Automatic Instrumentation of Embedded Software for High Level

Hardware/Software Co-Simulation

Aimen Bouchhima, Patrice Gerin and Frédéric Pétrot

System-Level Synthesis Group
TIMA Laboratory
46, Av Félix Viallet, 38031 Grenoble, France

january 21st 2009

Patrice Gerin (TIMA Laboratory) ASP-DAC'09

Jjanuary 21st 2009

1

/ 26

Introduction
Multi-Processors System-On-Chip

Software-centric architectures

@ Exploit parallelism at application task level

@ Benefit from software flexibility SW | HW

Multiple Processors per SW node —

@ Achieve easily usable computational power
HW \ HW

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009

Introduction
Multi-Processors System-On-Chip

Software-centric architectures

@ Exploit parallelism at application task level

@ Benefit from software flexibility

d

o]

Multiple Processors per SW node —
|_Inter-Communication |}

@ Achieve easily usable computational power
HW \ HW

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009

Introduction
Multi-Processors System-On-Chip

Software-centric architectures

@ Exploit parallelism at application task level

@ Benefit from software flexibility

d

(o]

Multiple Processors per SW node —
|_Inter-Communication |}

@ Achieve easily usable computational power
] ow]

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009

Introduction
Multi-Processors System-On-Chip

Software-centric architectures

@ Exploit parallelism at application task level

@ Benefit from software flexibility SW SW
Multiple Processors per SW node —
|_Inter-Communication _|]
@ Achieve easily usable computational power
HW \ Sw

CPUO || CPU1 || |1c
$I 1 $D [|_SL I $D |

Intra-Communication

MEM || CPU2 " DMA
$I T$D

HW

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 2/26

Introduction
Multi-Processors System-On-Chip

The Trends

Software-centric architectures

@ Exploit parallelism at application task level

@ Benefit from software flexibility

Multiple Processors per SW node

@ Achieve easily usable computational power
v

Overriding challenges

@ Validation and debug

@ System level architecture exploration:

SW deployment, communication
implementation

HW\ SwW

sSw H sSw l
|_Inter-Communication]|

CPUO || CPU1 || |1c
$I 1 $D [|_SI T $D |

Intra-Communication

MEM || CPU2 " DMA
$I T$D

HW

Patrice Gerin (TIMA Laboratory)

ASP-DAC'09

Jjanuary 21st 2009

Introduction

Multi-Processors System-On-Chip

The Trends

Software-centric architectures

@ Exploit parallelism at application task level

@ Benefit from software flexibility SW SW

Multiple Processors per SW node —
|_Inter-Communication |}

@ Achieve easily usable computational power
/ HW \ Sw
Overriding challenges

@ Validation and debug

CPUO || CPU1
@ System level architecture exploration: ITC

SW deployment, communication Intra-Communication HW
implementation
/| MEM glpl'-;f) " DMA

Focus of this work: Software Node

@ Hardware: The processor subsystem

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009

Introduction

Multi-Processors System-On-Chip

The Trends

Software-centric architectures

@ Exploit parallelism at application task level

o Benefit from software flexibility High Level Application |

Multiple Processors per SW node HDS APl

@ Achieve easily usable computational power Operating | Com | C/Math
/ System

@ Validation and debug

CPUO || CPU1
@ System level architecture exploration: ITC

SW deployment, communication Intra-Communication HW
implementation
/| MEM glpl'-;f) " DMA

Focus of this work: Software Node

@ Hardware: The processor subsystem

@ Software: The layered software stack

Patrice Gerin (TIMA Laboratory) ASP-DAC'09

january 21st 2009 2/26

Introduction
MPSOC Abstraction levels

Classical approaches

Cycle Accurate co-simulation environment

@ Cross compiled embedded software

@ Interpreted and executed by ISSs High Level Application |

@ Accurate but slow HDS API

TLM based co-simulation environment Operating | Com | C/Math
o Abstraction of the hardware in TLM System

@ Software still interpreted by ISSs _
CPUO || CPU1 || |1c
$1 [$D [|_$I [$D ||

Intra-Communication HW

MEM || CPU2 " DMA
$I T$D

Patrice Gerin (TIMA Laboratory) ASP-DAC'09

january 21st 2009 3/26

Introduction
MPSOC Abstraction levels

Classical approaches
Cycle Accurate co-simulation environment

@ Cross compiled embedded software

@ Interpreted and executed by ISSs L High Level Application J

@ Accurate but slow = Natively executed
by the host machine th

—y -

TLM based co-simulation environment
@ Abstraction of the hardware in TLM
o Software still interpreted by ISSs

oo nwo

v

. 2 - CPUO || CPU1
Native HW/SW co-simulation approaches ITC
@ Software is executed: Intra-Communication HW
© By the host machine: CPU2
i.e. the processor running the simulation MEM 3T $Du DMA

Patrice Gerin (TIMA Laboratory)

ASP-DAC'09

january 21st 2009 3/26

Introduction
MPSOC Abstraction levels

Classical approaches

Cycle Accurate co-simulation environment

@ Cross compiled embedded software

@ Interpreted and executed by ISSs L= High Level Application J
o Accurate but slow = Natively executed -
TLM based co-simulation environment by the host machine th

@ Abstraction of the hardware in TLM D S S

o Software still interpreted by ISSs

v

Hardware Dependent

Native HW/SW co-simulation approaches Simulation Model :

@ Software is executed: - HAL layer
© By the host machine: - Processor Subsystem
i.e. the processor running the simulation
@ On a simulation model of the hardware
dependant part

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009

Introduction
MPSOC Abstraction levels

Classical approaches

Cycle Accurate co-simulation environment

@ Cross compiled embedded software

@ Interpreted and executed by ISSs L= High Level Application J
o Accurate but slow = Natively executed -
TLM based co-simulation environment by the host machine th

@ Abstraction of the hardware in TLM D S S

o Software still interpreted by ISSs

v

Hardware Dependent

Native HW/SW co-simulation approaches Simulation Model :

@ Software is executed: - HAL layer
© By the host machine: - Processor Subsystem
i.e. the processor running the simulation
@ On a simulation model of the hardware
dependant part

o Considerable speedup

@ Functional validation of the whole system

v

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009

Introduction
Problem definition
Few or no timing information

@ Software executes atomically in zero time

@ Allows only functional validation
@ Annotations must be introduced in software code to enable time modeling
v

Performance of software depends on two orthogonal factors

@ The software itself depends on
e Sequence and type of executed instructions
o The executed control flow graph

@ The underlying hardware depends on

o Caches, access latencies,
e Other processors, ...

@ In this work we focus on the software source of dependency.

@ The hardware aspects have been addressed in previous works [1,2]

[1] P. Gerin et al., “Flexible and executable HW/SW interface modeling for MPSOC design using SystemC”, ASPDAC'07
[2] P. Gerin et al., “Efficient Implementation of Native Software Simulation for MPSoC", DATE'08

Jjanuary 21st 2009

Patrice Gerin (TIMA Laboratory) ASP-DAC'09

Introduction

jectives & Contributions

Objectives: Bring native execution closer to target execution

@ Provide information of the executed target instructions in native execution
@ That reflects closely:

o The execution flow on the target processor

o The performance of the instruction execution on the target processor
v

Contributions: A compiler based annotation technique

@ Specific to native simulation approaches

e Fully automated and accurate

N

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009

Basic Concents
Outline

© Introduction

© Basic Concepts

e Proposed Approach
© Experimentations

© Conclusions and Perspectives

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009

Basic Concents

Outline

© Basic Concepts

Patrice Gerin (TIMA Laboratory) Jjanuary 21st

Basic Concepts
Basic Concepts And Challenges

Execution time approach

@ Follow the execution control flow
of the target program

@ Annotate at basic block level

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009

Basic Concepts
Basic Concepts And Challenges

Execution time approach

@ Follow the execution control flow x = (y!'=0) ? 23 : 1234567; @
of the target program

@ Annotate at basic block level

Basic concepts

@ A software source code

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009

Basic Concepts
Basic Concepts And Challenges
Execution time approach

@ Follow the execution control flow x = (y!'=0) ? 23 : 1234567; @
of the target program
ARM

cmp r3, #0
beq .L2

Basic concepts mov 2, #23

str r2, [fp, #-16]
@ A software source code b .L4

@ The target object CFG (ARM) mov 3, #1228800
add r3, r3, #5760
add r3, r3, #7
str r3, [fp, #-16]

@ Annotate at basic block level

2]

Patrice Gerin (TIMA Laboratory) ASP-DAC'09

Jjanuary 21st 2009

Basic Concepts
Basic Concepts And Challenges

Execution time approach

@ Follow the execution control flow x = (y!'=0) ? 23 : 1234567; @
of the target program ARM 86
. X
@ Annotate at basic block level
cmp r3, #0
beq .L2
testl %eax, %eax
str r2, [fp, #-16] [7
@ A software source code b .14
i mov r3, #1228800 movl §$23, x
@ The target object CFG (ARM) e 14
© The host object CFG (x86) e e
Not relevant for estimation, = ¥ L siasaser
x86 # ARM mer =
(2] (3]

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009

Basic Concepts
Basic Concepts And Challenges

Execution time approach

@ Follow the execution control flow x = (y!'=0) ? 23 : 1234567; @
of the target program ARM 86
. X
@ Annotate at basic block level
cmp r3, #0 movl $1, (%esp)
beq .12 call annotate
testl %eax, %eax
Basic concepts mov 2, #23 je .12
str £2, [fp, #-16] movl $2* (%esp)
@ A software source code b .14 ol omrotees
i mov r3, #1228800 movl $23, x
@ The target object CFG (ARM) e o .14
© The host object CFG (x86) e e movl $3, (%esp)
Not relevant for estimation, ¥ cali :‘11;;::‘;:
x86 # ARM ooV . x|
o Annotation function call inserted 2] o

in each basic blocks

e Function argument identifies a
corresponding basic block in the
target CFG

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009

Basic Concepts
Basic Concepts And Challenges

Execution time approach

o Follow the execution control flow
of the target program

@ Annotate at basic block level

x = (y!=0) ? 23 : 1234567; o

Basic concepts

@ A software source code
@ The target object CFG (ARM)

© The host object CFG (x86)
Not relevant for estimation,
x86 # ARM

o Annotation function call inserted

in each basic blocks
e Function argument identifies a

corresponding basic block in the

target CFG

@ Assumes a one-to-one mapping
between the two CFGs:
generally not the case

ARM

x86

cmp r3, #0
beq .L2

movl $1, (%esp)
call annotate
testl %eax, %eax

mov r2, #23
str r2, [fp, #-16]
b .14

je .L2

movl $2, (%esp)

call annotate

mov r3, #1228800
add r3, r3, #5760
add r3, r3, #7
str r3, [fp, #-16]

movl $23, x
jmp .L4

movl $3, (%esp)
call annotate

2]

movl $1234567, x

ARM
(Optimized)

mov r2, #1228800
add r2, r2, #5760
cmp r3, #0

addeq r2, r2, #7 o
movne r2, #23
str r2, [sp, #4]

v

Patrice Gerin (TIMA Laboratory)

ASP-DAC'09

Jjanuary 21st 2009

Proposed Approach

Outline

e Proposed Approach

Patrice Gerin (TIMA Laboratory) Jjanuary 21st

Proposed Approach
A compiler based cross annotation

Main idea: Use the compiler
intermediate representation IR
@ Host independent (before the host
processor back-end)
@ Independent from the high level
language (C,C++,etc)
© The IR already contains the CFG
related informations

v

Cross IR concept

o Extend the IR troughout the
back-end

o Keep track of processor specific
CFG transformations

A

target
back-end

source
(C/C++,..))

compiler
front-end

IR
(Intermediate
Representation)

native
back-end

native
object

Patrice Gerin (TIMA Laboratory)

ASP-DAC'09

Jjanuary 21st 2009 10 / 26

Proposed Approach

A compiler based cross annotation

Main idea: Use the compiler
intermediate representation IR

source
@ Host independent (before the host (CIC++, ...)
processor back-end)

compiler
front-end

@ Independent from the high level
language (C,C++,etc)
© The IR already contains the CFG R

related informations) vf R‘;’;ﬁig’:ﬁiﬁ?@i)_\'
Cross IR concept target €& cross native
o= ICr Joetive

o Extend the IR troughout the

back-end target native
object object

o Keep track of processor specific
CFG transformations

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 10 / 26

Proposed Approach

A compiler based cross annotation

Main idea: Use the compiler
intermediate representation IR

source
@ Host independent (before the host (CIC++, ...)
processor back-end)

compiler
front-end

@ Independent from the high level
language (C,C++,etc)
© The IR already contains the CFG R

related informations) vf o)
Cross IR concept target <> cross native
o= KT Joive

o Extend the IR troughout the

back-end target native
object object

o Keep track of processor specific
CFG transformations

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 10 / 26

Proposed Approach
A compiler based cross annotation
Main idea: Use the compiler
intermediate representation IR
source

@ Host independent (before the host (CIC++, ...)
processor back-end)

compiler
front-end

@ Independent from the high level
language (C,C++,etc)

© The IR already contains the CFG R

related informations) ﬁ Rapresenation)
Cross IR concept target Y€—>»| cross native
parond 3

back-end
o Extend the IR troughout the
back-end

o Keep track of processor specific
CFG transformations

native
object

Isomorphic CFG

A

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 10 / 26

Proposed Approach
Cross IR Construction

Typical case of CFG transformation

@ A complex IR instruction e.g. Set On Condition

@ Converted in a diamond-like structure for target processor with no support
of such instructions

© The Cross IR is modified to reflect the same diamond-like structure

O Rrcr Target CFG CROSS-IR CFG

[”_conb ser

Native and Target CGF are isomorphic

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 11 /26

Proposed Approach
Cross IR Construction

Typical case of CFG transformation

@ A complex IR instruction e.g. Set On Condition

@ Converted in a diamond-like structure for target processor with no support
of such instructions

© The Cross IR is modified to reflect the same diamond-like structure

O Rrcr (2} Target CFG CROSS-IR CFG

Native and Target CGF are isomorphic

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 11 /26

Proposed Approach
Cross IR Construction

Typical case of CFG transformation

@ A complex IR instruction e.g. Set On Condition

@ Converted in a diamond-like structure for target processor with no support
of such instructions

© The Cross IR is modified to reflect the same diamond-like structure

O Rrcr (2} Target CFG © CROSS-IRCFG

Native and Target CGF are isomorphic

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 11 /26

Cross IR Annotation

Target CFG

cmp r3, #0
beq .L2

mov r2, #23
str r2, [fp, #-16]
b .14

mov r3, #1228800
add r3, r3, #5760
add r3, r3, #7
str r3, [fp, #-16]

Patrice Gerin (TIMA Laboratory)

Proposed Approach

Native CFG

testl %eax, %eax
je .L2

oy

movl $23, x
jmp .14

movl $1234567, x

/

Jjanuary 21st

12 / 26

Proposed Approach
Cross IR Annotation

For each cross-IR basic blocks:

Target CFG Native CFG
cmp r3, #0
beq .L2

testl %eax, %eax

mov r2, #23 je L2
str r2, [fp, #-16] . A
b .14
mov r3, #1228800 xf\ovl $23, x
add r3, r3, #5760 M
add r3, r3, #7
str r3, [fp, #-16]

movl $1234567, x

Patrice Gerin (TIMA Laboratory) Jjanuary 21st 2009

Proposed Approach
Cross IR Annotation

For each cross-IR basic blocks:

© Analyze statically the corresponding target basic block
i.e. number/type of instructions, estimated number of cycles

Target CFG Native CFG
cmp r3, #0
beq .L2 > O Analyze

v testl %eax, %eax
mov r2, #23 v je L2
str r2, [fp, #-16] BE ID 1 . A
b .14 ——
- 2 instructions

mov r3, #1228800 - 3 cycles movl $23, x
add r3, r3, #5760 - 5.8 youle jmp .14
add r3, r3, #7 T
str r3, [fp, #-16]

L4

movl $1234567, x

/

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 12

Proposed Approach
Cross IR Annotation

For each cross-IR basic blocks:

© Analyze statically the corresponding target basic block
i.e. number/type of instructions, estimated number of cycles

@ Store informations (memory, file,...) and identify the basic block

Target CFG Native CFG
cmp r3, #0
beq .L2 > O Analyze
v testl %eax, %eax
mov r2, #23 v je L2
str r2, [fp, #-16] BB ID 1 —_—
b .14 ——
- 2 instructions
mov r3, #1228800 - 3 cycles movl $23, x
add £3, =3, #5760 - 28 poule [jwp .14 |
add r3, r3, #7 C -
str r3, [fp, #-16]
»
movl $1234567, x
O Store —,i

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 12 /26

Proposed Approach
Cross IR Annotation

For each cross-IR basic blocks:

© Analyze statically the corresponding target basic block
i.e. number/type of instructions, estimated number of cycles

@ Store informations (memory, file,...) and identify the basic block

© Annotation call insertion with basic block identifier as only one argument

Target CFG Native CFG
cmp r3, #0 movl 5L, (fesp)
beq 12) o Analyze call annotate

Y testl %eax, %eax
mov r2, #23 v .
str r2, [fp, #-16] BB D1
b .14 — =
- 2 instructions
mov r3, #1228800 - 3 cycles
add r3, r3, #5760 - 5.8 pJoule
add r3, r3, #7 -
str r3, [fp, #-16]
¥
movl $1234567, x
© Store © Annotate|| [mort $1236567, x|

/

Patrice Gerin (TIMA Laboratory) ASP-DAC'09

Jjanuary 21st 2009 12 /26

Proposed Approach
Cross IR Annotation

For each cross-IR basic blocks:

© Analyze statically the corresponding target basic block
i.e. number/type of instructions, estimated number of cycles

@ Store informations (memory, file,...) and identify the basic block

© Annotation call insertion with basic block identifier as only one argument

Target CFG Native CFG
cmp r3, #0 , movl $1, (%esp)
beq .L2 o Analyze call annotate
Y testl %eax, %eax
mov r2, #23 v je L2
str r2, [fp, #-16]
b 14 P BB_ID 1 52, (%esp)
- 2 instructions call annotate
mov r3, #1228800 -3 cycles movl $23, x
add r3, 3, #5760 - 5.8 Youle jmp .14
add r3, r3, #7 . N,
str r3, [fp, #-16] movl $3, (%esp)
W call annotate
© Store © Annotate| | merr 123467, x]

/

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 12

Proposed Approach
Implementation In LLVM

The Low Level Virtual Machine is

@ An open source compiler
infrastructure LLVM

/‘;:)(pass1) middle-end
X passN)

@ An intermediate representation

Architecture organization

@ middle-end: transformation and
optimization

o front-end: a port of GCC to the
LLVM ISA

@ back-end: processor specific
Machine-LLVM representation

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 13 /26

Proposed Approach
Implementation In LLVM

source front-end
(CIC++,..))
. . . ‘
The Low Level Virtual Machine is
@ An open source compiler L O past e ddieend
infrastructure LLVYM
X passN)

@ An intermediate representation

Architecture organization

@ middle-end: transformation and
optimization

o front-end: a port of GCC to the
LLVM ISA

@ back-end: processor specific
Machine-LLVM representation

Patrice Gerin (TIMA Laboratory) ASP-DAC'09

Jjanuary 21st 2009 13 /26

Proposed Approach
Implementation In LLVM

source front-end
(CIC++, ...)
. . . l
The Low Level Virtual Machine is
@ An open source compiler L O past e ddieend
infrastructure LLVM
X passN)
o An intermediate representation {J H
selection back-end

" N " . (ﬁ)(passl)
Architecture organization sejection

:)(passM)
@ middle-end: transformation and .
optimization
e front-end: a port of GCC to the Machine HCpass1)
LLVM ISA LM (ﬁ)(passK)
@ back-end: processor specific object
Machine-LLVM representation
v

asm or
object

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009

Proposed Approach

LLVM back-end extension

source front-end
LLVM CFG maintained during back-end (C/C+"")
@ Transformations in the target CFG
are reflected to the LLVM CFG ~ O s 1) middle-end
until the last pass.) LM () passN)
selection back-end j
Annotation pass

. o selection M)
@ Analysis and annotation take place DAG [N passwi)

at the end of the back-end
‘

Output Machine ((Cpass1)

@ The annotated bytecode can be L ((CpasskK)
recompiled using the host machine
back-end to obtain the native emier
annotated code asm or

v object

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 14 / 26

Proposed Approach

LLVM back-end extension

source front-end
LLVM CFG maintained during back-end (C/C+"")
@ Transformations in the target CFG
are reflected to the LLVM CFG ~ O s 1) middle-end
until the last pass.) LM () passN)
selection back-end j
Annotation pass

. o selection W
@ Analysis and annotation take place DAG [N passM)

at the end of the back-end

LLVM
X passl T}
Output Machine P

@ The annotated bytecode can be L (XCpassK
recompiled using the host machine
back-end to obtain the native e"‘er
annotated code asm or

v object

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 14 / 26

Proposed Approach

LLVM back-end extension

source front-end

LLVM CFG maintained during back-end (C/C+"")

@ Transformations in the target CFG

are reflected to the LLVM CFG)X pass1) middle-end

i LLVM
until the last pass. | e
selection back-end [h
Annotation pass
i . selection ((pass1)
@ Analysis and annotation take place DAG |y passhi 1)

at the end of the back-end

. Cross
LLVM
Output Machine [P2ss1

LLVYM lysis &
@ The annotated bytecode can be ‘
recompiled using the host machine
back-end to obtain the native emitter

annotated code asm or
object

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 14 / 26

Proposed Approach

LLVM back-end extension

source front-end

LLVM CFG maintained during back-end (C/C+"")

@ Transformations in the target CFG
are reflected to the LLVM CFG ~ O s 1) middle-end

i LLVM
until the last pass. | e
selection back-end [h
Annotation pass
i . selection ((pass1)
@ Analysis and annotation take place DAG |y passhi 1)

at the end of the back-end

. Cross
LLVM
Output Machine [P2ss1

@ The annotated bytecode can be L -
recompiled using the host machine
back-end to obtain the native
annotated code

bytecode
emitter

[

annotated
bytecode

object
emitter

g

asm or
object

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 14 / 26

Proposed Approach
Approach Limitations

@ Processor specific implementation in assembly language

e Hand optimized performance critical algorithms
o Compilers back-end builtin functions

@ Binary object format libraries not handled by this approach

o Code provided by thrird-party
o Non Open-Source code

Possible solution

@ Decompilation approaches
o Convert target assembly into compiler IR
o Annotate the obtained IR according to the target code
o Generate host machine code

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009

Experimentations

Outline

© Experimentations

Patrice Gerin (TIMA Laboratory)

Experimentations
Experimentations Context

High Level Application
Software part %

@ Application: Multithread version of Operatin
Motion-JPEG o g

Com | C/Math
System i

Intra Communication

MEM CPU2
LS [$D]

@ Operating System: DNA OS, with SMP
support and POSIX pthread library

o C library: Newlib

Patrice Gerin (TIMA Laboratory) ASP-DAC'09

january 21st 2009 17 / 26

Experimentations
Experimentations Context

Motion-JPEG “
Software part

@ Application: Multithread version of Operatin
Motion-JPEG o g

Com | C/Math
System i

Intra Communication

MEM CPU2
LS [$D]

@ Operating System: DNA OS, with SMP
support and POSIX pthread library

o C library: Newlib

Patrice Gerin (TIMA Laboratory) ASP-DAC'09

january 21st 2009 17 / 26

Experimentations
Experimentations Context

Motion-JPEG “
Software part

@ Application: Multithread version of
Motion-JPEG

posix | C/Math

@ Operating System: DNA OS, with SMP
support and POSIX pthread library

o C library: Newlib CPUOH CPU1 |

Intra Communication

MEM CPU2
LS [$D]

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 17 / 26

Experimentations
Experimentations Context

Motion-JPEG “
Software part

@ Application: Multithread version of
Motion-JPEG

posix | Newlib

@ Operating System: DNA OS, with SMP
support and POSIX pthread library

o C library: Newlib CPUOH CPU1 |

Intra Communication

MEM CPU2
LS [$D]

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 17 / 26

Experimentations
Experimentations Context

Motion-JPEG |
Software part

@ Application: Multithread version of
. DNA
Motion-JPEG os

@ Operating System: DNA OS, with SMP

support and POSIX pthread library _
o C library: Newlib CPUO" CPU1H e H

Hardware part Intra-Communication
@ Symmetric Multi-Processor architecture MEM CPUZ DMA

posix | Newlib

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 17 / 26

Experimentations

Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Software part

Motion-JPEG

HDS API

cpuo [cPut]l e

Intra-Communication HW

MEM || .CPU2 || pma

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 18 / 26

Experimentations
Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Software part

© Hardware independent part of the software is annotated using /lvm-gcc

e For arm: llvm-gcc -g -Zmllvm” -annotate=arm” -c main.c -o main.o
e For sparc: llvm-gcc -g -Zmllvm” -annotate=sparc” -c main.c -o main.o

Motion-JPEG

HDS API

llvm-gcc

cpuo [cPut][e

Intra-Communication HW

MEM || .CPU2 || pma

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 18 / 26

Experimentations

Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Software part

© Hardware independent part of the software is annotated using /lvm-gcc

e For arm: llvm-gcc -g -Zmllvm” -annotate=arm” -c main.c -o main.o
e For sparc: llvm-gcc -g -Zmllvm” -annotate=sparc” -c main.c -o main.o

@ Build a dynamic library of the software parts containing:

o Undefined annotate function calls, automaticaly inserted during compilation
e Basic blocks information directly stored in the library binary image
e ID argument corresponds to a basic block information structure address

Motion-JPEG extern void annotate(uintptr_t id);
_— [Motion-JPEG |

HDS API

basic block data base

BB info
~Nb instructions

llvm-gcc

DNA posix | Newlib
os pthread

app.so

- Nb load
- Nb store
- Nb cycles

cpuo [cput][e

Intra-Communication HW

MEM || .CPU2 || pmA

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 18 / 26

Experimentations
Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Hardware part

Motion-JPEG extern void annotate(uintptr_t id);
_— [Motion-JPEG |

HDS API

basic block data base

BB info
~Nb instructions

DNA posix | Newlib
os pihread

llvm-gcc

- Nb load
- Nb store
- Nb cycles

app.so

cpuo [cPut]l e

Intra-Communication HW

MEM || .CPU2 || pma

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 19 / 26

Experimentations

Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Hardware part

© Processor Sub-System and HAL layer are modeled using SystemC

o Allow validation of the OS and middle ware implementation
o Reflect low level details of a real architecture

Motion-JPEG extern void annotate(uintptr_t id);
_ [Motion-JPEG |

HDS API o) basic block data base
o
DNA posix Newlib | £ DNA | rosct | Newlih 55 o
rea
oS pthread 2 0s - xb ;gztdmcuons

- Nb store
- Nb cycles

app.so

Hardware Dependent
Simulation Model :

- HAL layer
- Processor Subsystem

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 19 / 26

Experimentations

Integration of the Proposed Technique in a Simulation Flow

An MPSOC native co-simulation environment: Hardware part

© Processor Sub-System and HAL layer are modeled using SystemC

o Allow validation of the OS and middle ware implementation
o Reflect low level details of a real architecture
@ The annotate function is implemented in the SystemC model

o Called at each basic block execution
e ID are buffered and computed only when needed to speed-up the simulation

e Basic block information is computed to consume simulation time
v
Motion-JPEG extern void annotate(uintptr_t id);
_— Motion-JPEG
HDS API o) Ll basic block data base
[s)
0 I DNA Newlib
DNA posix | Newlib| £ Tt | osix | New
oS pthread =
app.so N Syeies
Hardware Dependent
Simulation Model : void annotate (uintptr_t id) void synchronize() {
{
buffer.push ((basicblock_t*)id) | for(i=0;i<BUF_SIZE;i++)
- HAL layer if (buffer.full()) time += buffer[i].nb_cycles;
- Processor Subsystem synchronize () ; wait (time) ;
} }

Jjanuary 21st 2009 19 / 26

Patrice Gerin (TIMA Laboratory) ASP-DAC'09

Experimentations
Experimentation Results

Objective: Assess only the annotation accuracy

o Ability to reflect the CFG of the target software execution

@ Should not take into account the underlying HW model
= Use the number of instruction metric

.

Estimate the number of executed instructions

@ On a relevant function:

o Need a function with a large dynamicity
o Variable Length Decoder (VLD) function of the jpeg decoder

A\

Does not provide any performance estimation

@ Number of instruction # execution time

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 20 / 26

Experimentations
Experimentation Results

Number of executed instruction for each VLD function call

@ Cycle accurate bit accurate (caba) provide the reference count

@ Less than 3% of error due to not annotated code
The SystemC model of the HAL software layer

@ The error is negative or zero when the code is fully annotated

10000
w9000 1 —t—
S 8000 DA w—
£ 7000 T
2 S A N Ev|
g 0 AR A
o N MR AT IHIR R h AR A AR LITRY)
= ALY NAY VIR AR NANAN MY
20 P o G L T W W L N D A L A S e e A] * ¥
o i i
0 20 40 60 80 100 120 140
VLD function calls

4 error 7

2
9 0
5 2 A VM,\ Ml\l\ﬁMVMA VJ\M -
5

r

8

-10

0 20 40 60 80 100 120 140

VLD function calls

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009 21 /26

Experimentations
Experimentation Results

Simulation Speed-up compared to CABA execution model

@ Very dependent on:

o Execution time computation
trace dump, software profiling, ...
o The underlying HW model

@ From x100 with timing estimation and execution time software profiling

@ To x1000 speed-up factor with only execution time estimation.

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009

Conclusions and Perspectives
Outline

© Conclusions and Perspectives

Patrice Gerin (TIMA Laboratory) Jjanuary 21st 2009

Conclusions and Perspectives
Conclusion

A compiled-based approach

o Automatic annotation of embedded software

@ Accurate in term of program control flow execution

@ The annotation process is clearly separated from the performance
estimation

@ Performance estimation depend on

o Informations associated with the basic blocks

o The underlying hardware architecture
v

@ Adapted to high level hardware/software cosimulation approaches

@ Not restricted to a particular compiler

A\

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009

Conclusions and Perspectives
Perspectives & Futur Work

Improving analysis of basic blocks

@ Increase accu racy

o Pipeline effect
o Instructions dependencies
o e.g. WCET at a BB granularity

@ Different information

o Power consumption
v

Tools are needed

@ To interprete simulation results

@ Annotation technique used to
profile target software executed on
the host machine
" Cross profiling”

A\

Patrice Gerin (TIMA Laboratory) ASP-DAC'09 Jjanuary 21st 2009

Conclusions and Perspectives

rk

Perspectives & Futur

[T ——"
|5 4 [meminons
' readerrcans

Improving analysis of basic blocks

@ Increase accu racy

e Pipeline effect
o Instructions dependencies
o e.g. WCET at a BB granularity

o Different information
e Power consumption

Tools are needed

@ To interprete simulation results

@ Annotation technique used to
profile target software executed on
the host machine
" Cross profiling”

N

Jjanuary 21st 2009 25

Patrice Gerin (TIMA Laboratory) ASP-DAC'09

Conclusions and Perspectives
Perspectives & Futur Work

Improving analysis of basic blocks

@ Increase accuracy

o Pipeline effect
e Instructions dependencies
o e.g. WCET at a BB granularity

o Different information
o Power consumption

V.

Tools are needed

@ To interprete simulation results

14.92 %

/66.99 % 5.5

@ Annotation technique used to
profile target software executed on
the host machine
" Cross profiling”

!

january 21st 2009 25 / 26

Patrice Gerin (TIMA Laboratory) ASP-DAC'09

Questions

Patrice.Gerin@imag.fr

System-Level Synthesis Group
TIMA Laboratory
46, Av Félix Viallet, 38031 Grenoble, France

Patrice Gerin (TIMA Laboratory) ASP-DAC'09

	Introduction
	Basic Concepts
	Proposed Approach
	Experimentations
	Conclusions and Perspectives
	

