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Abstract: In recent years, aerial infrared thermography (aIRT), as a cost-efficient inspection method,
has been demonstrated to be a reliable technique for failure detection in photovoltaic (PV) systems.
This method aims to quickly perform a comprehensive monitoring of PV power plants, from the
commissioning phase through its entire operational lifetime. This paper provides a review of reported
methods in the literature for automating different tasks of the aIRT framework for PV system
inspection. The related studies were reviewed for digital image processing (DIP), classification and
deep learning techniques. Most of these studies were focused on autonomous fault detection and
classification of PV plants using visual, IRT and aIRT images with accuracies up to 90%. On the
other hand, only a few studies explored the automation of other parts of the procedure of aIRT,
such as the optimal path planning, the orthomosaicking of the acquired images and the detection of
soiling over the modules. Algorithms for the detection and segmentation of PV modules achieved
a maximum F1 score (harmonic mean of precision and recall) of 98.4%. The accuracy, robustness
and generalization of the developed algorithms are still the main issues of these studies, especially
when dealing with more classes of faults and the inspection of large-scale PV plants. Therefore,
the autonomous procedure and classification task must still be explored to enhance the performance
and applicability of the aIRT method.

Keywords: aerial infrared thermography (aIRT); PV power plant; PV monitoring; deep learning;
automatic fault detection; PV reliability

1. Introduction

As the world experiences a continuously growing share of photovoltaics (PVs) in
the energy mix, increasing the performance and reliability of PV installations is of utmost
importance. In this context, infrared thermography (IRT) has become a well-established and
competitive fault detection method for the condition monitoring and maintenance of PV
systems [1]. It provides reliability and accuracy in the detection of typical PV module faults
such as bypassed or disconnected substrings, microcracks, soldering problems, shunted
cells and disconnected modules. Another feature of this technique is the possible large-scale
applicability, through the combination of IRT cameras with an unmanned aerial vehicle
(UAV), configured for aerial infrared thermography (aIRT) [1,2].

The first description of the potential of using aIRT in the literature was given in 2012 by
Denio [3]. This was followed by the publication of the results of an experimental setup that
inspected 60 different PV plants of up to 1 MWp, based on a remote-controlled drone [4].
Since then, several publications have demonstrated the technique’s capability to detect
failures in photovoltaic systems quickly and efficiently from the commissioning phase of
the power plant through its expected 25 years of operation [5–9].

To further improve the time and cost efficiency of the method, the automation of
the entire procedure of the aIRT technique has been assessed in recent years by several
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research groups worldwide. However, this is a complex task, since it includes not only the
automation of the inspection itself (flight path planning and autonomous flight), but also
the analysis of a large amount of data for the detection of PV modules, detection of faults,
classification and localization of these faults in the field. A significant amount of progress
has been made recently in this area, using either simple digital image processing (DIP)
techniques or more complex algorithms such as deep learning (DL).

This paper aims at reviewing the reported studies in the literature on the automation
of the inspection procedure of PV plants using aIRT.

2. Method of Review

The literature search for conference and journal papers was carried out in the scientific
databases IEEE Xplore and ScienceDirect, and on the web scientific indexing services Web
of Science and Google Scholar. The keywords used included PV systems, inspections and
thermography synonyms. Keywords related to aerial and UAVs were not included to
not limit results and exclude the automatic assessment of ground-based thermographic
images, besides reducing false positives related to the development of UAVs powered
by PV modules. The string used for the search was “(photovoltaic OR PV OR (PV AND
modules)) AND (faults OR detection OR classification) AND (automatic OR (artificial AND
intelligence) OR processing) AND (thermography OR thermal OR infrared)” and initially
returned 183 papers. The papers were filtered to fit the theme and classified according to
application and automation algorithm. Papers that focused on the automatic assessment
of visual images were not excluded since, normally, aIRT-aimed UAVs also have a visual
camera coupled to them, which is also used in the inspection to better classify faults.

The list of papers was expanded using references of the original papers and the
references already known by the authors. When overlapping work was found in multiple
publications (e.g., preprint in a conference and full paper in a journal), only the publication
deemed most important was included.

3. Infrared Thermography (IRT)

Infrared thermography (IRT) is a technique that assesses the radiation emitted by
the surface of any body in the infrared wavelength spectrum between 1.4 and 15 µm.
IRT cameras used in PV inspections normally have the capability of measuring wavelengths
in the mid-infrared wavelength range of 7–14 µm. This is a good compromise between
costs and product availability, according to measuring conditions in the field [10].

In a PV plant, PV modules that are close to each other receive almost the same amount
of irradiance. Some 20% of this irradiance will be converted to electricity; however, most of
the photons which are not converted into electricity will produce heat in the cell. This will
increase the temperature of these damaged cells and modules, and the faults will appear in
the acquired IRT images as temperature differences [11], like a “temperature signature”.

IRT has been shown to be a reliable and non-destructive tool for detection of different
types of faults in PV cells, modules and strings, as they have an effect on the PV module
thermal behavior. Table 1 presents some thermal signatures which have been identified
and classified in previous studies [2,12] and are standardized according to the international
standard IEC TS 62446-3 Edition 1.0 2017-06 [13].
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Table 1. Examples of IRT images of typical faults in PV systems.

IRT Image Description IRT Image Description
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4. Unmanned Aerial Vehicles (UAVs) 
Unmanned aerial vehicles (UAVs) are aircrafts that are capable of remote or autono-

mous operation. They were initially developed for military applications, but due to recent 
developments, they are now available for civil activities and commonly used in applica-
tions such as rescuing and disaster relief, energy power line monitoring and environmen-
tal and forest control [16]. UAVs are becoming more popular especially in the energy and 
agriculture sectors, due to their fast large-area coverage, precise imagery, high flexibility, 
light weight, low cost and ability to operate in hostile environments [17,18]. Several coun-
tries have established legal guidelines for the use of UAVs. The rules can include limita-
tions of flight areas, license requirements and insurance [19]. 

UAVs can carry various cameras and sensors to collect data and can be classified by 
size, range or endurance [20]. The most appropriate UAV equipment type for thermo-
graphic inspections is multicopters, which use rotary blades to generate lift, because of 
their stability and easy usability. They can be classified by the number of motors (tricop-
ters, quadcopters, hexacopters and octocopters), with quadcopters being the most popular 
on the market [19]. They can also be classified by autonomy levels, being manually oper-
ated, semi-autonomous (i.e., need of a human operator for mission planning and for tak-
ing some of the movement decisions) or fully autonomous (i.e., all decisions for a dele-
gated mission are made by the UAV based on sensor observations) [21]. 
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4. Unmanned Aerial Vehicles (UAVs)

Unmanned aerial vehicles (UAVs) are aircrafts that are capable of remote or au-
tonomous operation. They were initially developed for military applications, but due
to recent developments, they are now available for civil activities and commonly used
in applications such as rescuing and disaster relief, energy power line monitoring and
environmental and forest control [16]. UAVs are becoming more popular especially in
the energy and agriculture sectors, due to their fast large-area coverage, precise imagery,
high flexibility, light weight, low cost and ability to operate in hostile environments [17,18].
Several countries have established legal guidelines for the use of UAVs. The rules can
include limitations of flight areas, license requirements and insurance [19].

UAVs can carry various cameras and sensors to collect data and can be classified by
size, range or endurance [20]. The most appropriate UAV equipment type for thermo-
graphic inspections is multicopters, which use rotary blades to generate lift, because of
their stability and easy usability. They can be classified by the number of motors (tricopters,
quadcopters, hexacopters and octocopters), with quadcopters being the most popular on
the market [19]. They can also be classified by autonomy levels, being manually operated,
semi-autonomous (i.e., need of a human operator for mission planning and for taking some
of the movement decisions) or fully autonomous (i.e., all decisions for a delegated mission
are made by the UAV based on sensor observations) [21].
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5. Aerial Infrared Thermography

In the past, IRT inspections of PV systems were performed on the ground or on lifting
platforms with handheld IRT cameras. This procedure cannot provide fast and accurate
coverage of the power plant and is dependent on human labor and competence, besides
being very time-consuming and labor-intensive. As a result, the inspection accuracy is
susceptible to human error. A possible solution to the problem is to combine the IRT sensor
with aerial technologies such as UAVs. This procedure is known as aIRT and increases the
cost effectiveness of IRT inspection, allowing the technique to be employed for large-scale
PV plants or roof-mounted PV systems with limited access [8,22–24].

This method has shown its potential in recent years, but its use can still be expanded
to increase and simplify routine inspections of PV power plants and revolutionize the
future of PV plant monitoring procedures [16]. For this method to achieve its full potential,
however, it should be combined with automation algorithms and technologies, such as
automated route planning and defect identification.

Aerial IRT uses visual and IRT cameras that are mounted on the UAV. The equipment
provides real-time and precise imagery, allowing a time-efficient inspection. The proce-
dure can detect faults of different types, such as cell cracks, corrosion spots, broken cells,
hot spots, snail trails, discoloration, soiling, disconnected modules or strings and potential-
induced degradation (PID) [18,25]. According to the inspection goal and the PV plant
layout, aIRT can be performed from different altitudes and directions to identify specific
defects or faults, also depending on the time available for the inspection [26].

The aIRT process is carried out in three stages: acquisition of imagery, assessment of
data and remediation actions. For the acquisition step, the UAV must fly a designated route
acquiring successive photos or videos over the site to build an imagery database covering
all modules in the system. As the equipment has a limited battery capacity, each flight has
a duration of around 20 min [6].

During the flight, the weather conditions, wind speed and sunlight reflection must
be monitored, as they can affect the measurements and consequently the quality of the
aIRT images. Additionally, the velocity of the UAV and the orientation and angle of the
IRT sensor must be controlled to avoid self-shading, blurred images and other reflections.
aIRT should be performed on cloudless, sunny and clear days, with minimum irradiance
of 600 W/m2 on the plane of the PV array under inspection. The flight path and velocity
should be planned beforehand in order to optimize the coverage and to avoid any drift
during the flight [25–28].

The acquired data are then analyzed, and an action report is produced. With a detailed
site mapping, it is possible to obtain an accurate location of the system faults, and the
remediation can be planned based on full knowledge of the site state. The report is passed to
the stakeholders for remediation actions such as assessment of connections or replacement
of modules or fuses.

6. Aerial Inspection Algorithms
6.1. Digital Image Processing

The field of digital image processing (DIP) has been an object of increasing interest
because it allows many applications such as: remote sensing, component defect detection,
biomedical engineering, geoprocessing, metallography and industrial automation appli-
cations. DIP aims to transform and analyze images by extracting relevant information,
highlighting and identifying patterns and objects [29,30].

A digital image consists of a set of a finite number of elements (i.e., pixel), each one
with a specific location and intensity. DIP techniques apply several operations to these
pixels to transform the images, allowing the automatic interpretation of them by systems
or machines. These operations include image rotation, thresholding, binary image analysis,
brightness and contrast adjustment, filtering, resizing and interpolation [27,29].

The methods of DIP are normally simple but can often solve problems in a more
time- and computing-efficient way than DL techniques. Pixel thresholding or algorithms
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such as the scale-invariant feature transform (SIFT) are normally very general, do not
require a large dataset to be trained and can be replicated in other images. DIP can even
be combined with DL to take the best from both methods to automate image processing
and recognition [31,32].

6.2. Deep Learning (DL)

Artificial neural networks (ANNs) are the most popular technique in machine learning
(ML) and were first developed based on the structure and operation of the human brain.
They are commonly used because they can deal with highly nonlinear systems and allow
constant updates in the model [33]. They are composed of a set of simple, connected
processors called neurons that produce a sequence of activation calculations. The fun-
damental property of an ANN is its ability to learn from the environment (read a set of
examples), through an iterative process of adjustments applied to synaptic weights and
bias levels. Learning a task consists in finding weights that make the ANN exhibit a desired
output when processing an input. Depending on the problem and how the neurons are
connected, this process may require chains of consecutive computational stages, where
each one modifies the aggregate activation of the network. DL is about accurately assigning
credit across many of these stages, using convolutional neural networks (CNNs) [34,35].

CNNs were inspired by the human visual system’s structure and are the state-of-the-
art method for image classification [36–39]. They are easy to train if there is a substantial
number of labeled images that represent distinct categories.

They are layered sequences, and each has a specific function in the propagation of
the input signal. There are three main types of neural layers: (i) convolutional layers,
(ii) pooling layers and (iii) fully connected layers. Figure 1 illustrates the CNN architecture
and its three main layers for a task of object detection in an image:

• Convolutional layers: responsible for extracting attributes from the input volumes.
• Pooling layers: responsible for reducing the spatial dimensions of the input volume

after the convolutional layers, reducing the computational work of the network.
• Fully connected layers: perform the final classification of the images, in the same way

as a conventional neural network.

In the end, the CNN output is the probability that the input image belongs to one of
the classes for which the network was trained [40].

Energies 2022, 15, x FOR PEER REVIEW 5 of 25 
 

 

The methods of DIP are normally simple but can often solve problems in a more time- 
and computing-efficient way than DL techniques. Pixel thresholding or algorithms such 
as the scale-invariant feature transform (SIFT) are normally very general, do not require a 
large dataset to be trained and can be replicated in other images. DIP can even be com-
bined with DL to take the best from both methods to automate image processing and 
recognition [31,32]. 

6.2. Deep Learning (DL) 
Artificial neural networks (ANNs) are the most popular technique in machine learn-

ing (ML) and were first developed based on the structure and operation of the human 
brain. They are commonly used because they can deal with highly nonlinear systems and 
allow constant updates in the model [33]. They are composed of a set of simple, connected 
processors called neurons that produce a sequence of activation calculations. The funda-
mental property of an ANN is its ability to learn from the environment (read a set of ex-
amples), through an iterative process of adjustments applied to synaptic weights and bias 
levels. Learning a task consists in finding weights that make the ANN exhibit a desired 
output when processing an input. Depending on the problem and how the neurons are 
connected, this process may require chains of consecutive computational stages, where 
each one modifies the aggregate activation of the network. DL is about accurately assign-
ing credit across many of these stages, using convolutional neural networks (CNNs) 
[34,35]. 

CNNs were inspired by the human visual system’s structure and are the state-of-the-
art method for image classification [36–39]. They are easy to train if there is a substantial 
number of labeled images that represent distinct categories.  

They are layered sequences, and each has a specific function in the propagation of 
the input signal. There are three main types of neural layers: (i) convolutional layers, (ii) 
pooling layers and (iii) fully connected layers. Figure 1 illustrates the CNN architecture 
and its three main layers for a task of object detection in an image: 
• Convolutional layers: responsible for extracting attributes from the input volumes. 
• Pooling layers: responsible for reducing the spatial dimensions of the input volume 

after the convolutional layers, reducing the computational work of the network. 
• Fully connected layers: perform the final classification of the images, in the same way 

as a conventional neural network. 
In the end, the CNN output is the probability that the input image belongs to one of 

the classes for which the network was trained [40]. 

 
Figure 1. Example architecture of a CNN for an object detection task [36]. 

6.3. Other Machine Learning Techniques 
Other ML techniques are also used in the automation of aIRT inspection, especially 

for classification in combination with other techniques. Among them, support vector ma-
chines (SVMs) are supervised ML algorithms that are usually used for classification and 
regression analysis of data, as they are based on a decision function that divides the classes 
by decision planes. SVMs work relatively well when there is a clear separation between 
classes, and they are more effective in high-dimensional spaces [41,42]. 

Figure 1. Example architecture of a CNN for an object detection task [36].

6.3. Other Machine Learning Techniques

Other ML techniques are also used in the automation of aIRT inspection, especially
for classification in combination with other techniques. Among them, support vector
machines (SVMs) are supervised ML algorithms that are usually used for classification and
regression analysis of data, as they are based on a decision function that divides the classes
by decision planes. SVMs work relatively well when there is a clear separation between
classes, and they are more effective in high-dimensional spaces [41,42].

Another commonly used classifier is the random forest (RF), which is an algorithm
that builds several decision trees on multiple random portions of the data for training.
In these trees, different binary classifications concatenated in a tree structure are performed,
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for different input features, and a combination of the nodes is used to calculate the result.
The most common result among the trees is “elected” as the output of the classifier [43,44].

On the other hand, k-nearest neighbors (KNN) is a classification supervised algorithm
that does not require training, as the samples are classified by a metric of distance, where
the k-nearest points to the test sample are defined as a class [43].

For clustering, the most popular method is k-means clustering, which is an unsu-
pervised ML algorithm. This method consists of dividing data in k clusters that will be
grouped by the mean distance between points [45,46].

6.4. Algorithm Evaluation Metrics

Performance indices quantify the capacity of an algorithm to identify the events of
interest. The accuracy (Ac) of an algorithm is the percentage of correct predictions over
the test dataset. The precision index (Pr) provides the proportion of all segments that were
identified in one class that in fact belong to this class (results of true positives over all
the positives). The recall (Re) measures how well the algorithm can identify each class
among the dataset (results of true positives over all images in a dataset that were originally
labeled as positives). The F1 score is calculated by the harmonic mean of Pr and Re. A good
algorithm should have all of these metrics close to 100% for all the classes [47].

Other less common metrics are also used in the papers covered by this work. The
Matthews correlation coefficient (MCC) is a coefficient related to accuracy, which does
not penalize classes of different sizes [48]. The Dice coefficient and the Jaccard index are
often used for evaluating segmentation tasks. The first represents the overlapping between
the predicted result with the ground truth, and the second measures the similarity of the
predicted result to the ground truth [37,49]. The Jaccard index is also known as Intersection
over Union (IOU). The area under the receiver operating characteristic (AUROC) is an index
obtained by integrating the curve of the true positives of a task over the false positives at
various decision thresholds [50].

In this paper, when available, the preferred metrics are F1 score and precision indices,
in order to provide a comparison between different works, whenever possible.

7. Applications of Automatization Algorithms
7.1. Automatic Path Planning

In an automatic aIRT mission, the UAV flies over a set of waypoints that cover all
modules of the PV plant. Therefore, an optimized path-planning algorithm aiming at an
optimal path for time and battery efficiency is essential [51]. Figure 2 depicts the coverage
area by a UAV based on the field of view (FoV) and resolution of the camera on board as
well as the essential parameters used for path planning [51].

Available market software packages already provide an automatic flight based on a
so-called “lawn mower” flight pattern. However, they do not always provide the most
efficient flight and do not guarantee a centralized view to the PV arrays, especially in power
plants installed over complex topography.

Studies aiming at optimizing path planning include different approaches to the prob-
lem. In the study developed by Salahat et al. [52], the traveling salesman shortest path
algorithm was used to generate a path that includes a randomly selected set of modules that
represent the entire PV plant, allowing an optimization of the battery use. Ding et al. [53]
based their method on density clustering, boustrophedon path planning and Bezier curves.
Luo et al. [54] also based their algorithm for path planning optimization on Bezier curves
in a joint approach with particle swarm optimization (PSO), taking into consideration the
flight attitude, gimbal limitation and path length.

Image stitching and DIP techniques were used by Henry et al. [55] to find contours
of the power plant and generate a “lawn mower” path over it. A similar approach, using
DL, was adopted by Moradi Sizkouhi et al. [51,56], which was also complemented with a
dynamic path planning, which deviates the previous flight plan to take closer photos when
faults are detected. Pérez-González et al. [57] also used DL to detect the area of the PV plant
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and then used different algorithms to determine the best flight path, wherein exact cellular
decomposition boustrophedon and grid-based wavefront coverage algorithms produced
the best results.

Other real-time algorithms have been proposed that calculate the optimized path of
the UAV during the flight. In Roggi et al. [58], the UAV corrected the pre-planned “lawn
mower” path according to the images that it acquired and the image processing techniques
that are applied. A vision-based flight control was also proposed by Xi et al. [59], which
performs a real-time direction and velocity correction.
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7.2. Detection of PV Systems

Although not always related to aerial inspections, the detection of PV systems in aerial
imagery (UAV or satellite imagery) has been proposed by many authors and even used
for path planning before the aIRT flight [56,57]. Table 2 presents a summary of methods
used in the literature for detecting PV systems in aerial imagery. The table presents the
best metrics obtained in each study, the type of image data used as input and the type
of detection output obtained with each method. The detection output was classified into
three categories:

(a) Boxes: the output is given by the coordinates of a box or polygon placed around the
PV system;

(b) Mask: the output is a binary image where the pixels corresponding to the segment of
the PV system are represented by the value 1 and the rest of the image is represented
by 0;

(c) Binary: for each image, the presence or absence of a PV system is the result of the
algorithm (1 or 0).

Figure 3 shows two examples of two types of detections, by the coordinates of boxes
around the detected PV panels (left) and masks of the segment of the PV system (right).
Besides developing an algorithm for the detection of PV arrays, Wu et al. [60] also matched
them to their string identifiers.
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7.3. Detection of PV Modules

The detection of the area of the modules is an important step in the image processing
task, which is required for both detecting modules with defects and locating them in the
power plant.

Table 2. Summary of methods for detecting PV systems using aerial imagery.

[Ref]/Year Algorithm Best Results Output Type Images

[38] 2016 RF and DL Pr: 90% Mask Aerial imagery

[60] 2017
Feature description vector

according to PV modules’ different
colors

- Boxes UAV

[62] 2017 Adaptive clustering method based
on k- means Loss rate is lower than 5% Mask Aerial imagery

[63] 2017 GLCM algorithm Pr: 93.16%
Mask aIRT

F1: 77.8%

[64] 2018 DIP and k-means classifier Pr > 99% Boxes Aerial imagery

[65] 2018 DL (Segnet) Pr: 90% Mask Aerial imagery

[66] 2018 DL (PolyCNN) IoU: 79.5% Mask Google Earth

[67] 2019 DL (Faster R-CNN, based on the
classifier ResNet-50) Pr: 92.9% Boxes Google Earth

[49] 2019 DL (Res-UNet) Ac: 97.11% Mask System IRT images

[68] 2020 DL (Mask R-CNN and VGG16) Ac: 96.99% Mask UAV

[47] 2020 DL (U-net) F1: 82% Mask Google Earth

[69] 2020 DL F1: 92.2% Binary Satellite imagery

[70] 2020 DL
Pr: 92.66%

Mask Google Earth
Re: 97.43%

[71] 2020 DL (CNN for semantic
segmentation) Average error of 5.75% Mask UAV

[72] 2020 k-means, SVM and CNN MCC: 0.17 Mask Identify solar on
rooftops

[61] 2020 DIP (edge detection) and DL
(R-CNN) Pr: 92.25% Mask Panels in aIRT images

[73] 2021 DL algorithms F1: 95.38% Mask Aerial imagery

[74] 2021

DIP (transform invariant low-rank
textures (TILT) algorithm for

orthographic view and Otsu’s
method for segmentation)

- Mask Panels in aIRT images

[75] 2021
Unsupervised segmentation

parameter optimization (USPO)
and RF classifier

F1: 98.7% Mask UAV

[57] 2021 DL server - Mask UAV

[51] 2022 Mask R-CNN structure Ac: 96.99% Mask UAV

The first attempts to automatize the segmentation of the PV modules in IRT images ap-
pear to have been made in 2015, with images obtained with a moving cart, using simple DIP
methods [76]. Other attempts were described in Menéndez et al. [77], Montanez et al. [78]
and Wu et al. [79]. Uma et al. [80] did the same using a k-means clustering algorithm.
In 2021, Xie et al. [81] used a Segnet, a CNN used for segmentation.
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For aerial images, Tribak and Zaz [82], Salamanca et al. [83] and Perez et al. [84]
published results on detecting PV modules in aerial visual images, and many studies used
different techniques to detect and segment PV module boundaries in aIRT data. Table 3
shows the studies related to DIP and DL algorithms. In this case, the detection result of the
algorithm can be given by a box or polygon around the PV module, a mask of the segment
of the module or lines that mark the borders of the modules in a PV panel.

The best metric among the studies was obtained with a combination of many algo-
rithms (DIP, SVM and DL) [85]. On the other hand, the worst metrics were obtained with
simple DIP filters [86]. It is important to note that not all studies are comparable, be-
cause not all have presented metrics for their performance, and they have different dataset
sizes, which make the comparison difficult. The studies described by Carletti et al. [87]
and Bommes et al. [88], besides detecting the PV module, also developed ways to track
the modules in subsequent frames of a video. A tracking system was also developed by
Xie et al. [89] using an AlexNet CNN.

Table 3. Summary of methods for detecting PV modules in aIRT using DIP and DL algorithms.

[Ref]/Year Algorithm Best Results Output Type

[48] 2016 DIP (normalization and
thresholding) F1: 92.76% Boxes

[90] 2017 DIP (edge extraction by
Hough transform) - Boxes

[91] 2017 DIP (thresholding) Pr: 96.9% Mask

[92] 2017 RANSAC (random sample
consensus) algorithm - Boxes

[93] 2017 DIP (not detailed) Pr: 82% Boxes

[94] 2017 DIP (thresholding in HSV
color space) - Mask

[95] 2018 DIP (template matching
algorithm) F1: 83.0% Boxes

[87] 2020 DIP (canny edge and
morphological filters) F1: 87% Boxes

[86] 2020 DIP (ACM LS and filtering by
area, Hough transform) Re: 70% Boxes

[96] 2020
DIP (thresholding in HSV

color space and MSER
algorithm)

Ac: 98% Boxes

[97] 2020 DL (YOLOv3) F1: 95% Boxes

[85] 2020 DIP + support vector machine
(SVM) and DL (Mask R-CNN) F1: 98.9% Boxes

[98] 2020 DIP (Hough line detection,
Sobel operator) - Lines

[99] 2020 DIP (Sobel and canny
operator, HoughPLine) Pr: 90.91% Lines

[100] 2020
DIP (LSD algorithm and

k-means clustering)
Pr: 77.3%

MaskF1: 86.3%

[101] 2020 DIP (k-means clustering and
thresholding) Ac: 98.46% Mask

[88] 2021 DL (Mask R-CNN)
Pr: 90.01%

MaskF1: 90.51%

[102] 2022

DIP (geometry coercion,
clustering and

angularity-based segment
filtering)

- Mask

7.4. Orthomosaicking

The localization of faults within a power plant is a challenging issue that can be
addressed by creating an orthomosaic of the PV power plant [103]. Image mosaick-
ing, also known as image stitching, is a computational technique that detects over-
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lapping key points in spatially subsequent photos and uses them to create a so-called
panorama picture [94].

To improve the sight perspective and enable an expanded view of the localiza-
tion of faults in both visual and thermal images of PV power plants, some researchers
used commercially available software packages to create orthomaps with aerial imagery.
Lee and Park [104] and Zefri et al. [105] used the software Pix4D capture to process
thermal and visual images and create orthographic images with temperature informa-
tion. Oliveira et al. [103] compared the use of two software packages (DroneDeploy and
ContextCapture) to create an orthomosaic of a 1 MW PV power plant. Higuchi and
Babasaki [106] used the software OpenDroneMap to generate the orthographic image of a
2 MW PV power plant.

Grimaccia et al. [94], Aghaei et al. [27] and Ismail et al. [107] have proposed meth-
ods for the orthomosaicking of visual images of PV power plants using DIP techniques.
Tsanakas et al. [108] used the method of aerial triangulation, and Lafkih and Zaz [109] and
Zefri [102,110] used the SIFT technique to perform the task. To optimize the mosaicking of
visual PV images, Qi et al. [111] used a Faster R-CNN to detect key points in aerial sequence
images in the world coordinate system, so it avoids redundant information generated by
traditional methods. López-Fernández et al. [92] developed a tool that creates a 5D point
cloud of the power plant, where each coordinate point has a temperature and an intensity
value associated with it. After segmenting the modules in a dataset, Costa et al. [73] used
a sliding window algorithm with overlapping pixels, combining frames side by side to
reconstruct orthomosaics of power plants.

7.5. Soiling

A common cause of hot spots in PV power plants is soiling and shadow over the
modules, which hinders the evaluation of results since they are not considered real defects
of the PV modules [6]. Cipriani et al. [112] approached this issue by using a CNN to
differentiate hot spots caused by faults from soiling, obtaining an accuracy of up to 98%.

Another solution to the problem is the analysis of the visual images that are normally
taken together with the IRT images in the UAV, which enables the operator to discard hot
spots caused by soiling. Automation of the task of detecting soiling in individual modules
was proposed by Yang et al. [113], Pivem et al. [114] and Qasem et al. [115] using DIP
techniques. Similar techniques were employed by Wen et al. [116], and by Karaköse and
Firildak [117] to detect shadows over PV systems. Hanafy et al. [43] compared different
ML algorithms (KNN, NN, RF and SVM) to classify modules in different categories of
cleanliness and obtained an accuracy of over 90% using an SVM algorithm. Mehta et al. [37]
proposed a method that uses a weakly supervised CNN-based classification network to
predict power loss, detect soiling and categorize it given a PV module image. This method
obtained an accuracy of about 87% on a test dataset of about 50 images.

7.6. Detection and Classification of Faults

The manual assessment of aIRT imagery is a time- and computing-consuming task;
therefore, its automation is the most explored part of the aIRT framework in the literature.
This detection can either be processed on board, during the UAV flight, as shown in
the example in Figure 4, or in a computer software, after the acquisition of images has
been carried out by the UAV (Figure 5). Both Figures 4 and 5 show the procedure of the
inspections for the two different approaches, including all tasks being automatized in
each case.
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Figure 5. Overview of the on-board software package RoboPV, developed to perform the autonomous
aerial monitoring of large-scale PV plants using UAVs [51].

In 2002, Pilla et al. [118] used the Sobel and canny edge operators to detect cracks
in IRT PV cell images. In 2003, Wang et al. [119] used thresholding and a fuzzy classifier
to detect faults in IRT images. After that, in 2011, Vergura and Falcone [120] used DIP
techniques to analyze IRT images for faults. Since then, many other studies have used
mostly DIP techniques to segment faults in IRT images. Table 4 presents a summary of
the main algorithms for the detection and classification of faults in IRT images. In this
case, the results can be in the form of a segmentation of the faults (mask), the detection
of modules with faults and the classification of these faults in categories. Some methods
presented high metrics when used in association with a classification algorithm, such as
an SVM [121]. Many papers do not present a metric for the performance evaluation of the
algorithms proposed, especially for the case of fault segmentation (masks). It is important
to note that a comparison between metrics is not always possible, because the dataset size
and number of classes differ among studies.
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Table 4. Summary of methods for detecting and classifying faults in IRT images of PV modules.

[Ref]/Year Algorithm Best Results Output Type

[76] 2015 DIP filters Pr: 97.40% Detection of modules with faults

[122] 2015 Histogram analysis, thresholding and
canny edge - Fault mask

[123] 2016 DIP and ANN Ac: 80% Fault mask

[124] 2016 Filter by temperature values - Detection of hot spots, cracks and
soldering issues

[125] 2016
k-means color quantization and

density-based spatial clustering of
application with noise (DBSCAN)

- Fault mask

[126] 2017 DIP (thresholding and clustering) - Detection of modules with faults

[127] 2017 DIP and fuzzy rule on temperature data - Classification into 6 anomaly types

[77] 2018 Filtering by temperature values Pr: 96.52% Detection of modules with hot spots

[128] 2019 Thresholding in HSV color space Ac: 100% (only 3 images) Detection of modules with faults

[129,130] 2019 n-Bayes classifier Ac: 94.1% Classification into healthy, shaded and
defective modules

[80] 2019 DIP filters - Detection of delamination, snail trails
and bubbled faults

[131] 2019 ANN and discrete wavelet transform Ac: 100%
Combination of IRT with electrical
data—classification into 5 anomaly

types

[132] 2019 Fuzzy inference system (FIS) using
Mamdani-type fuzzy controller Ac: 96.7%

Combination of IRT with electrical
data—detection and classification of

hot spots

[133] 2020 GoogleNet vs. LeNet-5 and VGG-16 Ac: 97.9% Classification into 6 cell anomaly types

[134] 2020 DL and transfer learning Ac: 99.23% Detection of modules with faults

[121] 2020 DIP and SVM Ac: 97% Detection of modules with faults

[78] 2020 Histogram analysis of segmented
module - Detection of modules with faults

[135] 2020 Fuzzy classifier based on temperatures
of the module Ac: 94% Detection of EVA discoloration and

delamination faults

[136] 2021 Multilevel Otsu thresholding Ac: 91.81% Fault mask

[137] 2021 DL and SVM Ac: 86% Classification into 12 anomaly types

[138] 2021 DIP (adaptative histogram
equalization), DL and SVM Ac: 92.96% Detection of modules with faults

[139] 2021 DIP filters and SVM classifier Ac: 94.4% Classification into 10 anomaly types

Table 5 shows the summary of studies of the detection and classification of faults
in visual images. The faults detected in this case are mostly related to visible problems,
such as delamination, burn marks and glass breakages. An important issue that makes the
comparison between studies difficult is the difference between the data resolution used as
input for each one of them, as images vary from PV cells [140] to aerial images [141].
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Table 5. Summary of methods for detecting and classifying faults in visual images of PV modules.

[Ref]/Year Algorithm Best Results Detection Type

[142] 2014 Color segmentation based on
k-means clustering - Detection of cracks, interconnect problems

and discolored areas

[140] 2018 Luminance filters - Cell fault detection

[143] 2018 DL Ac: 98.9625% Classification into 8 anomaly types of faults
in aerial images

[144] 2020 Different CNNs Ac: 93.3% Detection of faults

[71] 2020 CNN for semantic
segmentation Ac: 75% Detection of glass breakages, shadows

and dust

[145–147] 2020 DL and SVM Ac: 99.8% Classification into 6 anomaly types of faults

[148] 2020 Kirsch edge detection - Detection of glass breakages

[149] 2020 Yolo and MobileNet-SSD
network Pr: 89.2% Classification into 3 anomaly types of size of

hot spot (not carried out in real PV system)

[150] 2021 DL Ac: 95.07% Detection of burn marks, delamination,
discoloration, glass breakages and snail trails

[151] 2021 k-means, SVM and CNN MCC: 1.0 Detection of damaged modules on rooftops

[141] 2021
Naïve Bayes, SVM, k-nearest

neighbors, decision tree,
RF and pretrained DL models

Ac: 100% Detection of burn marks, delamination,
discoloration, glass breakages and snail trails

[152] 2021 DL Ac: 93% Masks of bird droppings

Tables 6 and 7 present a summary of the methods for detecting and classifying faults
in aIRT images of PV systems, using DIP and DL algorithms, respectively. In general,
the algorithms with the highest results are the ones dedicated to the detection of faults or
the classification of a few types of faults, with the classification of many classes of faults
being a much more complex task. It is noticeable that the DIP algorithms have comparable
results to DL techniques, even though most of them use smaller datasets, and therefore
their generalization capabilities can be jeopardized.

Some of the challenges for the development of a robust automatic classification of
faults include the reflections and shadows from surroundings and the lack of a standardized
image database (with standard flight directions and weather conditions). When using DL,
the computation requirements, the need for a large dataset with annotated data and the
processing time must also be overcome.

Table 6. Summary of methods for detecting PV modules in aIRT using DIP and classification algorithms.

[Ref]/Year Algorithm Best Results Detection Type

[16] 2015 Thresholding and
temperature filtering - Detection of faults

[153] 2015 DIP filters F1: 99.4% Detection of faults

[154] 2015 Canny edge and thresholding Fault mask

[48] 2016 Statistical classification of faults F1: 93.88% Classification into 3 classes of faults

[155] 2016 DIP and k-means clustering - Detection of faults

[156] 2016 Histogram filtering - Detection of hot spots

[157] 2017 Thresholding module segment - Detection of faults

[94] 2017 Thresholding by module
luminance distribution - Classification into 3 classes of faults
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Table 6. Cont.

[Ref]/Year Algorithm Best Results Detection Type

[91,158] 2017 Mean and std of luminance of
area of module Ac: 97% Detection of faults

[90] 2017 DIP filters - Fault mask

[92] 2017 Temperature segmentation Ac: 100% Fault mask

[159] 2017 Non-uniform illumination (NUI)
boundary detection -

Hot spot detection and analysis of
visual images for soiling or

shadowing in laboratory setup

[160] 2018 Thresholding, pixel seed and
canny edge - Fault mask

[95] 2018
Normalized cross-correlation as a

similarity measure for
template matching

F1: 75% Detection of faults

[79] 2018 DIP filters - Fault mask

[161] 2019 Thresholding - Fault mask

[162] 2019 Gaussian filter and Hough line - Detection of hot spots

[163] 2019 Hog features and cascade
object detector - Detection of hot spots

[164] 2020 Thresholding - Fault masks

[99] 2020 Statistics of the luminance Pr: 92.71% Classification into 3 classes of faults

[165] 2020

DIP for feature
extraction + different algorithms
for classification (SVM, n-Bayes,

KNN, etc.)

Ac: 92% Detection of faults

[45] 2020 k-means clustering - Fault mask

[96] 2020 Temperature-based thresholding Ac: 97% Detection of faults

[101] 2020 Temperature-based thresholding Pr: 97.6% Classification of size and severity of
faults

[87] 2020 Water filling and temporal
tracking algorithms F1: 72% Detection of hot spots

[166] 2021 Statistical analysis of temperature
of modules Ac: 96% Classification into 6 classes of faults

[74] 2021 Robust PCA decomposition
and thresholding F1: 78.23% Fault mask

[167] 2021 Filtering and probability
density functions - Fault detection using both visual

and aIRT images

Table 7. Summary of methods for detecting PV modules in aIRT using DL and classification algorithms.

[Ref]/Year Algorithm Best Results Detection Type

[168] 2018 U-Net, LinkNet, FPN and
Mask R-CNN

Dice: 0.841
Fault mask

IOU: 0.741

[169] 2019
Hough line transformation,

canny operator and
Faster R-CNN

F1: 95.15% Detection of reflections and hot spots

[106] 2018 VGG Pr: 49.11% Detection of substring, module and
string failures

[32] 2019 DIP and DL - Fault mask
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Table 7. Cont.

[Ref]/Year Algorithm Best Results Detection Type

[98] 2020 DL Pr: 95% Detection of hot spots

[170] 2020 RF, SVM, VGG-16 and
MobileNet Ac: 91.2%

Classification into disconnected
substring, patchwork, hot spot, soiling

and string problems

[61] 2020 R-CNN Pr: 91% Detection of hot spots

[171] 2021 Thresholding, CNN and
multi-layer perceptron Ac: 100% Detection of hot spots

[50] 2021 DL (ResNet-34) and k-nearest
neighbors classifier AUROC from 73.3% to 96.6% Fault masks

[172] 2021 DL using a Nadam optimizer Ac: 66.43% Classification into 11 anomaly types

[88] 2021 ResNet-50 with ImageNet Ac: 90%. Classification into 10 anomaly types

[173] 2021 ICNM and transfer learning Ac: 97.62%
Detection of bird drops, hot spots,

patchwork, disconnected strings and
disconnected substrings

[174] 2021

DIP and XGBoosz (algorithm
for statistical characteristics of

temperatures) as input
preparation for a CNN

Ac: 93.8% Classification into hot spots, PID and
disconnected modules

[175] 2021 YOLOv3 Ac: 75% Classification into 5 fault classes using
composites (aIRT and visual images)

[102] 2022 DL F1: 94.52% Classification into 5 fault classes
using composites

7.7. Other Applications

Imaging techniques have been employed in some other applications to facilitate the
analysis of PV modules. An example is the detection of blurred images that was addressed
by Tribak and Zaz [176] with image processing techniques in order to filter frames of videos
before employing mosaicking techniques. Similar techniques were used by Shen et al. [177]
to correct the angle distortion of IRT images.

8. Discussion

This review has shown that different automatization algorithms, including DIP, DL and
classification techniques, have been employed for automating different tasks of the aIRT
procedure for inspecting PV power plants. Among the conclusions, this review showed
that only a few among the selected studies have assessed two important aspects of the
autonomous inspection procedure, namely, the optimization of the flight path (nine papers),
and the detection of soiling (eight papers). These two topics are of great importance to
increase time efficiency in aIRT and therefore should be further investigated. The latter goal
of detecting soiling over PV modules and differentiating it from actual faults of the modules
was investigated by some authors, e.g., Dunderdale et al. [170] and Arosh et al. [159],
together with the detection and classification of other faults.

For the task of performing the orthomosaicking of aIRT images to facilitate the lo-
calization of the faults in the field, four papers employed existing software to perform
the task, while ten studies approached the development of algorithms to create the or-
thomosaic of the PV plant. However, most of the proposed methods are based on DIP
techniques; therefore, the resulting mosaic consists of a simple image, without additional
GPS information. The correlation of orthomosaic images with GPS coordinates and the
identification of modules and strings according to the site nomenclature are areas that
require further investigation.
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Another approach to the challenge was developed by Wu et al. [60], with the develop-
ment of an algorithm that detects PV arrays in power plants and performs the automatic
correlation with their string identifiers. This is a promising strategy that could also be used
to facilitate the localization of detected faults in the field through aIRT. Besides the study
carried out by Wu et al. [60], another 20 studies among the selected literature focused on
the development of algorithms to detect PV systems and panels in aerial imagery. However,
only three of these studies focused on aerial IRT images of the PV plants, obtaining up to
93.16% precision in the results [63]. On the one hand, 18 papers presented the results of
developed algorithms for the detection of individual PV modules in aIRT images, of which
three of them applied DL techniques. Although the methods are hardly comparable given
their different structures for results (i.e., mask, box or line), their different dataset sizes
and the different evaluation metrics used, a method that combined many algorithms (DIP,
SVM and DL) for detecting PV modules in aIRT images and obtained an F1 score of 98.4%
can be highlighted [85]. On the other hand, the worst metrics were obtained with simple
DIP filters [86], which although providing fast results with small datasets required for
training, are characterized by a lack in generalization. This is important for the replication
of the algorithm in images acquired in different conditions and with a different quality.
The algorithms proposed by Carletti et al. [87], Xie et al. [89] and Bommes et al. [88] also
performed the tracking of the modules in subsequent frames of an aIRT video. This task is
of utter importance for the cross-correlation of detected modules and faults, as well as their
location in PV plants.

Most of the selected studies have assessed autonomous fault detection and classifica-
tion in PV plants through visual (12 papers), IRT (22 papers) and aIRT images (43 papers).
Among these studies, 35% used DL techniques for the detection or classification of PV faults,
with an increase in developed algorithms using CNNs in recent years. Still, DIP-based algo-
rithms also presented high accuracy results, even though most of them use smaller datasets,
and therefore their replication in other sets of data is possibly not feasible. The combination
of DL or DIP techniques with classifier algorithms was a promising approach in recent
studies. In the field, fault detection can either be processed on board, during the UAV flight,
or subsequently through a post-processing procedure after the flight. For the first case,
the high computational requirements and the processing time of DL are still a challenge,
as even in high-performing computers, the processing of a set of images of a large-scale
PV power plant (that consists of some gigabytes of data) can take hours when using a DL
algorithm. In the same way as in the detection of PV systems and modules, many types of
outputs for the algorithms are possible, namely the segmentation of the faults, the detection
of damaged modules or even the classification of faults in separate classes. The classes
also differ among authors, and these differences represent a great challenge not only for
the comparison between studies, but also for the exchange of data, experiences and al-
gorithms among researchers in PV community, which hinders the advancements in this
area. The exchange of data to enable the development of larger and more generalized
datasets that consider different environmental conditions is also deaccelerated by data
protection clauses.

Besides the different result types, the different evaluation metrics (or the lack of
them), dataset sizes and image resolutions of the inputs also make the comparison between
studies difficult. However, in general, the algorithms with the highest metrics are the ones
dedicated to detecting and classifying a few types of faults compared to those that carry
out the classification of many classes of faults. This proves that detection and classification
of multiple faults is a complex task and further investigation is required. On this subject,
the algorithm developed by Bommes et al. [88] can be highlighted for its encouraging
results, with an accuracy of 90% in the detection and classification of faults in ten different
anomaly types. In summary, to achieve the goal of an entirely autonomous aIRT procedure,
advances in some of the tasks related to the technique must be achieved. Even tasks that
were already the focus of many research studies, such as the detection and classification of
faults, should be further explored to contemplate different types of datasets and conditions.
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The exchange of data and academic collaborations are fundamental to allow for a fully
automatic procedure that not only detects modules and faults on PV modules but also
provides information about the type and location of the faults, in a simple and accessible
manner, to enable quick remediation measures.

9. Conclusions

This paper has conducted a comprehensive review of the literature for methods of
automating different tasks of the aIRT framework of PV power plants, since it is a subject
that has been intensely investigated by researchers in recent years. Most of these studies
(77 studies) focused on the autonomous fault detection and classification of PV plants in
visual, IRT and aIRT images. Among these studies, the use of DL algorithms has provided
good results with an accuracy of up to 90% in the detection and classification of faults in
10 different anomaly types detected in module segments extracted from aIRT images. On the
other hand, only a few studies have explored the automation of other parts of the procedure
of aIRT, such as the optimization of the path planning (nine papers) for the inspection
flight, the orthomosaicking of the PV plant (14 studies) that is performed to facilitate the
localization of the faults in the field and the detection of soiling, and its differentiation from
actual faults on PV modules (eight studies). Algorithms for the detection and segmentation
of PV modules were presented in 38 papers and achieved a maximum F1 score of 98.4%.

For the automation of these procedures, different algorithms have been investigated,
including DIP filters and methods such as canny edge detection and thresholding; DL algo-
rithms such as Fast R-CNN, ImageNET and VGG16; and other ML-based algorithms used
for classification tasks such as SVMs, KNNs and RFs. However, the accuracy, robustness
and generalization of the developed algorithms are still the main challenges of these studies,
especially when dealing with more classes of faults and the inspection of large-scale PV
plants. With the ever-increasing capacity and size of utility-scale PV power plants, reaching
the scales of gigawatts and hundreds of hectares, automation is increasingly becoming a
matter not only of scientific interest, but also of economic importance. Therefore, the au-
tonomous procedure and classification task must still be explored to enhance the accuracy
and applicability of the aIRT method.
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