19].

2.2 In-text Keyword Tagging

In-text tags are keywords that are tagged directly in the

text body. They are expressed as hypertext links in the

HTML texts. As the World Wide Web grows exponentially,
the hypertext links connect heterogeneous digital resources
with HTML’s inherent feature of in-text content links.
Since these links are manually generated in-context text links,
web search engines have noticed their importance and have
exploited them as one of the major features of the ranking
algorithms. Though in-text content links in HTML texts are
manually generated, there has been research of off-line
techniques to automatically transform mass plain texts to
HTML documents with cross-referencing links [7-10].

The in-text advertising, which is one of the on-line in-
text keyword tagging services, has also been noticed for its
importance by advertising companies such as Kontera**,

Brown Argus Butterfly Sees Positive Effects Of

Climate Change

Global warming is generally thought to have a nega-

tive affect on the habitats of many animals and plants.
Not for the Brown Argus butterfly, however. This insect
seems to be bucking the trend and expanding its numbers
quicker and more effectively, according to new research.

The Brown Argus butterfly Aricia agestis has

expanded northwards in Britain during the last 30 years.
It is thought that the recent expansion of the species is
due to the increasing summer temperatures caused by
global warming.

(a) Palin Text

Brown Argus Butterfly Sees Positive Effects Of
Climate Change

Global warming is generally thought to have a

negative affect on the habitats of many animals and
plants. Not for the Brown Argus butterfly, however.
This insect seems to be bucking the trend and expanding
its numbers quicker and more effectively, according to
new research.

The Brown Argus butterfly Aricia agestis has

expanded northwards in Britain during the last 30 years.
It is thought that the recent expansion of the species is
due to the increasing summer temperatures caused by
global warming.

(b) Text with in-text keyword tagging
Fig. 1. An example of improved readability of a document

by tagging major keywords in-text

** http://www.kontera.com

Jinsuk Kim, Du-Seok Jin, Kwang-Young Kim and Ho-Seop Choe 161

LinkAdAge††, LinkXL‡‡, and Vibrant§§. In-text advertising
is a form of contextual advertising where links to sponsor
sites appear in the middle of normal web pages on a
website as part of the content by linking to specific words
within the text. It analyzes given HTML text, selects seman-
tically appropriate lists of keywords or phrases extracted
from the HTML text, and assigns link(s) to the sponsor
sites. In most in-text advertising, the text associated with
an advertisement is identified by a double-underline to
differentiate it from regular hyperlinks, and clicking it or
positioning the mouse cursor over it pops-up an in-page
window containing advertising content.

Although out-of-text keyword tagging is a major issue in
Web2.0, there have been little research on the efficacy and/
or efficiency of automatic in-text keyword tagging algorithms.
In this paper, we will present an efficient method of on-line
in-text keyword tagging with a large-scale keyword dic-
tionary using information retrieval.

3. Automatic In-Text Keyword Tagging

Tags can serve as informal metadata for objects such as

web pages and multimedia data. If a method to automa-
tically generate tagged keywords in a text can be given, it
is possible to provide more adaptive and responsive ways
to navigate among related documents. Figure 1 shows an
example of improved readability of a document by tagging
the major keywords in-text. Just glancing the tagged text in
Figure 1 (b), readers may be able to catch that the subject
of the document is, “Global warming and its effect on Brown
Argus butterfly (Aricia agestis)”. Furthermore, in-context

†† http://www.linkadage.com
‡‡ http://www.linkxl.com
§§ http://www.vibrantmedia.co.uk

cross-referencing in Figure 1 (b) will be able to aid users
to navigate more related documents in the text collection.

This study presents an efficient method of automatic in-
text keyword tagging which consists of two steps; (1)
selection of candidate keywords and (2) keyword tagging
using candidates from the first step (see Figure 2).

As shown in Figure 2 (see also Algorithms 1&2 at the
end of this section), the first step selects candidate key-
words from the keyword dictionary by comparing the input
document and whole terms in the dictionary. The second
step extracts exact keywords and tags those in the input
text. In the first step, if a string matching algorithm is used,
selection of candidates from the dictionary is proportional
to the length (m) of the input document and the number (N)
of keyword entries in the keyword dictionary, resulting in
the computational complexity of O(mN). At the second stage,
tagging with given keywords is proportional to the docu-
ment length, m, hence the complexity is O(m). Since, m is
to be much smaller than N, overall complexity of auto-
mated keyword tagging is overwhelmed by the first step,
hence the overall complexity of O(mN).

As this brief analysis of the computational complexity
shows, the bottleneck of automated keyword tagging is the
first step, where a set of candidate keywords is constructed
by comparing input text and terms in the keyword dic-
tionary. To evaluate possible solutions for this problem, we
tested three methods; (A) a general pattern matching algorithm
by applying string::find() function*** in C++’s standard
string class, (B) an advanced string matching method by

*** In addition to C++’s string::find(), string matching functions from other
programming languages such as C language’s strstr() function and JAVA’s
String:: matches() was tested. C strstr() is slightly faster than C++’s
string::find() and JAVA’s String:: matches() is two to three times slower than
C++’s string:: find() function. Due to implementation issue, we used C++’s
string::find() in this experiment.

Fig. 2. Two steps of Automated In-Text Keyword Tagging: (1) selection of candidate keywords; and (2) keyword tagging

(and/or extraction)

162 Automatic In-Text Keyword Tagging based on Information Retrieval

implementing Boyer-Moore-Horspool (BMH) algorithm
[4,5], and (C) filtering whole terms to build a set of
candidate keywords using inverted index of an information
retrieval system. In methods A and B, as mentioned above,
the time complexity for comparing the input document and
keyword dictionary is O(mN) since the basic pattern
matching algorithm has O(m) complexity and it should be
executed N times (Algorithm 1). In method C, an open-
source Information Retrieval & Management System
KRISTAL-IRMS [6] was used to store and index whole
terms in the keyword dictionary, and to retrieve candidate
terms using a vector space model by querying the whole
text of the input document as a query (Algorithm 2).

In method C, the inverted index contains, in sorted order,
all the unique strings which appear in the text collection
(all terms in the keyword dictionary in this study), together
with a pointer to posting list. Since the index is accessed by
a binary ‘divide and conquer’ search algorithm, the time
complexity of retrieval for each keyword is O(klogL)
where k is the average number of unique tokens in each
document and L is the total number of unique tokens in the
text collection. In this study, k is a small constant since
each document is a scientific term which consists of only a
few words and k << logL, the time complexity of building
a set of candidate keywords using information retrieval is
O(logL). And then, since L is proportional to the total
number of scientific terms, N, we can conclude that
O(logL) = O (logN). Hence, the time complexity of the first
step in method C is O(log N) where N is the size of the
database i.e. the number of documents in the database [5].
Therefore, given a document with length m, the overall

Algorithm 1. Automated In-Text Keyword Tagging

with Pattern Matching
On-line computation:

[Step 1: selection of candidate keywords]
1: Given a collection of keywords, K = {k1, k2, k3, …, kN}
2: For each keyword of K,
 Extract all tokens, Q={q1, q2, q3, …, qr}
3a: Add to candidate keyword set C, if all q exists in
 the input text t by checking with C++
string::find()
3b: Add to candidate keyword set C, if all q exists in
 the input text t by checking with
Boyer-Moore-Horspool algorithm

[Step 2: keyword tagging]
4: Sort C according to descending order of byte lengths
of keywords.
5: For each keyword of C, find all locations and make
link(s) in the input text t.

Algorithm 2. Automated In-Text Keyword Tagging
with Information Retrieval(IR)

Off-line computation:

1: Given a collection of keywords, D = {k1, k2, k3, …, kN}
2: Apply stemming on tokens of all keywords.
3: Build inverted index with KRISTAL; I = {<t1, K1>,
<t2, K2>, <t3, K3>, …, <tm, Km>} where Ki is set of
keywords that include term ti.

On-line computation:

[Step 1: selection of candidate keywords]
1: Given an input text t,
2: Extract all tokens and apply stemming on them;
T={w1, w2, w3, …, wn}
3: Select top-r high frequency tokens from T;
Q={q1, q2, q3, …, qr}
4: With vector space model, retrieve top-k keywords
with the highest similarities;
 C = Q ∩ I where k ≤ 2,000.

[Step 2: keyword tagging]
5: Sort C according to descending order of byte lengths
 of keywords.
6: For each keyword of C, find all locations and make
link(s) in the input text t.

order of time complexity in method C is O(mlogN). The
experimental result supports this kind of significant reduc-
tion in computational complexity.

4. Experiments

4.1 Experimental Environment

All experiments were conducted on a PC with a 2.6GHz

Pentium IV CPU, 1GB of RAM, 80GB SATA (Serial ATA)
HDD and Linux operating system. Test programs were
written with C++ language and compiled with GNU g++
compiler. All the tests were carried out while the machine
was under light load.

4.2 Test Data

Input documents were prepared from scientific journal

articles according to their lengths. We extracted text parts
of PDF files and made the test documents, the lengths of
which were 1kb, 5kb, 10kb, 50kb, and 100kb, respectively.
The content of each input text is written in English. These
documents were used to evaluate the effect of document

Jinsuk Kim, Du-Seok Jin, Kwang-Young Kim and Ho-Seop Choe 163

length on automatic in-text keyword tagging.

4.3 Keyword Dictionary

A Keyword dictionary was constructed by extracting 400

thousand terms from a dictionary of science and technology.
This dictionary has been built by KISTI and consists of
about 400 thousand English terms and their corresponding
Korean terms. We randomly extracted 10,000, 50,000,
100,000, 200,000, and 400,000 English terms and used
them to evaluate the effect of dictionary size in the auto-
mated in-text keyword tagging.

4.4 Selection of Candidate Keywords

• Method A. Simple String Matching between input

document and whole terms in the keyword dictionary

The string class of C++ programming language provides

a substring search function, string::find(). In Method A,
each term in the keyword dictionary was tokenized by
blanks and checked whether it occurs in the input docu-
ment using string::find() function. If all tokens occur in the
text, the term is regarded as a candidate keyword (line 3a
of Algorithm 1). The keyword dictionary was stored in a
text file with each term in a line. The time to read this file
was not included in the experimental results.

• Method B. Advanced String Matching between input

document and whole terms in the keyword dictionary

This method is the same as Method A except that the

Boyer-Moore-Horspool (BMH) string matching algorithm
is applied, instead of string::find() to compare input text
and terms in the keyword dictionary (line 3b of Algorithm
1). The BMH algorithm was implemented with C++ language
slightly modified from the source code given in [5].

• Method C. Information Retrieval to filter whole

terms in the keyword dictionary to build a set of candidate
terms by querying the input document as query

In this method, all terms from the keyword dictionary

are stored into and indexed by an open-source information
retrieval engine, KRISTAL-IRMS [6]. Upon tagging request,
the input document is used to query the dictionary database
and to retrieve top-ranked documents (keywords in this case)
using the vector space model supplied in the KRISTAL
engine. These retrieved documents are regarded as the can-
didate keywords. In this paper, we restricted the number of
candidate keywords to 2,000 top-ranked terms returned by
the KRISTAL system (step 1 of Algorithm 2). The Memory

database feature provided by KRISTAL was also used to
speed up fetching result terms from the dictionary database.

5. Experimental Results

5.1 Input Document Length (m) vs. Automated In-
Text Keyword Tagging

The first experiment is to measure the effect of the text

length (m) of the input document on the efficiency of in-
text keyword tagging. In Figure 3, results are shown
according to three methods of building the set of candidate
keywords. In this experiment, the number of terms in the
keyword dictionary was fixed to 50,000 entries and the
length of input text was varied from 500 bytes to 200 kilo
bytes.

Method B with BMH algorithm used in filtering can-
didate keywords from whole term collection outperforms
Method A with C++ string::find() function by 2.8 times on
average. Method C with IR filtering in candidate keywords
outperforms Method A and Method B by 13.8 and 5.0
times on average, respectively. For all three methods, tag-
ging time was approximately linearly proportional to the
text size (m) as shown in Figure 3, meaning that the time
complexity of automated in-text keyword tagging is pro-
portional to O(m).

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Text Size (kb)

Ta
g
gi

n
g

Ti
m

e
 (

se
c)

A: C++ String find()
B: BMH algorithm
C: IR filtering

Fig. 3. Text size vs. in-text tagging time (dictionary size =

50,000 terms)

5.2 Number of Dictionary Items (N) vs. Automated
In-Text Keyword Tagging

This experiment is to measure the effect of the keyword

dictionary size (N) on the efficiency of automated in-text
keyword tagging. In Figure 4, results are shown according

164 Automatic In-Text Keyword Tagging based on Information Retrieval

to three methods of building the set of candidate keywords.
In this experiment, the text length of the input document
was fixed to 5 kilo bytes and the size of the keyword
dictionary was varied from 10,000 to 400,000 entries of
scientific terms.

Method B (BMH algorithm) outperforms Method A
(string::find()) by 3.2 times on average. Method C (IR
filtering) outperforms Method A and Method B by 17.8 and
5.6 times on average, respectively. For string matching
algorithms (Methods A and B), tagging time is approximately
linearly proportional to the dictionary size (N) as shown in
Figure 4. On the contrary, compared with Methods A and
B, Method C shows nearly constant tagging time for all
dictionary sizes. At the dictionary size of 50,000 entries,
Method B outperforms Method A by 2.7 times, but at
400,000 entries, Method C is more than 40 times faster
than Method A.

0

5

10

15

20

25

30

0 100 200 300 400

No. of Dictionary Items (x1000)

Ta
gg

in
g

Ti
m

e
(s

ec
)

A: C++ String find()
B: BMH algorithm
C: IR filtering

Fig. 4. Dictionary size vs. in-text tagging time (input text

length = 5kb)

Figure 5 compares a more detailed view of the effect of

dictionary size on automatic in-text keyword tagging for
Methods B and C. For BMH algorithm (Figure 5(a)),
tagging time is linearly proportional to dictionary size. On
the contrary, Method C shows logarithmic graph between
tagging time and dictionary size (Figure 5(b)). This result
supports our analysis that string matching based candidate
keyword selection has time complexity of O(N) and IR-
based filtering’s time complexity is reduced to O(logN).

6. Conclusions and Future Directions

Figures 3, 4, and 5 show that the time complexity of

string matching algorithms for filtering whole term collec-
tion to build the candidate keyword set is O(mN) and that
of IR filtering is reduced to O(mlogN). Even for general

PCs, if the IR technique is applied, automated in-text
keyword tagging shows tagging times of 0.5~2.0 seconds
for 5~20kb (usually the length of a scientific article falls in
this range) of texts and a keyword dictionary of 400
thousand entries. Using high end servers, IR-based in-text
keyword tagging is supposed to be practical in many
information services.

In the scope of this paper, recall and precision were not
considered due to lack of test collections for in-text key-
word tagging. From our qualitative analysis, it is expected
that recall is high for pattern matching algorithms since
substring can be selected as candidate keywords, while
precision is high for IR-based keyword tagging since can-
didate keyword selection is based on token-based comparison
between input text and keyword collection. We hope that
we can build a test set for in-text tagging in the near future
and evaluate our method quantitatively.

The IR-based automated in-text keyword tagging

0

1

2

3

4

5

6

7

8

0 100 200 300 400

No. of Dictionary Items (x1000)

Ta
gg

in
g

Ti
m

e
(s

ec
)

BMH algorithm

(a) BMH algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400

No. of Dictionary Items (x1000)

Ta
gg

in
g

T
im

e
(s

ec
)

IR filtering

(b) IR filtering

Fig. 5. Detailed view of dictionary size vs. in-text tagging
time for (a) BMH algorithm and (b) IR filtering (input
text length = 5kb)

Jinsuk Kim, Du-Seok Jin, Kwang-Young Kim and Ho-Seop Choe 165

method has been successfully applied to a web site for in-
text highlighting and hyperlinking of documents in the
Animal Picture Archive†††. As shown in this example, IR-
based in-text keyword tagging can be applied to on-line
cross-referencing. Also, we hope that our method can be
applied even to off-line keyword tagging tools for XML
compilations, generation of cross-references in encyclo-
pedia articles, and HTML documents transformed auto-
matically from plain text collection [7-10]. In addition to
these kinds of in-context cross-referencing (XRIC), we hope
that our method also can be applied to out-of-context cross-
referencing (XROC) such as automatic extraction of major
keywords and building book indexes.

Acknowledgment

The first author would like to especially thank Changmin

Kim and Jieun Chong for supporting this work.

Reference

[1] Sergey Brin and Lawrence Page, “The Anatomy of a
Large-scale Hypertextual Web Search Engine,” In
Computer Networks and ISDN Systems: Proceeings
of the Seventh International World Wide Web Con-
ference, Volume 30(1-7):107-117, Apr. 1998.

[2] Hyeon Kim, “Handling XML documents in Hyper-
text Compilation of the Encyclopedia of Korean
Local Culture,” Human Contents, 9:91-123, 2007.

[3] Jihong Zeng and Peter A. Bloniarz, “From Keywords
to Links: An Automatic Approach,” In Proceedings:
International Conference on Information Technology:
Coding and Computing (ITCC’04), Vol.1, pp.283-
286, Las Vegas, Nevada, USA, Apr. 2004.

[4] R. Nigel Horspool, “Practical Fast Searching in Strings,”
Software: Practice and Experience, 10(6):501-506,
1980.

[5] William B. Frakes and Ricardo Baeza-Yates, “Infor-
mation Retrieval: Data Structures & Algorithms,”
Prentice-Hall, 1992.

[6] Jinsuk Kim, Du-Seok Jin, Yusoo Choi, Chang-Hoo
Jeong, Kwangyoung Kim, Sung-Pil Choi, Minho Lee,
Min-Hee Cho, Ho-Seop Choe, Hwa-Mook Yoon, and
Jeong-Hyun Seo, “Toward DB-IR Integration: Per-
Document Basis Transactional Index Maintenance,”
In Proceedings: The 6th International Conference on
Advanced Language Processing and Web Information
Technology (ALPIT’07), Vol.6, pp.452-462, Luoyang,

††† http://www.animalpicturesarchive.com

Henan, China, Aug. 2007.
[7] Hsin-Chang Yang and Chung-Hong Lee, “A Text

Mining Approach for Automatic Construction of
Hypertexts,” Expert Systems with Applications, 29:
723-734, 2005.

[8] Robert J. Glushko, “Transforming Text into Hyper-
text for a Compact Disc Encyclopedia,” ACM SIGCHI
Bulletin, 20:293-298, 1989.

[9] Luc Goffinet and Monique Noirhomme-Fraiture,
“Automatic Cross-referencing of HCI Guidelines by
Statistical Methods,” Interacting with Computers,
12(2):161-177, 1999.

[10] Airi Salminen, Jean Tague-Sutcliffe, and Charles
McClellan, “From Text to Hypertext by Indexing,”
ACM Transactions on Information Systems, 13(1):69-
99, 1995.

[11] Jakob Voβ, “Tagging, Folksonomy & Co-Renaissance
of Manual Indexing”, In Proceedings: The 10th Inter-
national Symposium for Information Science, pp.234-
254, Cologne, Germany, 2007.

[12] Gilad Mishne, “AutoTag: A Collaborative Approach
to Automated Tag Assignment for Weblog Posts”, In
WWW '06: Proceedings of the 15th international
conference on World Wide Web, pp.953-954, New York,
USA, 2006.

[13] Sanjay Sood, Sara Owsley, Kristian Hammond and
Larry Birnbaum, “TagAssist: Automatic Tag Suggestion
for Blog Posts”, In Proceedings: International Con-
ference on Weblogs and Social Media (ICWSM 2007),
Colorado, USA, 2007.

[14] Robert Jäschke, Leandro Marinho, Andreas Hotho,
Lars Schmidt-Thieme, and Gerd Stumme, “Tag Re-
commendations in Folksonomies”, In Proceedings of
the 11th European conference on Principles and
Practice of Knowledge Discovery in Databases
(PKDD 2007), pp.506-514, September 17-21, 2007,
Warsaw, Poland.

[15] Yang Song, Ziming Zhuang, Huajing Li, Qiankun
Zhao, Jia Li, Wang-Chien Lee, and C. Lee Giles,
“Real-time Automatic Tag Recommendation”, In
Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in
information retrieval (SIGIR’08), pp.515-522, July
20-24, 2008, Singapore, Singapore.

[16] Stephen Dill, Nadav Eiron, David Gibson, Daniel
Gruhl, R. Guha, Anant Jhingran, Tapas Kanungo,
Sridhar Rajagopalan, Andrew Tomkins, John A.
Tomlin, and Jason Y. Zien, “SemTag and Seeker:
Bootstrapping the Semantic Web via Automated
Semantic Annotation”, In Proceedings of the 12th
International Conference on World Wide Web (WWW’03)
Budapest, Hungary, 2003.

[17] Paul - Alexandru Chirita, Stefania Costache, Wolfgang

166 Automatic In-Text Keyword Tagging based on Information Retrieval

Nejdl, and Siegfried Handschuh, “P-TAG: Large
Scale Automatic Generation of Personalized Anno-
tation Tags for the Web”, In Proceedings of the 16th
international conference on World Wide Web, pp.845-
854, May 08-12, 2007, Banff, Alberta, Canada.

[18] Technion Grigory Begelman, Citrin I. Philipp Keller,
and Rawsugar Frank Smadja. “Automated Tag
Clustering: Improving Search and Exploration in the
Tag Space”. In Collaborative Web Tagging Workshop
at WWW2006, Edinburgh, Scotland, 2006. Online:
http://www.rawsugar.com/www2006/20.pdf.

[19] Scott A. Golder and Bernardo A. Huberman, “Usage
Patterns of Collaborative Tagging Systems”, Journal
of Information Science, 32(2): 198-208, 2006.

Jinsuk Kim
He is a Senior Researcher of the
Department of Information Technology
Research at the Korea Institute of
Science & Technology Information –
South Korea. He earned a M.Sci in
Biology and M.Eng. in Computer Science
from the Korea Advanced Institute of

Science & Technology (KAIST) – Korea. His research
interests lie in information retrieval, automated text
categorization, bioinformatics and DB-IR integration. He
has authored numerous scientific articles.

Du-Seok Jin
He is a Senior Researcher of the
Department of Information Technology
Research at the Korea Institute of
Science & Technology Information –
South Korea. He earned a M.Eng. in
Computer Science from the Chonbuk
National University – Korea. He is

currently a Ph.D candidate in Computer Science at Pai-
Chai University – Korea. His research interests lie in
information retrieval, storage engine on solid state disk and
DB-IR integration. He has authored numerous scientific
articles.

KwangYoung Kim
He is a Senior Researcher of the
Department of Information Technology
Research at the Korea Institute of
Science & Technology Information –
South Korea. He earned a M.Eng. in
Computer Science from Busan National
University – Korea. He is currently a
Ph.D candidate in Library and Infor-

mation Science at Chungnam National University – Korea.
His research interests lie in information retrieval, search
algorithms and knowledge base. He has authored numerous
scientific articles.

Ho-Seop Choe
He is a Senior Researcher of the De-
partment of Information Technology
Research at Korea Institute of Science
& Technology Information – South Korea.
He earned a Master degree in Korean
language from the Kyeong-Nam Uni-
versity – Korea., and a Ph.D. in Com-

puter Science from Ulsan University – Korea, respectively.
His research interests lie in intelligent word network and
knowledge base. He has authored numerous scientific
articles, has served on technical committees for a number
of international conferences and has reviewed articles for
many journals, conferences and workshops.

