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Abstract—Taint-style vulnerabilities are a persistent problem
in software development, as the recently discovered “Heartbleed”
vulnerability strikingly illustrates. In this class of vulnerabil-
ities, attacker-controlled data is passed unsanitized from an
input source to a sensitive sink. While simple instances of this
vulnerability class can be detected automatically, more subtle
defects involving data flow across several functions or project-
specific APIs are mainly discovered by manual auditing. Different
techniques have been proposed to accelerate this process by
searching for typical patterns of vulnerable code. However, all
of these approaches require a security expert to manually model
and specify appropriate patterns in practice.

In this paper, we propose a method for automatically inferring
search patterns for taint-style vulnerabilities in C code. Given a
security-sensitive sink, such as a memory function, our method
automatically identifies corresponding source-sink systems and
constructs patterns that model the data flow and sanitization in
these systems. The inferred patterns are expressed as traversals
in a code property graph and enable efficiently searching for
unsanitized data flows—across several functions as well as
with project-specific APIs. We demonstrate the efficacy of this
approach in different experiments with 5 open-source projects.
The inferred search patterns reduce the amount of code to inspect
for finding known vulnerabilities by 94.9% and also enable us
to uncover 8 previously unknown vulnerabilities.

Index Terms—Vulnerabilities; Clustering; Graph Databases;

I. INTRODUCTION

The discovery and elimination of vulnerabilities in software

is a fundamental problem of computer security. Unfortunately,

even subtle defects, such as a single missing authorization

check or a slightly insufficient sanitization of data can al-

ready lead to severe security vulnerabilities in software. The

necessity for development of more effective approaches for

the discovery of such vulnerabilities has been made strikingly

obvious by the recent “Heartbleed” vulnerability in the cryp-

tographic library OpenSSL [1] and the “Shellshock” vulnera-

bility in GNU Bash [2]. As programs are constantly modified

and the properties of the platforms they operate on change,

new vulnerabilities regularly emerge. In effect, vulnerability

discovery becomes an on-going process, requiring experts with

a deep understanding of the software in question and all the

technologies its security relies upon.

Due to the diversity of vulnerable programming practices,

security research has largely focused on detecting specific

types of vulnerabilities. For example, fuzz testing [e.g., 20, 53]

and symbolic execution [e.g., 49, 59] have been successfully

applied to find memory corruption vulnerabilities, such as

buffer overflows, integer overflows and format string vulner-

abilities. In line with this research, a variety of approaches

for detection of web application vulnerabilities have been

proposed, for example for SQL injection flaws [e.g., 10, 26],

cross-site scripting [e.g., 31, 48] and missing authorization

checks [19, 51]. More recently, several researchers have rec-

ognized that many common vulnerabilities in both, system

software and web applications, share an underlying theme

rooted in information flow analysis: data propagates from an

attacker-controlled input source to a sensitive sink without

undergoing prior sanitization, a class of vulnerabilities referred

to as taint-style vulnerabilities [see 9, 10, 26, 63].

Different approaches have been devised that enable mining

for taint-style vulnerabilities using description languages that

allow dangerous programming patterns to be precisely en-

coded [30, 35, 63]. In theory, this idea bares the possibility to

construct a large database of patterns for known vulnerabilities

that can be easily matched against source code. Unfortunately,

similar to signature-based intrusion detection systems, con-

structing effective search patterns for vulnerabilities requires

a security expert to invest a considerable amount of manual

work. Starting from a security-sensitive sink, the expert needs

to identify related input sources, data flows and corresponding

sanitizations checks, which often involves a profound under-

standing of project-specific functions and interfaces.

In this paper, we present a method for automatically in-

ferring search patterns for taint-style vulnerabilities from C

source code. Given a sensitive sink, such as a memory or

network function, our method automatically identifies corre-

sponding source-sink systems in a code base, analyzes the

data flow in these systems and generates search patterns that

reflect the characteristics of taint-style vulnerabilities. To this

end, we combine techniques from static program analysis and

unsupervised machine learning that enable us to construct

patterns that are usually identified by manual analysis and that

allow for pinpointing insufficient sanitization, even if the data

flow crosses several function boundaries and involves project-

specific APIs. Analysts can employ this method to generate

patterns for API functions known to commonly be associated

with vulnerabilities, as well as to find instances of the same

vulnerability spread throughout the code base.

We implement our approach by extending the analysis plat-

form Joern1 to support interprocedural analysis and developing

a plugin for extracting and matching of search patterns, that

is, robust descriptions of syntax, control flow and data flow

that characterize a vulnerability. The platform is build on

1A Robust Code Analysis Platform for C/C++, http://mlsec.org/joern

2015 IEEE Symposium on Security and Privacy

© 2015, Fabian Yamaguchi. Under license to IEEE.

DOI 10.1109/SP.2015.54

797

2015 IEEE Symposium on Security and Privacy

© 2015, Fabian Yamaguchi. Under license to IEEE.

DOI 10.1109/SP.2015.54

797



top of an efficient graph database and uses a so-called code
property graph [63] for representing the syntax, control flow

and data flow of source code. To leverage this representation,

we express the inferred search patterns as graph traversals,

which enables us to quickly pass through the graph and thereby

scan large software projects for occurrences of potential vul-

nerabilities within a few minutes.

We empirically evaluate our method’s ability to generate

search patterns for known vulnerabilities with 5 open-source

projects, showing that the amount of code to review can be

reduced by 94.9%. Moreover, we demonstrate the practical

merits of our method by discovering 8 previously unknown

vulnerabilities using only a few generated search patterns.

In summary, our contributions are the following.

• Extension of code property graphs. We extend the

recently presented code property graph [63] to include

information about statement precedence and enable

interprocedural analysis using graph database queries.

• Extraction of invocation patterns. We propose a novel

method for extracting patterns of invocations from source

code using clustering algorithms, including definitions

of arguments and the sanitization they undergo.

• Automatic inference of search patterns. Finally, we show

how invocation patterns can be translated into search

patterns in the form of graph traversals that enable

auditing large code bases.

The remainder of this paper is organized as follows: In

Section II we present the basics of taint-style vulnerabilities

and code property graphs. We then introduce our extension

of code property graphs in Section III. Our method for auto-

mated inference of search patterns is presented in Section IV

and evaluated in Section V. We discuss limitations of our

approach and related work in Section VI and VII, respectively.

Section VIII concludes the paper.

II. BACKGROUND

Vulnerability discovery is a classic topic of computer secu-

rity and consequently, many approaches have been presented,

focusing on various types of vulnerabilities and technologies.

In this section, we briefly review approaches related to our

method. We begin by discussing the notion of taint-style
vulnerabilities in Section II-A, as these are the types of vul-

nerabilities we deal with throughout the paper. We proceed to

describe how these types of vulnerabilities can be discovered

using code property graphs in Section II-B, a representation

designed for pattern-based vulnerability discovery, which we

extend for interprocedural analysis.

A. Taint-Style Vulnerabilities

The term taint-style vulnerabilities has its roots in taint

analysis, a technique for tracing the propagation of data

through a program. One goal of taint analysis is to identify data

flows from attacker-controlled sources to security-sensitive

sinks that do not undergo sanitization. This procedure requires

the definition of (a) appropriate sources, (b) corresponding

/* ssl/d1_both.c */ 1

// [...] 2

int dtls1_process_heartbeat(SSL *s) 3

{ 4

unsigned char *p = &s->s3->rrec.data[0], *pl; 5

unsigned short hbtype; 6

unsigned int payload; 7

unsigned int padding = 16; /* Use minimum padding */ 8

/* Read type and payload length first */ 9

hbtype = *p++; 10

n2s(p, payload); 11

if (1 + 2 + payload + 16 > s->s3->rrec.length) 12

return 0; /* silently discard per RFC 6520 sec.4*/ 13

pl = p; 14

// [...] 15

if (hbtype == TLS1_HB_REQUEST){ 16

unsigned char *buffer, *bp; 17

int r; 18

// [...] 19

buffer = OPENSSL_malloc(1 + 2 + payload + padding); 20

bp = buffer; 21

/* Enter response type, length and copy payload */ 22

*bp++ = TLS1_HB_RESPONSE; 23

s2n(payload, bp); 24

memcpy(bp, pl, payload); 25

bp += payload; 26

/* Random padding */ 27

RAND_pseudo_bytes(bp, padding); 28

r = dtls1_write_bytes(s, TLS1_RT_HEARTBEAT,buffer, 29

3 + payload + padding); 30

// [...] 31

if (r < 0) return r; 32

} 33

// [...] 34

return 0; 35

} 36

Fig. 1: The “Heartbleed” vulnerability in OpenSSL.

sinks and (c) sanitization rules. While at first, it may seem

that only a handful of flaws can be described in this way,

this vulnerability class fits many common security defects

well, including different types of buffer overflows and other

memory corruption flaws, SQL and command injection, as

well as missing authorization checks.

A prominent example of a taint-style vulnerability is the

“Heartbleed” bug in OpenSSL discovered in 2014 [1]. Figure 1

shows the problematic code: The integer payload is defined

by the macro n2s that reads a sixteen bit integer from a

network stream (line 11). This integer then reaches the third

argument of a call to memcpy without undergoing any sort

of validation (line 25). In particular, it is not assured that

payload is smaller or equal to the size of the source buffer

pl, and hence, uninitialized heap memory may be copied to

the buffer bp, that is then send out to the network via a call

to dtls_write_bytes on line 29.

This example highlights the importance of identifying taint-

style vulnerabilities, as well as some the difficulties involved.

First, n2s is a macro used exclusively in the code base of

OpenSSL, and thus can only be modeled in a search pattern if

project-specific API functions are considered. Second, line 12

shows the check introduced to patch the vulnerability. The

sanitization of payload is not trivial and difficult to analyze

without profound knowledge of the code base.

To describe taint-style vulnerabilities in enough detail and

to search for their incarnations in software, it is necessary

to inspect how information propagates from one statement to

798798
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Fig. 2: An excerpt of the code property graph for the “Heartbleed” bug. Data-flow edges, control-flow edges and syntax edges

are indicated by red, green, and blue color respectively.

another as well as how this flow is controlled by conditions. As

a consequence, we base our method on code property graphs,

an intermediate representation of source code that combines

this information in a single structure and can be mined for

vulnerabilities using graph traversals.

B. Code Property Graphs
There exists a large variety of representations for program

code from the areas of software engineering and compiler

design. For example, the structure of a program can be

described as a syntax tree, while the order in which the

program’s statements are executed is captured in a control-

flow graph. Several of these standard representations can be

expressed as graphs and thus Yamaguchi et al. [63] propose to

mine for vulnerabilities using graph databases. The main idea

of their approach is to construct a so-called code property
graph, a joint representation of a program’s structure, control

flow and data flow in a property graph—the native storage

format of many graph databases. This joint representation

enables programming patterns to be encoded as queries for

graph databases, making it possible to mine large amounts of

code for instances of dangerous programming patterns, and

thus narrow in on vulnerabilities.
Formally, a property graph is an edge-labeled, attributed

multigraph [46]. In practice, this means that key-value pairs

can be attached to nodes and edges to store data. In addition,

edges can be labeled to express different types of relationships

in the graph. For example, for code analysis, nodes can

be created for different language elements, such as calls,

predicates and arguments. These can then be connected by

labeled edges to represent execution order or data flow.
The code property graph makes use of this versatile data

structure to combine three existing, well-understood program

representations: the abstract syntax tree, which represents

how program constructs are nested, the control-flow graph,

which exposes statement execution order, and finally, the pro-
gram dependence graph, which makes data-flow and control-

dependencies explicit [see 3, 14]. Combining these repre-

sentations in a property graph is possible as all of these

representations contain designated nodes for each statement,

allowing them to be merged easily at these nodes.
As an example, Figure 2 shows an excerpt of the code

property graph for the function in Figure 1. The graph contains

a node for each program statement, including the entry

and exit statements, the call to n2s (line 11), the call to

memcpy (line 25), and the if statement (line 12). Each of these

nodes span a syntax tree indicated by blue edges, making, for

example, the decomposition of the call to n2s into its language

elements apparent. In addition, data-flow edges obtained from

the program dependence graph are introduced from the first

to the second and third statement to indicate that the value of

payload produced at the first statement reaches the second

and third unmodified and is used there. Finally, control-flow

edges indicating the flow of control in the function are shown

in green. For example, an unconditional control-flow edge

connects the first statement to the second, making clear that

the second statement is executed right after the first.
Once constructed, insecure programming patterns, and in

particular, instances of taint-style vulnerabilities, can be de-

scribed as traversals in the code property graph. Starting

from a set of seed nodes, a traversal passes over the graph

moving along the edges according to properties of the nodes.

The output of a traversal is the set of nodes where this

movement terminates. For example, a traversal may start at all

calls to memcpy and move backwards along data-flow edges

to the macro n2s, thereby extracting candidates similar to

the “Heartbleed” vulnerability (Figure 1). Additionally, the

traversal can make use of control-flow edges to only select

those paths between memcpy and n2s where no validation of

the propagated variable payload is performed.
Formally, graph traversals are functions that map one set

of nodes to another set of nodes. As such, traversals can

be chained freely using function composition to yield new

traversals, making it possible to express complex queries in

terms of re-usable, elementary traversals. We make extensive

use of this capability to construct search queries for taint-style

vulnerabilities (see Section IV-D). A detailed introduction to

code property graphs and traversals for vulnerability discovery

is provided by Yamaguchi et al. [63].

III. EXTENDING CODE PROPERTY GRAPHS FOR

INTERPROCEDURAL ANALYSIS

The code property graph offers a wealth of information for

pattern-based vulnerability discovery, however, it has not been

constructed with interprocedural analysis in mind. Unfortu-

nately, information exploitable to infer search patterns is scarce
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and often spread across several functions, making analysis

beyond function boundaries desirable. We therefore seek to

extend the code property graph to obtain a representation

similar to the well known System Dependence Graph [23] but

in a format suitable for mining using graph databases. We can

achieve this by extending the code property graph as follows.

We begin by making the data flow between call sites and

their callees explicit by introducing edges from arguments

to parameters of the respective callees, and from return

statements back to call sites. In effect, we already obtain a

graph that expresses call relations between functions, however,

the data flow information it encodes is needlessly inexact.

Most importantly, modifications made by functions to their

arguments are not taken into account, nor the effects these

have as data flows back along call chains.

In the following, we describe an approach to improve this

preliminary graph by detecting argument modifications using

post-dominator trees (Section III-A), both to handle calls

to functions where source code is available, and for library

functions where only callers can be observed (Section III-B).

We proceed to propagate this information through the graph

to obtain the final interprocedural version of the code property

graph used for inference of search patterns (Section III-C).

A. Adding Post-Dominator Trees

For our heuristic approach to the detection of argument def-

initions, the ability to determine whether a statement is always

executed before another is crucial. Unfortunately, the existing

classic program representations merged into the property graph

do not allow this to be determined easily; the control-flow

graph only indicates whether a statement may be executed

after another, and the control-dependencies of the program

dependence graph are limited to exposing predicates that must

be evaluated before executing statements.

Dominator and post-dominator trees [see 3, 8], two classical

program representation derivable from the control-flow graph,

are ideally suited to address this problem. As is true for

control-flow graphs and program dependence graphs, these

trees contain a node for each statement. These nodes are

connected by edges to indicate dominance, a notion closely

related to analysis of mandatory statement execution-order.

A node d dominates another node n in a control-flow graph,

if every path to n has to first pass through d. By linking each

node to its immediate dominator, we obtain a dominator tree.

Similarly, a node p post-dominates another node n, if every

path from n has to pass through p. By again linking together

the immediate post-dominators of each node, we obtain a post-
dominator tree.

As an Example, Figure 4 shows a post-dominator tree for

the function bar of the running example from Figure 3.

Like all post-dominator trees, the tree is rooted at the exit

node as all paths in the CFG eventually lead through the

exit node. However, as edges only exist from nodes to their

immediate post-dominator, only the predicate y < 10 and the

call foo(x,y,z) are connected to the exit node. In contrast,

int bar(int x, int y) { 1

int z; 2

boo(&z); 3

if (y < 10) 4

foo(x,y,&z); 5

} 6

7

int boo(int *z) { 8

*z = get(); 9

} 10

11

int moo() { 12

int a = get(); 13

int b = 1; 14

bar(a, b); 15

} 16

17

int woo() { 18

int a = 1; 19

int b = get(); 20

bar(a, b); 21

} 22

Fig. 3: Running example of a call to the sink foo

entry

call: boo

int z

exit

call: fooy < 10 

Fig. 4: Post-dominator tree for the function bar

the call to boo is immediately post-dominated by the predicate,

while it immediately post-dominates the statement int z.

Both data structures come handy, if we quickly need to

determine whether a statement in the code base is always

preceded or followed by another statement. Moreover, since

a designated node exists for each statement, merging these

structures with the existing code property graph can be easily

achieved by adding appropriately labeled dominator edges

between statement nodes.

B. Detecting Argument Modification

Once post-dominator trees are available, we can employ

them to detect function calls that result in modifications of

their arguments —a process denoted as defining arguments in

compiler design [3]. While for common library functions such

as read or recv from the POSIX standard, this problem can

be addressed by providing annotations, internal APIs such as

the n2s macro as present in the “Heartbleed” vulnerability are

not recognized as input sources.

In general, we therefore need to assume that it is unknown

whether a call to a library function results in modification of its

arguments, and hence, serves as a data source. In effect, for

all direct and indirect callers of library functions, argument

800800



definition may not be detected correctly. As an example,

consider the POSIX library functions read and write that

both take a pointer to a memory buffer as their second

arguments. From the function signatures alone, it is impossible

to determine that read modifies the contents of the buffer

while write does not. This, however, is a vital difference that

directly affects data-flow edges in the code property graph.

To address this problem, we proceed as follows. For each

encountered function that comes without source code, we

determine whether it possibly defines its arguments by cal-

culating a simple statistic based on the following two checks.

1) We check whether a local variable declaration reaches

the argument via a data flow without undergoing an

easily recognizable initialization, such as an assignment

or a call to a constructor.

2) We check that the path from the function to the local

variable declaration in the post-dominator tree does not

contain another statement that is also directly connected

to the variable declaration by data flow.

Calculating the fraction of call sites that fulfill both con-

ditions, we assume that an argument is defined by calls to

the function if the fraction is above a defined threshold.

For our experiments we fix this threshold to 10% to not

miss any attacker-controlled sources. With the help of this

simple heuristic, we recalculate the data-flow edges in the code

property graph for all callers of functions without source code.

Figure 3 illustrates our heuristic: the local variable z is

declared on line 2 without obvious initialization. It is then

passed to both boo and foo as an argument on line 3 and 5,

respectively. While for function boo, it is reasonable to assume

that it initializes z, this is not true for function foo as it is

called after boo that may have already initialized z.

C. Propagation of Data-Flow Information

In addition to the problem of detecting argument definitions

by library functions, argument definitions may occur indirectly,

i.e., any of the functions called by a function may be re-

sponsible for argument definition. Consequently, identifying

the sources for a data flow in a function without descending

into all its callees is not effective. As an example, consider

the code snippet shown in Figure 3. The argument z of the

function foo is first defined in line 2 but then re-defined in

line 9 inside the called function boo. As a result, there is a

data flow from the source get to the function foo.

To take into account indirect argument definitions, we can

propagate data-flow information along call-chains. To this

end, we determine for each function (with available source

code) whether argument definition takes place by analyzing

its body and checking whether any of its parameters are

(a) defined inside the function and (b) this definition reaches

the exit statement via control flow. However, this only works

if the data-flow edges of a function already take into account

argument definitions performed by any of the functions that it

calls. We therefore analyze all callees of a function prior to

analyzing the function itself and apply the heuristic presented

in the previous section for library functions.

Algorithm 1 Data flow recalculation

1: procedure FIXDATAFLOWEDGES(V )
2: for v ∈ V do
3: fv ← false � Mark nodes as not fixed

4: for v ∈ V do
5: FIXNODE(v)

6: procedure FIXNODE(v)
7: if fv = true then
8: return false
9: fv ← true, u← false

10: for c ∈ CALLEES(v) do � Fix all callees
11: u← u ∨ FIXNODE(c)

12: if u = true then � v needs to be updated
13: UPDATEDATAFLOW(v)
14: return true
15: return false

stmts

func: qux=

stmtsparams

ret x * yparam: y

call: quxint s

arg: 7arg: 3 param: x

Function baz

Function qux

func: baz

(a) Interprocedural code property graph.

1 void baz(void) {
2 int s = qux(3, 7);
3 }

int qux(int x , int y) { 4

return x * y; 5

} 6

(b) Code snippet of caller and callee.

Fig. 5: Interprocedural code property graph for the functions

baz and qux. Syntax edges are shown as dotted lines and

data-flow edges as solid lines.

Algorithm 1 implements this idea by recursively updating

the nodes of the code property graph. In particular, the data-

flow edges of a node v are fixed using the procedure FIXN-

ODE, where the attribute fv ensures that no node is visited

twice. The algorithm descends into the graph using a pre-

order traversal, that is, all callees are updated (line 11) before

the current function is processed (line 13). Upon completion of

Algorithm 1, observable argument definitions and the resulting

indirect data flows are accounted for in the graph.

As an example of a resulting interprocedural code property

graph, consider the code snippet and the graph given in

Figure 5. The graph is constructed from the nodes of the

abstract syntax tree, where its edges either reflect syntax

(dashed lines) or data flow (solid lines). Control-flow edges

are not shown in this example.

Conceptually, this interprocedural representations of code is

directly derived from the classical System Dependence Graph

(SDG) introduced by Horwitz et al. [23], however, tuned to

801801



be processed using graph database queries, and augmented

with syntax and dominance information. This structure is well

suited to model and search for vulnerabilities as we illustrate

in the following sections.

IV. INFERENCE OF SEARCH PATTERNS

FOR VULNERABILITIES

Equipped with a code property graph extended for inter-

procedural analysis, we are now ready to tackle the problem

of extracting search patterns for taint-style vulnerabilities.

Starting from a security-sensitive sink, such as the memory

function memcpy, our goal is to generate search patterns in the

form of graph traversals that enable uncovering vulnerabilities

in the data flow to the sink. To be useful, these queries

need to be general enough to encode patterns of code instead

of specific invocations. Moreover, they need to capture data

flow precisely across functions, such that the definition of

individual arguments can be correctly tracked. Finally, the

generated queries should be easy to understand and amendable

by a practitioner, allowing additional domain knowledge to be

incorporated.

In order to generate search patterns with these qualities, we

implement the following four-step procedure that combines

techniques from static code analysis, machine learning and

signature generation (Figure 6).

1) Generation of definition graphs. For each call of the

selected sink, we generate definition graphs by analyz-

ing the code property graph. Similar to interprocedural

program slices [23], these graphs compactly encode both

argument definitions and sanitizations, albeit in a two-

level structure created specifically to easily enumerate

feasible invocations (Section IV-A).

2) Decompression and clustering. We then decompress the

definition graphs into individual invocations and cluster

these for all call sites to obtain patterns of common

argument definitions (Section IV-B).

3) Creation of sanitization overlays. Next, we extend the

generated patterns by adding potential sanitization from

the data flow, that is, all conditions in the flow restricting

the argument values (Section IV-C).

4) Generation of graph traversals. Finally, we express the

inferred search patterns in the form of graph traversals

suitable for efficient processing using the analysis plat-

form Joern (Section IV-D).

In the following sections, we describe each of these steps

in more detail and illustrate them with examples.

A. Generation of Definition Graphs

While source code contains valuable information about how

functions are invoked, and in particular, how their arguments

are defined and sanitized, this information is often spread

across several different functions and buried in unrelated code.

To effectively exploit this information, a source-sink represen-

tation is required that encodes only the definitions and sani-

tizations of arguments, while discarding all other statements.

To address this problem, we generate a graph representation

for each source-sink system that can be easily calculated from

our code property graphs. This representation, referred to as

a definition graph throughout the paper, encodes all observed

combinations of argument definitions and their corresponding

sanitization. As such, definition graphs are created from a

carefully chosen subset of the nodes of the corresponding

interprocedural program slices [see 23, 60], containing only

nodes relevant for determining search patterns for taint-style

vulnerabilities. Definition graphs allow to easily enumerate

feasible argument initializations, as is possible for complete

interprocedural program slices by solving a corresponding

context-free-language reachability problem [see 44].

We construct these graphs by first modeling individual

functions locally, and then combining the respective graphs

to model function interaction.
1) Local Function Modeling: Within the boundaries of

a function, determining the statements affecting a call and

the variables involved can be achieved easily using program

slicing techniques. This allows us to create a hierarchical

representation that captures all definition statements involving

variables used in the call as well as all conditions that control

the execution of the call site. To illustrate the construction of

such a representation, we consider the call to the function foo

(line 5) in Figure 3 as a selected sink. Starting from this call

site, we construct the representation by passing over the code

property graph using the following rules:

• For the selected sink, we first follow the outgoing syntax

edges to its arguments. In the example, we expand foo

to reach the arguments x, y and z.

• For these arguments and all statements defining them,

we then follow connected data-flow and control-

dependence edges to uncover defining statements as

well as conditions that control the call site foo. For

example, the definition int z and the condition y <

10 are discovered in this way.

• Finally, we use interprocedural edges to move from all

calls that define any of our variables to the respective

function bodies, where we identify further defining

statements that affect the arguments of the selected sink.

In the example, the call to boo is discovered by this

rule, leading us to the definition statement *z = get().

For each parameter reached in this way, we consider all

respective call sites as sinks, and recursively apply these rules

to obtain a tree for each function connected with the initial sink

via data flow. These trees can be easily constructed from the

code property graph using a depth first traversal that employs

an expansion function implementing the three rules given.
2) Definitions graphs: With the tree representations of

functions at hand, we can already analyze argument defini-

tions and their sanitization within a function, however, callers

remain unexplored. In the example code, this means that we

uncover the local variable definition of z, while the param-

eters x and y cannot be traced past the function boundary.

Unfortunately, the simple and intuitive solution of following

parameter-to-argument edges during the construction of local
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foo(a, b) foo(a, b) foo(a, b)

Definition graph Cluster A

Data-flow analysis Decompression and clustering Sanitization overlay

foo(a, b) foo(a, b)

b > 1

Search patterns

* = get() 
→ 

not (* > 1) 
→ 

foo(a, *)

Sanitization A Traversal A
get() ... get() ... get() ... get() ...get() ...

Fig. 6: Overview of our method for inference of search patterns for vulnerabilities. Starting from a selected sink (foo), the

method automatically constructs patterns that capture sources (get()) and sanitization (b > 1) in the data flow.

a = get() b = 1

a b

*z = get()

call: boo int zparam: x param: y (y < 10)

call: foo

x y z

Function bar

Function moo

call: bar

func: bar

a = 1 b = get()

a b

Function woo

call: bar

Fig. 7: Definition graph for the function foo of the running

example from Figure 3 with arguments defined by moo. A

second instantiation of the graph is shown with dashed lines

for woo.

trees produces infeasible combinations of definitions as dis-

cussed in detail by Reps [44]. For instance, in our example,

this simple solution would generate the combination {int a

= get(), int b = get()}. However, this combination is

invalid as the first definition only occurs when moo calls bar

while the second occurs when woo calls bar. Hence, these

definitions never occur in combination.

This is a classical problem of interprocedural program anal-

ysis, which can, for instance, be solved by formulating a cor-

responding context-free-language reachability problem [44].

Another solution is to simply ensure that parameter nodes of

a function are always expanded together when traversing the

graph. For example, when expanding the parameter node for

x, the node for y needs to be expanded as well. Moreover,

it needs to be ensured that both nodes are expanded with

arguments from the same call site, in our example either woo

or moo.

As solution we simply tie parameters together by modeling

the interplay of entire functions as opposed to parameters. The

definition graph implements this idea. In contrast to the trees

modeling functions locally, nodes of the definition graph are

not simply a subset of the nodes of the interprocedural code

property graph, but represent entire trees. Definition graphs

are therefore two-level structures that combine trees used to

model functions locally to express their calling relations. As

an example, Figure 7 shows the definition graph for the call

to foo in the sample code. Formally, we can define these

definition graphs as follows.

Definition 1. A definition graph G = (V,E) for a call site c
is a graph where V consists of the trees that model functions

locally for c and those trees of all of its direct and indirect

callers. For each a, b ∈ V , an edge from a to b exists in E if

the function represented by a calls that represented by b.

B. Decompression and Clustering

We now have a source-sink representation that makes the

definition of arguments and their sanitization explicit. We

thus seek to determine patterns in the definition graphs that

reflect common combinations of argument definitions. Given

an arbitrary set of definition graphs, for example all definition

graphs for all call sites of the function memcpy, we employ

machine learning techniques to generate clusters of similar

definition combinations along with their sanitizers, designed

to be easily translated into graph database traversals (see

Section IV-D). We construct these clusters in the following

three steps.

1) Decompression of definition graphs: While a definition

graph represents only a single sink, it possibly encodes mul-

tiple combinations of argument definitions. For example, the

definition graph in Figure 7 contains the combination {int
z, a = get(), b = 1} as well as the combination {int
z, a = 1, b = get()} in a compressed form. Fortunately,

enumerating all combinations stored in a definition graph can

be achieved using a simple recursive procedure as shown in

Algorithm 2, where [v0] denotes a list containing only the node

v0 and the operator + denotes list concatenation.

The nodes of the definition graph are trees, where each

combination of argument definitions corresponds to a subset of

these nodes that represent a call chain. Starting from the root

node r(V ), the algorithm thus simply combines the current

tree with all possible call chains, that is, all lists of trees
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Algorithm 2 Decompression of definition graph

1: procedure DECOMPRESS(G)
2: return RDECOMPRESS(G, r(V ))

3: procedure RDECOMPRESS(G := (V,E), v0)
4: R = ∅
5: D ← PARENTTREES(v0)
6: if D = ∅ then
7: return {[v0]}
8: for d ∈ D do
9: for L ∈ RDECOMPRESS(G, d) do

10: R← R ∪ ([v0] + L)

11: return R

encountered in the code base that lead to this tree. As a result

of this step, we obtain the set of all observed combinations of

argument definitions denoted by S.

2) Clustering callees and types: Callees and types with a

similar name often implement similar functionality. For exam-

ple, the functions malloc and realloc are both concerned

with allocation, while strcpy and strcat deal with copying

strings into a buffer. We want to be able to detect similar

combinations of definitions even if none of the arguments are

defined using exactly the same callee or type. To achieve this,

we determine clusters of similar callees and types prior to

constructing search patterns for vulnerabilities.

In particular, we cluster the callees and types for each

argument independently. As we are interested in compact

representations, we apply complete-linkage clustering, a tech-

nique that is known for creating compact groups of objects

and easy to calibrate [see 4]. Linkage clustering requires a

distance metric to be defined over the considered objects, and

we employ the Jaro distance for this task, as it has been

specifically designed for comparing short strings [25]. The

Jaro distance quantifies the similarity of two strings as a value

between 0 and 1, where a value of 1 indicates an exact match

and a value of 0 indicates absolute dissimilarity. The analyst

can control how similar strings inside a cluster need to be by

specifying a minimum similarity in terms of the Jaro distance.

We found that the clustering is relatively stable for clustering

parameters between 0.9 and 0.7 and fixed the parameter to 0.8
for all of our experiments. As a result of this step, we obtain

a set C of callee and type clusters for each argument.

3) Clustering of combinations of definitions: Clustering the

decompressed combinations of argument definitions is slightly

more involved than clustering callees and types as these

combinations are complex objects rather than simple strings.

Our goal is to compare definition combinations in terms of

the definitions they attach to arguments, albeit in a way robust

to slight differences in the names of callees and types. We

achieve this by using a generalized bag-of-words model and

mapping the combinations to a vector space spanned by the

clusters calculated in the previous step [see 45].

In the following, let us assume a sink with a single argument

and let S denote the set of combinations while C is the set of

callee and type clusters. Then, for each combination s ∈ S,

we can determine the clusters Cs ⊆ C that its definitions

are contained in. We then represent each s ∈ S by a vector

in a space where each dimension is associated with one of

the clusters of C. We can achieve this by defining a map

φ : S �→ {0, 1}n where the c’th coordinate φc is given by

φc(s) =

{
1 if c ∈ Cs

0 otherwise

and n is the total number of callee and type clusters |C|.
In the case of sinks with multiple arguments, we perform

this operation for each argument independently and simply

concatenate the resulting vectors. As an example, let us

consider a definition combination s where the first argument

is initialized via a call to malloc while the second is defined

to be of type size_t. Then the corresponding vector has the

following form.

φ(s) �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · ·
0
1
· · ·
1
0
· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

· · · }
Arg. 1{char[52],uchar[32], . . .}

{malloc,xmalloc, . . .}
· · · }

Arg. 2
{size_t,ssize_t, . . .}
{int,uint32_t, . . .}

· · ·
Using this vectorial representation, we can now employ

linkage clustering again to obtain clusters of similar com-

binations for argument definitions. As a distance function

for the clustering, we choose the city-block distance, since

it provides an intuitive way for measuring the presence or

absence of clusters in the vectors. We use a fixed value of 3 for

the clustering parameter throughout our experiments, meaning

that invocations inside a cluster may differ in up to three

entries. As a result of this step, we obtain clusters of similar

combinations, i.e., groups of similar invocations that constitute

patterns present in the code base. The size of these clusters can

be used to rank these patterns in order to prioritize inspection

of dominant patterns: larger clusters represent strong patterns

supported by many individual invocations, while small clus-

ters represent less articulate patterns, supported only by few

invocations.

C. Creation of Sanitization Rule Overlays

The clusters generated in the previous step can already be

used to generate search patterns indicating the combinations

of arguments predominant for a sink. They do not, however,

encode sanitization patterns. To achieve this, we proceed to

create overlays for argument definition models that express

typical sanitization of each argument. To this end, we exploit

the information spread across all conditions contained in any

of the definition graphs. As is the case for callee and type

matching, we seek to be robust against slight variations in the

way conditions are formulated. To this end, we make use of the

fact that each condition is represented as a syntax tree in the

code property graph. Similar to the way callees and types are

grouped, we map these trees to vectors and cluster them using

linkage clustering. In particular, we employ an explicit tree

embedding based on the neighborhood hash kernel [16, 22].
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Let T denote the set of conditions, each represented by a

syntax tree. Then we map each condition t ∈ T to a vector

as follows: First, inner nodes in the syntax tree are labeled

by the hash value of their type attributes, e.g., multiplication,

unary expression or assignment, while leaf nodes are labeled

by the hash value of their code attribute, typically an identifier,

operator or literal. Second, the symbol that is being propagated

is renamed to var. In that way, the condition does not depend

on the name of the identifier. Numbers, relational, and equal-

ity operators are also normalized using regular expressions.

Finally, the neighborhood of each node v is taken into account

by computing its neighborhood hash as a function of the labels

of its child nodes as

h(v) = r(l(v)) ⊕
(⊕

z∈Cv

l(z)

)

where l(v) is the label of the node v, r(·) denotes a single-bit

rotation, ⊕ indicates a bit-wise XOR operation on the labels of

the nodes, and finally Cv are the child nodes of v. In effect, we

obtain a set of hash values for each syntax tree that we can use

to represent it. We define the mapping Φ : T → {0, 1}n from

conditions to n-dimensional vectors where n is the number of

different hash values and for a condition c ∈ T

Φj(c) =

{
1 if c contains a node v with h(v) = j

0 otherwise
.

Upon performing this mapping for each condition in the

defnition graph, we employ linkage clustering yet again using

the city-block distance with a fixed parameter of 2, yielding

clusters of conditions. We store the cluster identifiers of all

conditions used in each of the combination clusters calculated

in the previous section and finally attach them to the search

patterns.

D. Generation of Graph Traversals

The generated clusters enhanced with sanitization overlays

fully express search patterns that can now finally be mapped

to graph traversals to mine for vulnerabilities. To achieve

this, we construct a generic template for the pattern-based

analysis platform Joern that can capture missing sanitization

of arguments and can be easily instantiated to express different

search patterns for taint-style defects.

1) Traversal template: Figure 8 shows the template traver-

sal in the query language Gremlin. To instantiate the template,

we need to define the name of the sensitive sink, descriptions

for data sources of each argument as well as descriptions

for their sanitization. These are referred to as argiSource

and argiSanitizer where i denotes the argument number.

The traversal proceeds by determining all call sites of sink.

It then processes each sink separately using the traversals

taintedArgs and unchecked in order.

The traversal taintedArgs is used to find if a sink

conforms to the source descriptions (argiSource). It achieves

this by first generating the corresponding definition graph

as described in Section IV-A. Without decompressing the

getCallsTo(sink)

.taintedArgs(
[arg1Source,..., argnSource]

)

.unchecked(
[arg1Sanitizer, ... argnSanitizer]

)

Fig. 8: Template for taint-style vulnerability as a graph

traversal in the query language Gremlin.

graph, it then determines whether the call site can possibly

fulfill the argument description by checking whether for each

description, at least one matching statement exists in the

definition graph.

This step drastically reduces the number of call sites that

need to be analyzed further, however, we cannot yet tell

with certainty whether the call site matches the argument

descriptions. To achieve this, the particular definition graph

is decompressed according to Algorithm 2. With definition

combinations at hand, it now becomes trivial to check whether

argument descriptions are matched. Finally, we thus return

all definition combinations that match the descriptions and

pass them on to the traversal unchecked for analysis of

sanitization.

The traversal unchecked determines all call sites where

at least one of the arguments is not sanitized according to the

sanitizer descriptions. The function proceeds by checking each

of the conditions in the definition graph against the respective

sanitizers descriptions.
2) Template instantiation: We instantiate queries from clus-

ters by translating definitions and conditions into argument

descriptions and sanitizer descriptions respectively. Recalling

that for each argument, a set of clusters for data sources as well

as conditions is available, these merely have to be summarized

in a form suitable to be understood easily by security analysts.

To this end, we generate regular expressions from these

clusters by determining longest common sub sequences as

commonly performed in signature generation [see 40]. The

resulting graph traversals can then be used as is to mine code

for bugs as well as allow for refinement by analysts.

V. EVALUATION

We proceed to evaluate our method on the source code

of five popular open-source applications in two steps. First,

we perform a controlled experiment where we evaluate our

method’s ability to generate traversals for known vulnerabil-

ities and measure how these reduce the number of call sites

to inspect. Second, we evaluate our method’s ability to assist

in a real-world code audit of the popular media player VLC

where we uncover several previously unknown vulnerabilities.

We implement our method as a plugin for the code analysis

platform Joern version 0.3.1, using the library fastcluster [37]

for clustering. To allow other researchers to reproduce our

results, we make our plugin available as open source2.

2https://github.com/fabsx00/querygen
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Project Version Component Lines of code Vulnerability Sensitive sink # Call Sites
Linux 3.11.4 Driver Code 6,723,955 CVE-2013-4513 copy_from_user 1715
OpenSSL 1.1.0f Entire Library 378,691 CVE-2014-0160 memcpy 738
Pidgin 2.10.7 Entire Program 363,746 CVE-2013-6482 atoi 255
VLC 2.0.1 Entire Program 555,773 CVE-2012-3377 memcpy 879
Poppler (Xpdf) 0.24.1 Entire Library 227,837 CVE-2013-4473 sprintf 22

TABLE I: Data set of five open-source projects with known taint-style vulnerabilities. The table additionally lists the sensitive

sinks of each vulnerability and the number of traversals inferred by our method.

Correct Source Correct Sanitization # Traversals Generation Time Execution Time Reduction[%]
CVE-2013-4513 � � 37 142.10 s 10.25 s 96.50
CVE-2014-0160 � � 38 110.42 s 8.24 s 99.19
CVE-2013-6482 � � 3 20.76 s 3.80 s 92.16
CVE-2012-3377 � � 60 229.66 s 20.42 s 91.13
CVE-2013-4473 � 1 12.32 s 2.55 s 95.46

Average 94.90

TABLE II: Reduction of code to audit for discovering the five taint-style vulnerabilities. For the last vulnerability no correct

sanitizer is infered due to the low number of call sites.

A. Controlled Experiment

To evaluate our method’s ability to generate queries for

real vulnerabilities in program code in a controlled setting,

we analyze the security history of five popular open-source

projects: the Linux kernel, the cryptographic library OpenSSL,

the instant messenger Pidgin, the media player VLC and

finally, the rendering library Poppler as used by the document

viewers Evince and Xpdf. For each of these projects, we

determine a recent taint-style vulnerability and the associated

sensitive sink. Table I provides an overview of this data set,

showing the project and its version, the vulnerable component,

and the lines of code it contains. Moreover, the vulnerability,

denoted by its CVE-identifier, the associated sensitive sink,

and the number of call sites of the sink are shown. We

now briefly describe each of these taint-style vulnerabilities

in detail.

• CVE-2013-4513 (Linux). An attacker-controlled variable

named count of type size_t is passed as a third

argument to the sink copy_from_user without being

sanitized, thereby triggering a buffer overflow.

• CVE-2014-0160 (OpenSSL “Heartbleed’). The variable

payload of type unsigned int as defined by the

source n2s is passed as a third argument to memcpy

without being checked, causing a buffer overread.

• CVE-2013-6482 (Pidgin). The string unread is read

from the attacker-controlled source xmlnode_get_data

and passed to the sink atoi without undergoing

sanitization, thereby possibly causing a NULL pointer

to be dereferenced.

• CVE-2012-3377 (VLC). The length of the data buffer

p_stream->p_headers is dependent on an attacker-

controlled allocation via the function realloc and

reaches a call to memcpy without verifying the available

buffer size, leading to a buffer overflow.

• CVE-2013-4473 (Poppler). The attacker-controlled string

destFileName is copied into the local stack buffer

pathName of type char [1024] using the function

sprintf without checking its length, leading to a

stack-based buffer overflow.

We proceed to generate traversals for all of these sinks.

Table II summarizes our results, showing the number of

traversals generated for each vulnerability, and whether our

method was able to generate a traversal that expresses both the

correct source and sanitizer. It also shows the time required to

generate traversals from the code, and the execution time of

the traversal in seconds. Finally, the percentage of call sites

that do not have to be inspected when using the generated

traversal as a robust signature for the vulnerability is shown

(reduction percentage).

Our method generates correct descriptions for the respective

argument sources in all cases, and correct sanitizers in all but

one case. In the case of CVE-2013-4473, no sanitizer descrip-

tion is returned. In this case, only 22 call sites are available,

making the inference of a sanitizer description difficult using

statistical methods. Regardless of this, the number of call sites

to inspect to locate the vulnerabilities is drastically reduced by

our queries, allowing 94.9% of the call sites to be skipped on

average.

Finally, Table III shows the inferred regular expressions for

sources and sinks. In these regular expressions the names of

attacker-controlled sources from the vulnerability descriptions

are clearly visible. Moreover, apart from those sanitization

patterns from the bug descriptions, additional sanitizers are

recognized in some cases. For example, the method determines

that the first argument to memcpy stemming from the source

n2s is commonly compared to NULL to ensure that it is not

a NULL pointer. For arguments where multiple sanitizers are

enforced, only one is shown.
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CVE-2013-4513 CVE-2014-0160 CVE-2013-6482 CVE-2012-3377 CVE-2013-4473
Sink copy_from_user memcpy atoi memcpy sprintf
Argument 1 .* .* .*xmlnode_get_.* .*alloc.* .*char \[ .* \].*
Argument 2 .*const .*cha.*r *.* .* .* .* .*
Argument 3 .*size_t.* .*n2s.* .* .* .*
Sanitizer 1 - .*sym ( ==|!=) NULL.* .*sym.* .*sym.* -
Sanitizer 2 - - - - -
Sanitizer 3 .*sym .*(\d+).* .*sym.*\+(\d+).* - - -

TABLE III: Regular expressions contained in the search patterns for the five taint-style vulnerabilities, where sym is replaced

by the tracked symbol at runtime. For the last vulnerability, no sanitizers are inferred.

B. Case Study: The Heartbleed Vulnerability

In this case study, we show how our method successfully

generates a search pattern for the “Heartbleed” vulnerability

presented in Section II as an example of a taint-style vul-

nerability. We use our method to generate patterns for the

security-sensitive sink memcpy in OpenSSL version 1.1.0f, the

last version of the library to be vulnerable to this particular

bug. Among functions such as strcpy, strcat and sprintf,

memcpy is one of the functions most commonly associated

with buffer overflow vulnerabilities [see 5, 11].

We begin by employing the heuristic presented in Sec-

tion III-B to discover library functions that define their argu-

ments. Figure 9a shows the discovered library function names

and argument numbers. We manually verify each of these to

find that all but one are inferred correctly. For the falsely

identified third argument to memset, we found that it is often

of the form sizeof(buffer) where buffer is a variable

reaching memset without prior definition. Slightly adapting

our heuristic to account for the semantics of sizeof (by

suppressing its arguments) fixes this problem as well, leaving

us only with correctly inferred data sources.

Function Defining

fgets 1. argument
sprintf 1. argument
memset 1. argument
write 3. argument
memcpy 1. argument
memset∗ 3. argument
n2s 2. argument
n2l 2. argument
c2l 2. argument

(a) Library functions

Regular expression

.*n2s.*
.*memset.*
.*strlen.*

.*int .*len.*
.*int arg.*
.*size t.*

.*unsigned.*
.*int.*

.*long.*

(b) Inferred data sources

Fig. 9: (a) Tainting library functions identified by our heuristic;

(b) regular expressions inferred for data sources of the third

argument to memcpy.

Inferring queries from the code then leads to the generation

of 38 queries, 14 of which specify a source for the third

argument of memcpy. These are particularly interesting as the

third argument specifies the amount of data to copy and hence

cases where it is attacker-controlled are prime candidates for

buffer overflows. Figure 9b contains the 9 sources of the

third argument, showing the attacker-controlled source n2s in

particular. As n2s is the only source that is under attacker

control with certainty, only the single traversal shown in

Figure 10 needs to be executed.

arg3Source = sourceMatches(’.*n2s.*’); 1

2

arg2Sanitizer = { it, symbol -> 3

conditionMatches(".*%s (==|!=) NULL.*", symbol) 4

}; 5

6

arg3Sanitizer = { it, symbol -> 7

conditionMatches(".*%s.*\+(\d+).*", symbol) 8

}; 9

10

getCallsTo("memcpy") 11

.taintedArgs([ANY, ANY, arg3Source]) 12

.unchecked([ANY_OR_NONE, arg2Sanitizer, arg3Sanitizer]) 13

14

Fig. 10: Generated traversal encoding the vulnerable program-

ming pattern leading to the Heartbleed vulnerability.

The query encodes the flow of information from the

attacker-controlled data source n2s to the third argument of

memcpy. Moreover, it enforces two sanitization rules. First,

it needs to be checked whether the second argument passed

to memcpy is a NULL pointer and second the third argument

needs to be checked in an expression containing an integer.

Clearly, these rules can be easily modified by an analyst

to increase precision; however, for the purpose of this case

study, we employ the traversal as is. Even without refinement

the traversal returns only 7 call sites of 738 (0.81%) shown

in Table IV. Among these, two correspond exactly to the

“Heartbleed” vulnerability.

C. Case Study: Vulnerabilities in the VLC Media Player

In this case study, we illustrate how our method plays

the key role in the identification of five previously unknown

Filename Function

ssl/d1 both.c dtls1 process heartbeat
ssl/s3 clnt.c ssl3 get key exchange
ssl/s3 clnt.c ssl3 get new session ticket
ssl/s3 srvr.c ssl3 get client key exchange
ssl/t1 lib.c ssl parse clienthello tlsext
ssl/t1 lib.c tls1 process heartbeat
crypto/buffer/buf str.c BUF memdup

TABLE IV: The seven hits returned by the generated query.

Vulnerable functions are shaded.
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Traversal Filename Function Line CVE Identifier

Traversal 1 modules/services_discovery/sap.c ParseSDP 1187 CVE-2014-9630
Traversal 1 modules/stream_out/rtpfmt.c rtp packetize xiph config 544 CVE-2014-9630
Traversal 1 modules/access/ftp.c ftp SendCommand 122 CVE-2015-1203
Traversal 2 modules/codec/dirac.c Encode 926 CVE-2014-9629
Traversal 2 modules/codec/schroedinger.c Encode 1554 CVE-2014-9629

TABLE V: The call sites extracted by our traversals. All of these call sites are vulnerable.

arg1Src = sourceMatches(’.*char \[ .*len \+ .* \].*’)
arg3Src = { sourceMatches(’.*size_t.*’)(it) ||

sourceMatches(’.*str.*len.*’)(it)}

getCallsTo("memcpy")
.taintedArgs([arg1Src, ANY_SOURCE, arg3Src])

Fig. 11: Traversal to identify dynamic allocation of stack

memory for the first argument of memcpy.

vulnerabilities in VLC, a popular open-source media player.

To this end, we chose two of the traversals generated for

the sink memcpy that look particularly interesting as they

directly encode dangerous programming practices. The first

query, shown in Figure 11, describes a call to memcpy where

the first argument is defined to be a local stack buffer of

type char. Moreover, the size is dynamically calculated inside

the definition. This alone already constitutes a problematic

programming practice as it is impossible to verify whether the

available stack memory allows this allocation to be performed.

In particular, if the amount of memory to be allocated is

controlled by an attacker, and memory is subsequently copied

into the buffer using memcpy, attackers can possibly corrupt

memory and leverage this to execute arbitrary code.

Running this query returns three call sites, all of which

are problematic. In particular, Figure 13 shows the vulnerable

function rtp_packetize_xiph_config where, on line 14,

the variable len is calculated to be the length of an attacker-

controlled string. It is then used to allocate the stack buffer b64

on line 15, and finally, on line 16, len bytes are copied to the

buffer. The presence of this vulnerability has been successfully

confirmed by triggering an invalid memory access on a 64 bit

Linux platform.

Figure 12 shows a second interesting query: in this case, the

second argument of memcpy stems from a source matching the

regular expression .*Get.*. This corresponds to a family of

macros in the VLC media player that read directly from media

files possibly controlled by attackers. Cases where the amount

of data to be copied into a buffer are directly dependent on

arg20Source = sourceMatches(’.*Get.*’);
arg21Source = sourceMatches(’.*uint.*_t.*’);

getCallsTo("memcpy")
.taintedArgs([ANY_SOURCE,ANY_SOURCE,

{arg20Source(it) && arg21Source(it)}])

Fig. 12: Traversal to identify third arguments of memcpy

defined by .*Get.*.

1 int rtp_packetize_xiph_config( sout_stream_id_t *id,
2 const char *fmtp,
3 int64_t i_pts )
4 {
5 if (fmtp == NULL)
6 return VLC_EGENERIC;
7

8 /* extract base64 configuration from fmtp */
9 char *start = strstr(fmtp, "configuration=");

10 assert(start != NULL);
11 start += sizeof("configuration=") - 1;
12 char *end = strchr(start, ’;’);
13 assert(end != NULL);
14 size_t len = end - start;
15 char b64[len + 1];
16 memcpy(b64, start, len);
17 b64[len] = ’\0’;
18 // [...]
19 }

Fig. 13: Previously unknown vulnerability found using the

first traversal.

an attacker-controlled integer are common sources for buffer

overflows, and hence we select the query.

Table V shows the two functions returned by the query, both

of which are vulnerable. In particular, the function Encode

in the source file modules/codec/dirac.c as shown in

Figure 14 causes a buffer overflow: the 32 bit variable len

is initialized by the attacker-controlled source GetDWBE on

line 5 and used in the allocation on line 7. Unfortunately,

the fixed value sizeof(eos) is added to len directly before

allocation, causing an integer overflow. In effect, too little

memory is allocated for the buffer p_extra. Finally, on line

10, len bytes are copied into the undersized buffer causing

an overflow.

In summary, we identified 5 previously unknown vulnerabil-

ities, that can possible be exploited to execute arbitrary code.

static block_t *Encode(encoder_t *p_enc, picture_t *p_pic) 1

{ 2

if( !p_enc->fmt_out.p_extra ) { 3

// [...] 4

uint32_t len = GetDWBE( p_block->p_buffer + 5 ); 5

// [...] 6

p_enc->fmt_out.p_extra = malloc( len + sizeof(eos) ); 7

if( !p_enc->fmt_out.p_extra ) 8

return NULL; 9

memcpy( p_enc->fmt_out.p_extra, p_block->p_buffer, len); 10

// [...] 11

} 12

} 13

Fig. 14: Previously unknown vulnerability found using the

second traversal.
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Moreover, we achieved this by selecting just two promising

automatically generated queries, illustrating the practical mer-

its of our method as a tool for security analysts who review

code for vulnerabilities.

VI. LIMITATIONS

The discovery of previously unknown vulnerabilities

through automatically inferred search patterns demonstrates

the merits of our method. Nevertheless, there exist certain

limitations that we discuss in the following.

First and as a consequence of our inference setup, if a

major part of the code base lacks a proper sanitization, our

method is unable to identify corresponding sanitization rules

from the data flow and thus fails to generate accurate search

patterns. Fortunately, this limitation does not apply to mature

software projects that make extensive use of sanitization when

processing user-controlled data.

Second, our method assumes that data is only passed from

callers to the callee via function arguments and return values.

Shared resources, such as global variables or shared memory,

are not modeled by our method. As a consequence, we are not

able to describe taint-style vulnerabilities where an attacker

propagates data across these resources to a sink. Modifying

the interprocedural code property graph to account for this

type of data flow seems involved but possible. We leave this

modification as an extension for future work.

Third, the work discussed so far only shows the applicability

of our method for the identification of vulnerabilities typical

for C code, such as invalid memory accesses. While in

principle, our method should be applicable to several other

vulnerability types, and in particular, typical Web application

flaws, this remains to be shown. In particular, adapting our

method to a different language requires careful handling of

language-specific properties.

Finally, the control flow of a software is not fully recovered

by our method. In particular, dynamic calls are currently

not resolved. Similarly, our method is not able to describe

vulnerabilities rooted in concurrent execution of functions,

such as many use-after-free security flaws. This limitation is

not trivial to address and possibly benefits from coupling code

property graphs with techniques for dynamic analysis, such as

dynamic taint tracking or symbolic execution.

VII. RELATED WORK

The development of methods for finding vulnerabilities in

software is long-standing topic in security research that spans

a wide range of approaches and techniques. For our discussion

of related work, we focus on approaches that also aim at

assisting a security expert during auditing of software instead

of replacing her.

a) Methods based on query languages and annotations:
Closely related to our work are approaches that enable an

analyst to search for vulnerabilities using query languages

or annotations. For example, the methods by Martin et al.

[35] and Lam et al. [30] both employ descriptive query

languages for modeling code and finding software defects.

Similarly, Vanegue et al. [56] experiment with extended static

checking [15] as part of the HAVOC tool and test its per-

formance at a large code audit. Moreover, several approaches

for the discovery of information-flow vulnerabilities based on

security type systems have been presented [see 21, 47, 50]. In

particular, the Jif compiler [38, 39] performs type checking to

allow security policies to be enforced for an annotated version

of Java. Moreover, Jif implements a type inference algorithm

to reduce the number of user-defined annotations required.

Finally, Evans and Larochelle [13] use annotations for C

as a means for finding vulnerable patterns in code. While

our approach shares a similar motivation, it differs in that it

automatically infers search patterns and thus the analyst only

needs to define a set of security-sensitive sinks to start auditing

an unknown code base.

b) Inferring programming patterns and specifications:
Manual analysis of code is a tedious and time-consuming task.

As a remedy, several methods have been proposed that make

use of statistical methods, machine learning, and data mining

techniques for accelerating this process. To this end, sev-

eral methods automatically infer programming patterns [e.g.,

19, 32, 58] and security specifications [e.g., 28, 34, 54],

from code, revision histories [33], and preconditions of APIs

[e.g., 7, 41, 55]. A related strain of research has followed a

more principled approach by modeling and inferring security

policies [e.g., 6, 36, 52, 57] for discovering information-

flow vulnerabilities. Similar to our method, many of these

approaches are based on syntax trees and code slices as well

as representations that combine syntax, control flow, and data-

dependence relationships [e.g., 27, 29].

Engler et al. [12] are among the first to point out that

defects in source code can often be linked to violations of

implicitly introduced system-specific programming patterns.

They present an approach to automatically tailor user-supplied

rule templates to specific systems and demonstrate its ability

to identify defects in system code. Closely related to this

work, Kremenek et al. [28] go one step further by showing

that an approach based on factor graphs allows different

sources of evidence to be combined automatically to generate

specifications for violation detectors.

More closely related to vulnerability discovery, Livshits

et al. [34] present Merlin, a method based on factor graphs that

infers information flow specifications from Web applications

for the Microsoft .NET framework. An important limitation

of Merlin is that it only models the flow of information

between functions, and hence, sources, sanitizers and sinks

are always assumed to be calls to functions. While for typical

Web application vulnerabilities, this assumption holds in many

cases, missing bounds checks for vulnerabilities such as buffer

overflows or null pointer checks cannot be detected in this way.

In contrast, our method is well suited to encode these checks

as sanitizers are derived from arbitrary statements, allowing

patterns in declarations and conditions to be modeled (see

Section V). Similarly, Yamaguchi et al. [62] present Chucky,

an approach to the detection of missing checks that is also

capable of dealing with sanitizers given by arbitrary condi-
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tions. Unfortunately, the approach is opaque to the practitioner

and thus a control or refinement of the detection process is

impossible. In contrast to both Merlin and Chucky, sources,

sanitizers, and sinks are expressed as regular expressions as

part of traversals, making it easy for the analyst to adapt them

to further improve the specification. Finally, several authors

employ similarity measures to determine vulnerabilities simi-

lar to a known vulnerability [17, 24, 42, 61].

c) Methods based on dynamic analysis: A considerable

body of research has focused on exploring dynamic code

analysis for vulnerability discovery. Most notably are black-

box fuzzing [e.g., 43, 53] and white-box fuzzing techniques

[e.g., 18, 20, 59]. These approaches are orthogonal to our

work, as they explore the data flow in source-sink systems at

run-time. Although not specifically designed to assist a human

analyst, white-box fuzzing might complement our method and

help to explore which parts of the code are reachable by

attackers to further narrow in on vulnerabilities.

VIII. CONCLUSION

The discovery of unknown vulnerabilities in software is a

challenging problem, which usually requires a considerable

amount of manual auditing and analysis work. While our

method cannot generally eliminate this effort, the automatic

inference of search patterns significantly accelerates the anal-

ysis of large code bases. With the help of these patterns, a

practitioner can focus her analysis to relevant code regions and

identify taint-style vulnerabilities more easily. Our evaluation

shows that the amount of code to audit reduces by 94.9%

on average and even further in the case of the “Heartbleed”

vulnerability, showing that automatically generated search

patterns can precisely model taint-style vulnerabilities.

Our work also demonstrates that the interplay of exact

methods, such as static program analysis, with rather fuzzy

approaches, such as machine learning techniques, provides

fruitful ground for vulnerability discovery. While exact ap-

proaches offer a rich view on the characteristics of software,

the sheer complexity of this view is hardly graspable by a

human analyst. Fuzzy methods can help to filter this view—in

our setting by search patterns—and thus guide a practitioner

when auditing code for vulnerabilities

REPORTING OF VULNERABILITIES

We have worked with the vendor to fix all vulnerabilities

identified as part of our research. Upcoming versions should

no longer contain these flaws.
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