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Abstract—Patient motion during dynamic PET imaging 
can induce errors in myocardial blood flow (MBF) 
estimation. Motion correction for dynamic cardiac PET is 
challenging because the rapid tracer kinetics of 82Rb leads 
to substantial tracer distribution change across different 
dynamic frames over time, which can cause difficulties for 
image registration-based motion correction, particularly for 
early dynamic frames. In this paper, we developed an 
automatic deep learning-based motion correction 
(DeepMC) method for dynamic cardiac PET. In this study we 
focused on the detection and correction of inter-frame rigid 
translational motion caused by voluntary body movement 
and pattern change of respiratory motion. A bidirectional-
3D LSTM network was developed to fully utilize both local 
and nonlocal temporal information in the 4D dynamic image 
data for motion detection. The network was trained and 
evaluated over motion-free patient scans with simulated 
motion so that the motion ground-truths are available, 
where one million samples based on 65 patient scans were 
used in training, and 600 samples based on 20 patient 
scans were used in evaluation. The proposed method was 
also evaluated using additional 10 patient datasets with real 
motion. We demonstrated that the proposed DeepMC 
obtained superior performance compared to conventional 
registration-based methods and other convolutional neural 
networks (CNN), in terms of motion estimation and MBF 
quantification accuracy. Once trained, DeepMC is much 
faster than the registration-based methods and can be 
easily integrated into the clinical workflow. In the future 
work, additional investigation is needed to evaluate this 
approach in a clinical context with realistic patient motion. 

 
Index Terms—PET, myocardial perfusion, motion 

correction, deep learning.  

I. INTRODUCTION 

OSITRON emission tomography (PET) myocardial perfusion 

imaging has been shown to improve the diagnostic accuracy 

of coronary artery disease (CAD) as compared to other non-

invasive imaging modalities [1]. Absolute quantification of 

myocardial blood flow (MBF) and myocardial flow reserve 

(MFR) using dynamic PET has shown superior diagnostic and 

prognostic value as compared to the conventional relative 

 
Manuscript submitted August 15, 2020. This work is supported by American Heart Association award 18PRE33990138 and NIH grant 

R01CA224140, R01EB025468, R01HL154345 and R03EB027209 (Corresponding author: Chi Liu). 
Luyao Shi is with the Department of Biomedical Engineering, Yale University, New Haven, CT 06512, USA (email: luyao.shi@yale.edu). 
Yihuan Lu and Nicha Dvornek are with the Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06512, USA 

(email: yihuan.lu@yale.edu; nicha.chitphakdithai@yale.edu). 
Christopher A. Weyman, Edward J. Miller and Albert J. Sinusas are with the Department of Internal Medicine (Cardiology), Yale University, New 

Haven, CT 06512, USA (christopher.weyman@ynhh.org; edward.miller@yale.edu; albert.sinusas@yale.edu). 
Chi Liu is with the Department of Biomedical Engineering and also with the Department of Radiology and Biomedical Imaging, Yale University, 

New Haven, CT 06512, USA (email: chi.liu@yale.edu). 
 

myocardial perfusion imaging [2]. In typical dynamic PET, a 

dynamic sequence of images is acquired over several minutes, 

starting from the injection of radio-labeled tracer until 

myocardium is well perfused. Regions of interest are usually 

defined on the reconstructed dynamic images to sample the 

time-activity curves (TAC) in the myocardium tissue and left 

ventricle (LV) cavity. These TACs can be further processed via 

kinetic modeling to quantify MBF. 

Patient motion during dynamic imaging, which typically 

includes respiratory motion, cardiac motion and voluntary body 

motion, can induce errors in MBF estimation [3, 4]. 

Specifically, patient motion can present as inter-frame motion, 

which can cause misalignment of the heart between successive 

dynamic image frames and result in distorted TACs due to 

inconsistent ROI sampling. On the other hand, intra-frame 

motion can lead to blurred images as well as inaccurate image-

derived input function (IDIF) measured within LV cavity. 

Additional errors could also be introduced by the mismatch 

between PET and CT-based attenuation map caused by patient 

motion [5]. 

Respiratory and cardiac motion correction methods in PET 

have been investigated in the past [6, 7]. External motion 

tracking markers or sensors have been used in some studies [5, 

8] to track respiratory motion at a high temporal resolution. 

Electrocardiography (ECG) is still the gold-standard when it 

comes to track the cardiac motion due to high temporal 

resolution. However, such tracking systems typically require 

extra setup time and may not always be accessible. 

Alternatively, data-driven motion detection methods [9-11] 

without the need of external devices are preferred to facilitate 

easier clinical translation of motion correction. Nonetheless, 

few studies focused on the correction of inter-frame motion for 
82Rb cardiac dynamic PET imaging due to its challenging 

nature. The rapidly changing biodistribution of 82Rb leads to 

dynamic changes in the distribution of the radiotracer from 

frame to frame over time, which can cause difficulties for image 

registrations. The accuracy of image registration typically relies 

on the similarity between the two images to be registered with 

each other. Due to the rapid tracer kinetics, the tracer 

P 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2021.3082578, IEEE

Transactions on Medical Imaging

2 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. x, 2020 

 

distribution in one dynamic frame can be substantially different 

from another frame, which can result in inaccurate or even 

failed image registration. This is particularly the case for early 

dynamic frames (blood pool phase), and therefore existing 

motion-correction studies [12-14] have largely focused on the 

later dynamic frames (myocardial tissue frames). To address 

this challenge, Hunter et al. [15] proposed to correct patient 

body motion for dynamic cardiac PET-CT by attenuation-

emission alignment according to projection consistency 

conditions. The method performed equally well on both early 

and later frames, but was only evaluated on simulation and 

phantom data. Lee et al. [16] developed an automated motion 

correction framework for dynamic 82Rb cardiac PET. The right-

ventricle blood pool (RVBP) phase, left-ventricle blood pool 

(LVBP) phase and tissue-phase were first identified using an 

automated algorithm, then each dynamic frame was rigidly 

aligned to match a fixed later tissue-phase summed frame to 

achieve motion correction. Normalized gradient fields, instead 

of image intensities, were used in registration to account for 

rapid tracer kinetics during the blood pool phase. Lee’s results 
were in good agreement with the manual motion correction 

results in the evaluation of clinical studies, and the method 

applies to the entire dynamic sequence. However, Lee’s 
method’s performance in the transition frames (in between LV 
blood phase and tissue phase) is questionable due to the activity 

being in both blood pool and myocardial tissue, causing 

unidentifiable boundaries and therefore unreliable gradient to 

compute registration. The RV frames were also not validated 

due to a lack of manual motion correction. Since the tissue-

phase frames were summed to provide a reference image, the 

reference image might be blurred due to the interframe motion 

and could lead to inaccurate motion estimation. 

Deep learning has demonstrated its promising performance 

in many medical imaging tasks, including image enhancement 

[17-20], image registration [21], image segmentation [22, 23], 

image generation [24-26], and computer-aided diagnosis [27]. 

However, using deep learning for motion detection on 

sequential images has been mostly unexplored. Recently, 

recurrent neural network (RNN) and long short-term memory 

(LSTM) [28, 29] have achieved great success in processing 

sequential multimedia data and yielded state-of-the-art results 

in video and signal processing [30, 31]. Li et al. [32] also 

obtained promising results by applying convolutional LSTM on 

X-ray fluoroscopic images to recover cardiac and respiratory 

signal, although their study was focused on extracting 1D 

motion signal from a sequence of 2D images with similar 

anatomical structures. Guo et al. [33] used LSTM to classify 

respiratory signals into regular and irregular breathing patterns 

to guide optimal motion correction strategies in PET . 

In this paper, we developed automatic motion correction for 

dynamic cardiac PET using deep learning (DeepMC) for the 

first time, to the best of our knowledge. In this study, we focus 

on detection and correction of the inter-frame rigid translational 

motion caused by body motion and change in the pattern of 

respiratory motion. The intra-frame motion resulting from 

cardiac and respiratory motion are averaged within the frames 

and are not considered in this study. A bidirectional-LSTM [34] 

network structure was employed to utilize both local and 

nonlocal temporal information in the 4D dynamic image data 

for motion detection. The proposed method was further 

evaluated on patient data with both simulated and real motion, 

in terms of motion estimation and MBF quantification 

accuracy.   

II. MATERIALS AND METHODS 

A. Dataset 

A total of 160 anonymized clinical 82Rb PET rest and 

regadenoson-induced stress studies were included from Yale 

New Haven Hospital from December 2019 to January 2020. 

The PET data were acquired using a Discovery 690 PET/CT 

scanner (GE Healthcare, Waukesha, WI). The data 

anonymization for this research was approved by the 

Institutional Review Board of Yale University. 82Rb was 

delivered via a programed infusion using a commercial 82Rb 

generator (Bracco Diagnostics Inc.) with a weight-based 

targeted injection dose of 20-35 mCi depending on patient body 

mass index. The total acquisition time for each scan was 7 min, 

but only the first 6 min 10 s data were included in the rebinning 

process according to the clinical setting. Listmode data were 

rebinned into dynamic image sequence of 14×5s, 6×10s, 3×20s, 

3×30s, and 1×90s timeframes. Images were reconstructed using 

OSEM with 2 iterations and 24 subsets, resulting in 128× 128× 

47 voxels of size 3.125× 3.125× 3.270 mm. Images were 

filtered with Butterworth filter with a cutoff frequency of 21 

mm-1 and an order of 5. Corrections for isotope decay, photon 

attenuation and scatter, random and prompt-gamma 

coincidences, detector efficiency, and deadtime were all applied 

to reconstruct quantitative images of activity concentration 

(Bq/mL), according to our standard clinical practice. Note that 

each dynamic frame was reconstructed independently. 

Therefore, the scatter estimation was derived from each 

individual frame’s emission data, instead of from an initial 

static reconstruction. CT and 82Rb PET image were manually 

registered using the vendor ACQC package. 

Table I. A summary of the characteristics of the included scans. 

 # of scans 

(rest/stress) 

# of patients 

(male/female) 

Age BMI 

(Mean±Std) 

Training 65 (44/21) 45 (21/24) 62.2±11.7 38.3±11.4 

Eval. w/ 
sim. motion 

20 (11/9) 14 (4/10) 65.4±9.5 33.6±8.2 

Eval. w/ 
real motion 

10 (4/6) 9 (6/3) 69.0±12.1 34.9±8.7 

 

 With the Corridor 4DM software that was used in our 

clinical setting, one of the technologists performed motion 

correction frame by frame manually until no visual motion can 

be observed between frames. The manual motion correction 

results were then double checked by one of the research group 

members. Then, the 4DM software can automatically display 

the motion magnitudes resulted from the manual motion 

correction. A total of 85 motion-free scans (55 rest and 30 stress 

scans) from 59 patients were identified from the 160 patients’ 
studies. The motion-free scans were defined as scans with a 
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total motion (in all the frames) no more than 3 mm, same as the 

convention used in [4]. Motion was defined as the translational 

shift of any frame compared with the last frame (frame 27 with 

the longest duration). Rotational and non-rigid motions were 

not considered in this study, because in clinical practice the 

majority of manual corrections were done for translational 

motion. The 85 motion-free scans were later divided into two 

subsets, with 65 used for training and 20 used for evaluation of 

the network with added simulated motion. Additionally, 10 

studies (4 rest and 6 stress scans) from 9 patients that have at 

least 5 frames with mild or severe motion (larger than 3 mm) 

[4] were selected for testing the network. A summary of the 

characteristics of the included scans were given in Table I. 

Fig. 1.  An illustration of the three types of motion in simulation for network 

training. This illustration only shows 1-D motion displacement patterns with 

the motion magnitudes changing over frames, whereas the motion directions 

are not reflected in this figure. 

B. Motion Simulation 

Three types of motion were simulated during training of the 

network, namely “square motion”, “triangle motion” and “spike 

motion”. Square motion simulates a type of patient’s motion 
that is consistent across multiple frames with the same 

magnitude and direction in the 3D Euclidian space, triangle 

motion refers to the scenario where patient motion gradually 

builds up along one direction and then moves back to the 

original position across several frames, and spike motion 

simulates random motion, where the motion magnitude and 

direction in each frame can be independent. An illustration of 

the three types of motion is shown in Fig. 1. We believe the 

combination of three basic motion types can approximately 

represent the realistic motion patterns for training purpose, even 

though the realistic motion could be more complicated. 

For each dynamic image sequence, a window of 64×64×36 

centered around the mid-point of the septal wall (manually 

identified currently) was cropped from the last image frame 

(frame 27). Motion in any other frame was simulated by shifting 

the cropping window in the Euclidian space, with a step size of 

0.1 pixel (using linear interpolation) along each axis. 

C. Network Architectures 

To predict the motion of a given frame, not only the adjacent 

frames can provide local information in the form of relative 

motion, the non-adjacent frames can also provide nonlocal 

information about the cross-frame motion correlation due to 

inertia, especially for the motion with long-duration that affects 

multiple frames (e.g., the previously mentioned triangle motion 

and spike motion). In addition, knowing the spatial tracer 

distribution change in time can also potentially help motion 

detection. However, this also requires the network to “see” 
multiple frames simultaneously. Recurrent neural network 

approaches such as long short-term memory (LSTM) [29] are 

capable of interpreting and summarizing patterns among 

correlated data samples, which is an ideal network architecture 

for our problem. The cell state of LSTM allows nonlocal 

information from non-adjacent frames to be transferred all the 

way along the sequence, to assist motion prediction for each 

individual frame. In this work we used a bidirectional 3D 

convolutional LSTM (convLSTM3D) network to allow 

information to flow along both ways between the early and late 

phases.  

Fig. 2.  (a) The architecture of the motion prediction and EQ frame prediction network. The input frame images are only displayed as 2D images, although 

they are actually 3D images, with dual-channels (red) for motion prediction network and single-channel (purple) for EQ frame prediction network. The motion 

prediction network and the EQ frame prediction network share the same network structure except for the last fully connected (FC) layer. They are trained 

separately. (b) A diagram of the entire motion prediction workflow.  

(a) (b) 
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Our architecture is depicted in Fig.2 (a). Each 3D image 

frame is fed into two 3D convolutional layers (Conv3D) with 

64 kernels for encoding the spatial feature. The Conv3D layers 

are all followed by a ReLU activation function (each blue box 

in Fig.2 indicates a Conv3D+ReLu layer). The feature maps for 

all the image frames are then sent to a bidirectional 

ConvLSTM3D unit for processing. This Conv3D plus 

bidirectional ConvLSTM3D combination was then repeated, 

with 128 kernels in each layer. Lastly, the feature map for each 

frame is flattened, followed by a dropout layer with ratio 0.5 

and ReLu, and finally passed to a fully connected (FC) layer to 

regress the predicted motion displacement vector 

Pn = (Pn,x, Pn,y, Pn,z), where Pn,x, Pn,y and Pn,z are the predicted 

motion displacements in the left-right (x), anterior-posterior (y) 

and superior-inferior (z)  directions for each frame, n (1≤ n ≤N) 

is the frame index and N is the total number of frames. 

We used a stride of 2 in all the Conv3D layers instead of 

using max pooling, because max pooling has the well-known 

property of being local shift invariant to the small changes in 

the input [35]. In our application we do not seek for this 

property since our goal is to design a network sensitive to small 

changes caused by motion. 

D. Image Pre-processing 

For each dynamic image sequence, a median filter with 

window 3×3×3 was applied to each frame for noise 

suppression. The median filter was only applied for motion 

detection purpose. The detected motion was later applied to 

images without the filtering, to be consistent with the clinical 

filter settings. In addition, the following steps were applied. 

1) Dual-channel Input 

In order to ensure the reference frame’s information was not 
lost along the information flow of the LSTM network, the 

reference frame (the last frame) was concatenated to each 

frame’s image as a second channel of the input (see Fig.2 (a)), 

to provide a consistent motion estimation reference. 

2) Image Intensity Normalization 

The tracer activity level in our regions of interest (blood 

pools and myocardium) can vary a lot between frames, 

especially during the early frames. This can cause unstable 

training of the neural network. Therefore, each frame (cropped 

to 64×64×36) was normalized by the mean activity of the 

cropped region. Here, mean normalization was chosen over 

maximum normalization for being less sensitive to noise [25]. 

3) Temporal Normalization 

After tracer injection and the start of the scanning, the time 

for tracer to reach the left ventricle blood pool can be different 

for each patient, which is another factor that could unstabilize 

the neural network’s performance. We defined equal (EQ) 
frame (with frame index 𝑛𝐸𝑄), which is the first frame in which 

the activity in LV blood pools is equal or higher than that in the 

RV blood pool (see Fig.3), to be used for temporal 

normalization. For each study, we shifted the whole image 

sequences back and forth so that the EQ frame has the same 

frame index 𝑛𝑅𝐸𝐹  in the shifted sequence. If 𝑛𝐸𝑄  > 𝑛𝑅𝐸𝐹 , the 

4D image sequence is moved towards the early phase. To 

maintain the same number of total frames, a number of (𝑛𝐸𝑄 −𝑛𝑅𝐸𝐹) frames with no or little activity at the beginning were 

discarded, and the same number of the last frame was 

duplicated and added to the end. If 𝑛𝐸𝑄  < 𝑛𝑅𝐸𝐹 , the image 

sequence is moved towards the late phase, with (𝑛𝑅𝐸𝐹 − 𝑛𝐸𝑄) 

all-zero frames added at the beginning and the same number of 

the frames discarded at the end. However, the latter case will 

result in losing the information of the frames at the end of 

sequence. We noticed that for all the studies we acquired, 

(𝑛𝑅𝐸𝐹 − 𝑛𝐸𝑄) never exceeds two when 𝑛𝑅𝐸𝐹= 7 was used and 

the first two frames always have zero or minimal activity. 

Therefore, we discarded the first two frames and duplicated the 

last frame twice for all the image sequences beforehand, to 

make sure no useful information was lost during the temporal 

normalization. We also set any frame before the EQ frame, with 

a total activity less than 1/10 of the EQ frame, to zero since 

these frames provide no useful information for motion 

estimation. 

To automatically identify the EQ frame, the same network 

architecture in section II.C was used, except for the output 

layer. For the input of N frames, the output is a probability 

vector Q = (Q1, Q2, …, QN), as shown in Fig.2 (a), where Qn∈ℝ+ 

is the probability that the n-th frame is the EQ frame. The index 𝑛𝐸𝑄=argmax1≤𝑛≤𝑁𝑄𝑛  indicates the EQ frame. All 27 frames 

were used to predict the EQ frame, and only single channel 

images were used as the inputs (as shown by CH1 in Fig.2 (a)).  

Fig. 3.  An example of the early frames and late frames after intensity and 

temporal normalization. The whole sequence was shifted towards the early 

phase by three frames, therefore the first three frames with zero activity were 
discarded, and the last frame was duplicated three times at the end of the late 

frames (purple). The last frame was also put at the end of the early frames to 

provide a reference (red). All the images are shown in the coronal view. The 
frame number after temporal normalization was shown for each frame. The EQ 

frame was pointed out in blue color. 

4) Early and Late Frames 

The tracer distributions are dramatically different between 

the early and late frames. Therefore, to let the network focus on 

the unique time dependent problems and to yield better 

performance, two networks with the same architecture (as 

described in section II.C) were trained independently for the 

early and late frames. After temporal normalization, all the 

frames were approximately cut into halves: the first 14 frames 

are considered the early frames and reflect the input function 

and initial myocardial extraction, and the last 13 frames are 

considered late frames and primarily reflect myocardial uptake 

and retention. The reference frame (the last frame) was also 

added to the end of the early frames set to provide a consistent 

reference, so that the early frames include 15 frames in total. 

An example of the early and late frames is shown in Fig. 3. The 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2021.3082578, IEEE

Transactions on Medical Imaging

5 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. x, 2020 

 

images are pre-processed with the image intensity 

normalization and temporal normalization.  

During motion prediction, two network’s results were 
combined to provide the motion estimation for the whole image 

sequence. 

E. Network Training 

To train the motion detection network for either early frames 

(15 frames in total) or late frames (13 frames in total), a total of 

1 million motion replicate samples were randomly simulated 

based on the 65 patient scans described in section II.A. The 

training process was stopped after running through the 1 million 

examples. For each sample, one type of motion (square, triangle 

or spike) was randomly selected with a chance of 1/3. The 

number of motion frames were randomly selected between 2 

and 7 with equal chances. Motion was randomly added 

anywhere except for the first 3 frames with negligible tracer 

activity (after temporal normalization) and the last reference 

frame. The maximum motion shift was limited to (4, 4, 4) 

voxels. For each axis, the direction and motion magnitude were 

randomly chosen with equal chances. For square motion, one 

set of motion shift and direction was simulated and used for all 

the selected frames; for triangle motion, one set of motion shift 

and direction was simulated and used as the maximum motion 

shift, with the other frames’ magnitude calculated with basic 

properties of triangles; for spike motion, the motion magnitude 

and direction for each selected frame was simulated 

independently. To further augment the data, an initial window 

shift was applied to all of the frames in each sample before the 

motion was added, and the maximum shift was limited to 3 

voxels along each axis. For each sample, the whole sequence 

was also randomly moved towards the early phase or late phase 

up to 1 frame to provide data augmentation in the temporal 

dimension. All the randomness described above follows 

uniform distribution. The batch size for training was 32. The 

mean square error (MSE) loss was used to update the network. 

The Adam optimizer with an initial learning rate of 0.001 was 

used, where the learning rate decayed by a factor of 0.999 for 

every 10 batches trained. 

Training the EQ frame prediction network is similar to 

training the motion prediction network, except that all the 

original 27 frames were used as the inputs and the cross-entropy 

loss was used instead of MSE loss. The temporal data 

augmentation can be up to 3 frames towards either the early or 

the late phase. Moreover, only 100,000 samples were generated 

and the learning rate decay factor was changed to 0.998, 

because this is a much less challenging problem compared to 

motion prediction hence fewer samples are needed. The 

frameworks were implemented using PyTorch and trained on a 

NVIDIA Quadro RTX 8000 GPU. 

F. Iterative Motion Correction 

Once the motion estimation network was trained, motion 

correction was achieved by reversely shifting the cropping 

window in the original image space, based on the predicted 

motion. An iterative motion correction (IMC) strategy was 

applied during evaluation and testing, to ensure any residual 

motion can be detected and corrected: the corrected sequence 

from the previous iteration was fed into the network again for 

motion detection and correction in the next iteration. The 

iterative process stops until the iteration number exceeds 5 or 

the sum of the detected motion magnitudes of all the frames for 

the current iteration is smaller than 0.1 voxels, whichever 

comes first. The final motion estimation is the concatenation of 

the estimated motion for the early and late frames. The entire 

motion prediction workflow is shown in Fig.2 (b).  

G. Comparison with Conventional Registration 
Approaches 

The proposed DeepMC was compared with conventional 

registration methods. Two registration strategies were 

evaluated, namely individual registration (IR) and chain 

registration (CR). Individual registration is the most straight 

forward approach: each individual frame was directly registered 

to the reference frame (the last frame). However, this might not 

be a fair comparison since the early frames are substantially 

different from the reference frame, which could cause 

unsatisfactory or even failed registration. Therefore, we also 

implemented chain registration, where starting from the second 

to last frame, each frame was registered to its next frame. Since 

registration was only performed between two adjacent frames 

that share a lot of similarities, superior performance might be 

expected in the presence of tracer distribution change between 

frames. 

The SimpleElastic library was used for both registration 

approaches. Only rigid translational motion was considered, 

and the ‘Advanced Mattes Mutual Information’ metric was 

used. The ‘Number of Resolutions’ was set to 3. Other 
parameters were used as default and can be found at [36]. Same 

as DeepMC, a median filter was applied to each frame in 

advance for noise suppression. 

H. Comparison with Other Neural Networks 

The proposed DeepMC was also compared with another 

convolutional neural network (CNN). We chose a recent CNN 

architecture [37] that was designed for estimating rigid motion 

between two 3D image volumes. We made a few slight changes 

to the network structure, and the details about this network can 

be found in the supplementary material. This network can be 

viewed as a CNN-based image registration method, although 

without the LSTM component.  

Similar to the conventional registration methods, we applied 

the CNN-based method through two strategies. In the first 

strategy, the CNN was trained and applied between each frame 

and the reference frame for motion estimation. In the second 

strategy, motion estimation was performed in a chain fashion, 

where the CNN was trained and applied between each frame 

and its next frame. We refer to these two methods as MC-CNN 

and MC-CNN-C (C stands for chain) from now on. For fair 

comparisons with DeepMC, we adopted the same convention 

to divide the image sequences into early and late frames for both 

MC-CNN and MC-CNN-C. Image normalization was also 

applied beforehand, although iterative motion correction (IMC) 

was not used because we found IMC resulted in slightly worse 
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results here. More training details can be referred to the 

supplementary material. 

I. Evaluation 

To evaluate the performance of DeepMC and the other 

approaches, for each one of the 20 scans described in Table I, 

10 motion replicates were simulated for each type of the square, 

triangle and spike motion types, resulting in a total of 600 

motion affected samples. The motion simulation process was 

similar to the process described in section II.E, except that: 1) a 

random number between 5 and 11 of frames were added with 

motion; 2) for each sample, motion was added to the entire 

sequence (except for the first 3 frames and the last reference 

frame), instead of adding motion to early frames and late frames 

separately; 3) the initial random window shift was not applied. 

The motion estimation was evaluated in terms of motion 

estimation mean error and maximum error across all the frames. 

The mean error was calculated as 1𝑁−3∑ √(𝑃𝑛,𝑥 −𝑀𝑛,𝑥)2 + (𝑃𝑛,𝑦 −𝑀𝑛,𝑦)2 + (𝑃𝑛,𝑧 −𝑀𝑛,𝑧)2𝑁−1𝑛=3  

where (𝑃𝑛,𝑥 , 𝑃𝑛,𝑦 , 𝑃𝑛,𝑧)  and (𝑀𝑛,𝑥, 𝑀𝑛,𝑦 , 𝑀𝑛,𝑧)  are the motion 

prediction and ground-truth motion vectors in three directions 

(x, y, z) for frame n, and N=27 is the total number of frames. 

The first 2 frames were not included in the evaluation for having 

no or little activity and the last (reference) frame was also not 

included. The maximum error was calculated as 𝑚𝑎𝑥𝑛=3𝑁−1√(𝑃𝑛,𝑥 −𝑀𝑛,𝑥)2 + (𝑃𝑛,𝑦 −𝑀𝑛,𝑦)2 + (𝑃𝑛,𝑧 −𝑀𝑛,𝑧)2 , 

which reflects the performance limitation of the motion 

estimation. 

Additionally, both the LV blood pool image-derived input 

function (IDIF) and LV myocardium TACs were fit to a 1-

tissue (1T) compartment model to obtain estimates for uptake 

rate K1 corrected with LV blood volume and spillover term [38]. 

Weighted least squares (WLS) fitting was used to estimate the 

parameters. The weights were calculated as [38]: 𝑤𝑛 =𝐿𝑛2 /(𝑇𝑛 × 𝐷𝐶𝐹2), where 𝐿𝑛 is the 𝑛𝑡ℎ frame duration, 𝑇𝑛 is the 

total activity for the 𝑛𝑡ℎ frame and 𝐷𝐶𝐹 is the decay correction 

factor. The IDIF was estimated from a rectangular VOI 

manually placed towards the base of the LV (average size 3.9 

cm3 for all the 30 scans in the evaluation, including 20 motion-

free scans and 10 scans with real motion) for each scan. The 

entire LV myocardium was manually segmented (average size 

130.3 cm3 for all the 30 scans) to measure the LV myocardium 

TAC. Myocardial blood flow (MBF, in the unit of mL/min/g) 

was then computed from the estimated K1 using a previously 

validated relationship (using scale-uncorrected IDIF) [39]. For 

the motion-corrected (using the proposed method and the two 

registration approaches) and uncorrected images, the MBF 

percentage biases were calculated using the MBF values 

obtained on motion-free images as the ground-truth: (𝑀𝐵𝐹𝑀 −𝑀𝐵𝐹𝑀𝐹) 𝑀𝐵𝐹𝑀𝐹⁄ × 100% , where 𝑀𝐵𝐹𝑀 

represents the MBF estimated on the motion uncorrected or 

corrected images, and 𝑀𝐵𝐹𝑀𝐹  were estimated on the motion-

free images. In addition, the weighted sum-of-squared (WSS) 

residuals (the residuals between the MBF model solutions and 

the measured TACs) from the WLS fittings were also calculated 

for each group. Since the weights 𝑤𝑛  have a unit of min2/Bq × mL, the WSS residuals have a unit of (Bq mL⁄ )2 ×min2 Bq⁄ × mL = Bq mL⁄ × min2. 

For the 10 testing patient scans with real motion, although 

they were selected based on the manually estimated motions by 

the clinical staff using the 4DM software, these estimates were 

not exportable and were based on the resliced image views, 

whereas in our framework motion was estimated in the original 

transaxial image views. Therefore, due to the lack of the motion 

ground-truth in our study, the percent difference between MBFs 

measured on the images before and after motion correction 

were reported. The percent difference was calculated as 2(𝑀𝐵𝐹𝑈𝐶 −𝑀𝐵𝐹𝑀𝐶) (𝑀𝐵𝐹𝑈𝐶 +𝑀𝐵𝐹𝑀𝐶)⁄ × 100% , where 𝑀𝐵𝐹𝑈𝐶  and 𝑀𝐵𝐹𝑀𝐶  represent the MBF estimated on the 

motion uncorrected and motion corrected images, respectively. 

MBF for the region supplied by the right coronary artery (RCA) 

(average size 58.3 cm3) was also calculated in addition to the 

global MBF calculated on the whole LV myocardium. In this 

study, we focused on RCA in the regional MBF investigation 

as studies have shown that RCA is substantially more 

susceptible than left anterior descending (LAD) and left 

circumflex (LCX) arteries to motion induced MBF errors [40]. 

The WLS fitting residuals derived from the voxels within the 

whole LV myocardium and RCA were also calculated for these 

10 patient scans. 

III. RESULTS 

A. EQ Frame Prediction 

The EQ frames 𝑛𝐸𝑄  (defined in section II.D.3) range 

between 5-11 for the 20 evaluation scans and 5-10 for the 10 

testing scans, based on our manual labeling. The EQ frame 

prediction network trained over the 65 training scans correctly 

identified the EQ frames for all of these 30 scans, an accuracy 

of 100%. 

Fig. 4.  The distribution of the motion magnitude (mm) and the frame index of 

the motion-affected frames for the 600 image sequences in the evaluation. 

B. Motion Characteristics in The Evaluation with 
Simulated Motion 

For the 600 image sequence samples used in evaluation with 

simulated motion, a total of 4806 frames were added with 

simulated motion based on the criteria described in section II.I. 

Fig.4 shows the distribution of the motion magnitude (mm) and 

the frame index of these motion-affected frames. From the 

motion magnitude histogram, it can be observed that the 

majority of the simulated motions range between 9-18 mm, 

which is similar to what was observed in [4] where a significant 

fraction (38%) of the observed motions were severe motion (7-
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18 mm) in a study with 236 patients. The frequency of motions 

also roughly has a uniform distribution across all the frames, as 

can be seen in the motion frame histogram. 

C. Ablation Study 

An ablation study was conducted to demonstrate the effects 

of different image pre-processing components in the proposed 

framework. The ablation study results are given in Table II. It 

can be seen that, when all the image pre-processing methods 

described in section II.D were applied, the lowest motion 

prediction errors were achieved in terms of both mean motion 

error and max motion error. 

Particularly, the temporal normalization (TN) resulted in the 

largest improvement. Two groups of studies were compared: 

TN was applied in neither training nor evaluation data, and TN 

was not applied in training data but applied in evaluation data. 

As can be seen, when TN was applied during neither training 

nor evaluation, the worst results were obtained. Although 

applying TN on the evaluation data further helped, applying TN 

on both training and evaluation is recommended. 

Table II. Ablation study results in terms of mean and max motion estimation 

errors across all the 600 evaluation samples. MC: motion correction; IN: 

intensity normalization; TN: temporal normalization; IMC: iterative motion 

correction. 

 Mean Motion 

Err. (mm) 
Max Motion 

Err. (mm) 

No MC 3.99±1.67 14.85±4.09 

Single Ch. Input 1.16±0.72 3.73±1.78 

No IN 0.96±0.48 3.70±1.82 

No TN (Eval. w/o TN) 2.50±1.94 22.27±16.36 

No TN (Eval. w/ TN) 1.03±0.52 3.85±1.62 

No IMC 0.99±0.63 3.92±1.98 

All applied 0.92±0.51 3.48±1.94 

 

Using the reference frame as the second channel for each 

frame also substantially improved the results. Note that the 

results from using only single channel are still reasonable, 

though not optimal, suggesting that the LSTM architecture was 

able to pass the information of the reference frame nonlocally 

throughout the sequence. The iterative motion correction (IMC) 

brought a moderate improvement, indicating that the majority 

of the motions were successfully detected in the first pass. On 

average, the iterative process stopped at iteration number 

2.61±1.02 for the early frames and 1.90±0.75 for the late 

frames, suggesting that the early frame motion is slightly more 

challenging to be detected compared to the late frame motion. 

The intensity normalization also moderately improved the 

motion detection performance. 

Using a validation dataset can potentially help reduce 

overfitting and identify the best hyperparameter settings (in our 

case, the hyperparameter we want to optimize is whether or not 

we should apply each image pre-processing step as described in 

Section II.D). Therefore, we further randomly divided the 

original training scan set (from 65) to 55 for training and 10 for 

validation, and used the validation error to identify the best 

model for each group in the ablation study. The best models 

identified by the validation set were evaluated on the same 

evaluation set with 600 motion replicates. The validation 

studies confirmed that the strategies presented in this paper are 

indeed optimal by incorporating all these image-preprocessing 

steps. However, we also found that using the validation set 

resulted in larger motion estimation errors for most of the 

groups, likely because of the reduction of the training scan set. 

This suggests that using a validation set can be helpful when 

there is an abundant training set, but might cause the opposite 

effect with a limited training set. We only evaluated the model 

trained without the validation set in the remaining of this paper. 

For more details about training and results please refer to the 

supplementary material. 

Fig. 5.  Two examples (selected from the 600 evaluation cases) of the image frames with simulated motion (No MC) and after motion correction (DeepMC). 

The two examples correspond to two different patients. The images were displayed after intensity normalization. The top example shows the early frames with 

rectangle motion (motion magnitude 16.1mm), and the bottom example shows the late frames with triangle motion (peak motion magnitude 12.5mm). In both 

examples, the LV myocardium and LV blood pool ROIs drawn on the last frame are displayed on each image frame.  
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D. Evaluation of Motion Estimation Performance 

 Fig. 5 shows two examples (selected from the 600 

evaluation cases) of the image frames with simulated motion 

(No MC) and after motion correction (DeepMC). The first 

example shows the early frames with rectangle motion (motion 

magnitude 16.1 mm) in sagittal view, and the second example 

shows the late frames with triangle motion (peak motion 

magnitude 12.5 mm) in axial view. In both examples, the LV 

myocardium and LV blood pool ROIs drawn on the last frame 

are displayed on each image frame. It can be seen that without 

motion correction, motion caused mis-alignments between the 

ROIs and the actual LV myocardium and blood pool. In 

comparison, DeepMC can provide excellent motion correction 

consistently across all the image frames.  

Fig.6 shows the average of the motion estimation error (mm) 

as a function of frame index for the motion correction with 

DeepMC, individual registration (MC-IR), chain registration 

(MC-CR), CNN (MC-CNN), chain CNN (MC-CNN-C) and no 

motion correction results on the 600 evaluation image 

sequences with simulated ground truth motion. As can be seen, 

although the individual registration performed well for the late 

frames, it completely failed for the early frames, due to the 

substantial tracer distribution difference between the early 

frames and the late reference frame. The chain registration only 

performed better than the individual registration for the early 

frames, but the errors for the early frames are still much larger 

than those without applying motion correction. A clear trend of 

increasing error from the late phase to the early phase can also 

be observed, suggesting that the registration error can 

accumulate for the chain registration. The chain CNN also 

presented a trend of error increase towards the early frames, and 

the results are slightly better than the conventional registration 

methods. In comparison, the CNN performed much better than 

the chain CNN. The proposed DeepMC obtained the lowest 

error level overall, especially in the challenging early blood 

pool phase and the transition phase.  

Fig. 6.  The average motion estimation error (mm) by frame for the different 

methods on the 600 evaluation image sequences. The first two data points of 

MC-IR with large motion errors are shown in a zoomed region for better 

illustration. 

The proposed DeepMC was also much faster 

computationally as compared with both conventional 

registration methods. The computation runtime on the 600 cases 

(23 registrations per image sequence) for each registration 

method was more than 20 hours, whereas the proposed 

DeepMC approach only took less than 40 min using a batch size 

of 1. The CNN methods were slightly faster than DeepMC, 

which took about 30 min. 

A comprehensive summary of the evaluation results is 

shown in Table III. In terms of all the error types, the individual 

registration method (MC-IR) resulted in the worse results 

among all the methods. The chain registration (MC-CR) was 

superior to MC-IR, but was overall no better or even worse than 

the results without applying motion correction, mainly due to 

the large motion estimation errors in the early phases (see Fig.6). 

Both the CNN (MC-CNN) and the chain CNN (MC-CNN-C) 

outperformed the conventional registration methods. 

Particularly, the CNN performed much better than the chain 

CNN in terms of motion estimation error and MBF bias, but 

interestingly produced larger fitting errors than the chain CNN. 

Note that this is consistent with the conventional registration, 

where the fitting residuals from the chain registration was also 

smaller than the individual registration. The proposed DeepMC 

method obtained the lowest motion estimation errors and MBF 

biases for all the three motion types. The weighted fitting 

residuals for the DeepMC method were also the lowest among 

all the comparison groups and are highly consistent with the 

fitting residuals of the motion-free images. 

Table III. A comprehensive summary of the evaluation results. For MBF bias, 

* indicates the results’ mean is significantly different from zero based on 

paired t-test (5% significance level). Bold font indicates the best performer in 

each group. 

Error Type Method 
Square 

Motion (200) 
Triangle 

Motion (200) 
Spike  

Motion (200) 

Mean Motion  

Error (mm) 

No MC 4.6±1.7 2.6±1.0 4.7±1.3 

MC-IR 6.4±2.2 6.4±2.2 6.4±2.1 

MC-CR 4.6±1.0 4.7±0.9 4.5±0.9 

MC-CNN 1.8±0.8 1.6±0.7 1.7±0.7 

MC-CNN-C 4.4±3.0 3.0±1.5 4.7±2.6 

DeepMC 1.0±0.6 0.9±0.5 0.8±0.4 

Max Motion 

Error (mm) 

No MC 13.3±3.7 12.8±3.7 18.4±1.8 

MC-IR 46.7±19.7 46.4±19.9 46.2±19.2 

MC-CR 11.7±2.6 11.8±2.5 11.7±2.4 

MC-CNN 5.5±2.5 5.3±2.5 5.9±2.4 

MC-CNN-C 10.1±5.9 8.2±3.7 10.7±5.6 

DeepMC 3.6±2.0 3.2±1.9 3.6±1.9 

MBF  

Bias (%) 

No MC -9.8±33.0%* -7.4±16.2%* -4.0±17.3%* 

MC-IR 62.3±51.3%* 62.1±52.0%* 64.8±53.1%* 

MC-CR 6.0±7.4%* 5.9±7.3%* 6.1±6.9%* 

MC-CNN 1.2±5.9* 1.7±5.7* 2.2±5.6* 

MC-CNN-C -2.3±10.4* -2.8±12.5* -3.0±10.6* 

DeepMC -0.5±4.6% -0.1±3.9% 0.4±3.6% 

Fitting 

Residuals 

(Bq/mL×min2) 

No MC 1.43×10-3 9.54×10-4 2.16×10-3 

MC-IR 6.04×10-3 6.00×10-3 6.22×10-3 

MC-CR 1.81×10-3 1.77×10-3 1.81×10-3 

MC-CNN 3.33×10-3 2.92×10-3 3.11×10-3 

MC-CNN-C 7.47×10-4 7.82×10-4 7.93×10-4 

DeepMC 6.29×10
-4 6.06×10

-4 6.24×10
-4 

Motion Free 6.20×10-4 6.20×10-4 6.20×10-4 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2021.3082578, IEEE

Transactions on Medical Imaging

9 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. x, 2020 

 

The MBF bias for each evaluation sample can be positive or 

negative, therefore the mean values of the MBF bias across all 

the samples indicate if there is a systematic bias, whereas the 

standard deviation shows the averaged absolute MBF bias. 

From Table III it can be observed that both conventional 

registration-based methods and both CNN-based methods 

resulted in systematic biases in MBF measurement. After 

motion correction using DeepMC, both the mean and standard 

deviation of the MBF bias caused by motion were reduced to a 

minimal level. Fig.7 and Fig.8 show the scatter plots and Bland-

Altman plots of the MBF estimation between the motion-

corrected and motion-free groups. Similar to our previous 

observations, the proposed DeepMC obtained the best 

performance among all the compared methods and obtained 

highly consistent MBF results with the motion-free results.  

Fig. 7.  The scatter plots of the MBF estimation between the motion-corrected 

and motion-free groups. Each one of the parallel clusters (20 in total) represents 

the results from the 30 motion replicates derived from each of the 20 motion-

free patient scans. 

E. Patient Evaluation with Real Motion 

As was explained in section II.I, due to a lack of the motion 

ground-truth, the motion correction for the patient studies with 

real motion was evaluated qualitatively and semi-

quantitatively. After motion correction using our proposed 

method, most of the motions were correctly compensated by 

visual checking of the dynamic series, although underestimated 

motion was found for a few frames due to the low image quality 

caused by intra-frame motion or image noise. Examples of the 

early and late frames before and after motion correction 

selected from three patient scans were given in Fig. 9. The LV 

myocardium and blood pool ROIs drawn on the last frame were 

overlaid with the images. The white arrows pointed out the 

mismatches caused by motion, which were successfully 

corrected by the proposed DeepMC method. Residual 

mismatches can be observed in the images from all the other 

methods (pointed by the green arrows), which were caused by 

either over-estimated or under-estimated motion, as can be seen 

from the detected motion magnitude beneath each image (using 

DeepMC as reference).   

Fig. 8.  The Bland-Altman plots of the MBF estimation between the motion-

corrected and motion-free groups. Each one of the parallel clusters (20 in total) 

represents the results from the 30 motion replicates derived from each of the 20 

motion-free patient scans. Note the scale difference of the y-axis for different 

groups.  

 

Table IV. Summary of the MBFs and fitting residuals measured on the 10 

cases with real motion for different motion correction methods. The results 

measured on both the whole LV myocardium (Global) and the RCA ROIs 

were reported. 

 MBF (mL/min/g) Fitting Residuals (Bq/mL×min2) 

Global RCA Global RCA 

No MC 1.64±0.86 1.90±1.17 4.5±2.4×10-4 9.6±6.6×10-4 

MC-IR 3.23±1.96 3.81±2.11 2.6±4.7×10-3 2.3±1.9×10-3 

MC-CR 1.91±1.04 1.66±1.00 1.1±1.0×10-3 1.1±0.8×10-3 

MC-CNN 1.65±0.90 1.91±1.28 4.1±2.5×10-4 7.5±4.7×10-4 

MC-CNN-C 1.64±0.86 1.78±1.01 5.1±5.2×10-4 9.5±7.6×10-4 

DeepMC 1.61±0.84 1.83±1.08 4.4±2.8×10-4 7.8±4.7×10-4 

 

Table IV summarizes the MBFs and fitting residuals 

measured on the whole LV myocardium and the RCA ROIs for 
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different motion correction methods. Both DeepMC and MC-

CNN obtained smaller fitting residuals than the fitting residuals 

without motion correction (No MC), although the fitting 

residuals from MC-CNN was smaller than those from DeepMC. 

Nonetheless, we recommend only using the fitting residuals as 

a reference for evaluation, as the fitting residuals alone does not 

necessarily imply motion correction quality. For example, in 

Table III, MC-CNN obtained smaller motion estimation error 

and MBF bias compared with MC-CNN-C, albeit larger fitting 

residuals. Without the motion ground-truth, visual checking 

might be more suitable. The visual observations (as shown in 

Fig.9) suggest that DeepMC obtained better motion correction 

results than the other methods, and we only focus on DeepMC’s 
results from now on.  

For DeepMC, on average 7.9±2.1 frames with motion larger 

than 3 mm were identified for each subject, and the averaged 

detected motion within those frames with motion larger than 3 

mm was 4.9±0.6 mm. Fig.10 shows the percentage difference 

between the MBFs measured on the images before and after 

motion correction using DeepMC. From the scatter plot, it can 

be seen that the RCA MBF differences have a wider distribution 

compared with the global MBF differences. An average of 

4.4%±2.4% and 5.5%±4.8% absolute percentage difference 

before and after motion correction were measured for global 

MBF and RCA MBF, respectively. This suggests that the RCA 

MBF is more susceptible to the effect of motion. Note that 

although median or severe motion were identified in all of these 

cases, the global MBF and RCA MBF differences before and 

after motion correction were not always large.  

Fig. 9.  Examples of the image frames from three subjects before and after 

motion correction selected from three patient scans. The LV myocardium and 

blood pool ROIs drawn on the last frame were overlaid with the images (the 

blood pool ROI was not shown on the selected slice for Subject C). The white 

arrows pointed out the mismatches caused by motion when no motion 

correction was applied (noMC). The green arrows pointed out the residual 

mismatches after motion correction in some of the results. The motion 

magnitudes detected by different motion correction methods were also shown 

beneath the images. 

Particularly, in the examples shown in Fig.9, the first two 

rows are images from the same Subject A, where the detected 

motions by DeepMC in the shown early and late frames were 

6.9 mm and 4.5 mm, respectively. The global MBF and RCA 

MBF differences before and after motion correction were 8.3% 

and 11.7%, respectively. The shown early frame in Subject B 

corresponds to a detected motion of 8.9 mm, and the late frame 

in patient Subject C corresponds to a detected motion of 6.3 

mm. However, the global MBF and RCA MBF differences 

before and after motion correction were 6.3% and -3.7% for 

Subject B, and -1.6% and -3.7% for Subject C. As can be seen, 

not all motions have a large impact on MBF estimation. 

Fig. 10.  Scatter plots of the percentage difference between the MBFs measured 

on the images before and after motion correction using DeepMC.  

IV. DISCUSSION 

Compared with other medical image registration problems 

where the target image and reference image share a lot of 

similarities, motion detection and correction in dynamic images 

is much more challenging since the target image can be 

dramatically different from the reference image due to the rapid 

tracer kinetics. Therefore, we proposed to use a 3D 

bidirectional-LSTM neural network to better utilize both local 

and nonlocal temporal information in the 4D dynamic image 

data for motion detection. The proposed network is capable of 

learning the typical spatial trace distribution change in time 

(also indicated by the ability to detect the EQ frame), which can 

help motion estimation. Multiple image-preprocessing methods 

customized to our unique problem were also designed to further 

boost the motion detection performance.  Due to the lack of the 

ground-truth motion, we trained and evaluated the network 

based on selected motion-free patient data incorporated with 

various types of simulated motion. Compared with the 

conventional registration methods, the proposed DeepMC 

method obtained substantially lower motion estimation error 

and more consistent MBF estimations with the motion-free 

results. In addition, the qualitative evaluation on 10 patient 

datasets with clinical observed real motion also demonstrated 

the effectiveness of the proposed method. 

Training the network took about 40 hours each for the early 

phase and late phase. However, once the networks were trained, 

processing one dynamic image sequence only took about 4 

seconds, which is 30 times faster than the registration-based 

methods. Since the proposed method was a post-processing 

method that applies on the already-reconstructed images and 

does not rely on the sinogram raw data, it can be easily 

integrated into the clinical workflow. 

This work has several limitations that lead to future 

investigations. First, only rigid translation motion was 

considered in this study. At Yale New Haven Hospital, only 

translation motion was typically corrected manually, with 

occasional rotational motion correction. Correcting for rotation 

motion or even non-rigid motion can potentially further 
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improve MBF quantification accuracy. Even though rotational 

and nonrigid motions can be simulated during training, 

depending on the severity of the rotational and nonrigid 

motions, whether it is necessary to consider these more 

complicated corrections needs further investigation due to the 

limited image resolution and the presence of noise in 82Rb PET 

studies. Additionally, to what extent our proposed DL method 

could be pushed for these more complicated and challenging 

motion estimations before breaking down is also of our great 

interest and will be explored in future studies.  Second, this 

work focused on the inter-frame motion caused by the voluntary 

body motion and breathing pattern change of respiratory 

motion. However, the intra-frame motion caused by respiratory 

motion, cardiac motion and body motion can result in blurred 

or distorted frames, which might compromise the inter-frame 

motion estimation. Using frames with short durations might 

lead to improved temporal resolution with reduced intra-frame 

motion, which could potentially lead to better performance for 

DeepMC. However, shorter frame durations will also amplify 

image noise, which could affect motion estimation 

performance. Therefore, the trade-off between temporal 

resolution and signal-to-noise ratio needs to be further 

investigated. Alternatively, combining the proposed approach 

with other approaches that focus on intra-frame motion 

estimation and correction could further improve quantitative 

accuracy of MBF, and will be explored in the future. Third, in 

this paper we focused more on the technical development and 

demonstrated the feasibility of deep-learning based motion 

correction for dynamic cardiac PET, where evaluation was 

performed using motion-free patient data with simulated 

motion. The motion-free patient cases were selected visually, 

which may not be truly motion-free. In addition, the simulated 

motion might not mirror real clinical motion (e.g., the motion 

pattern or magnitude). For the small cohort of patient data with 

real motion, due to the lack of the ground-truth motion, the 

motion estimation results were only evaluated qualitatively and 

only the differences brought by the proposed motion correction 

was shown. Future work will include acquiring more patient 

data with manually labelled motions, and comparing the MBF 

with motion correction to clinical outcome data. Fourth, 

currently the CT-based attenuation correction was performed 

by manual registration between the CT and the static PET 

reconstruction. Misalignments between CT and each PET 

dynamic frame were not accounted for because frame-by-frame 

attenuation map realignment was not available in our PET/CT 

system. This can cause attenuation artifacts [41] on the dynamic 

frames and potentially impact quantification. Furthermore, the 

networks are being trained with simulated motion applied to 

motion-free patient cases, which as a result are not affected by 

this activity-attenuation mismatch. The trained networks might 

not expect this mismatch appeared on real patient cases and 

suboptimal performance can be expected. Preferably motion 

should be estimated from preliminary reconstructions without 

attenuation correction, and then the estimated motion 

parameters should be applied to the activity and attenuation pair 

to obtain fully motion-corrected activity reconstructions. 

Training and evaluating networks based on PET activity images 

before attenuation correction will be explored in the future 

studies. Fifth, in the current approach the image windows were 

cropped around the mid-point of the septal wall, which were all 

manually identified. However, this step can be easily achieved 

by designing an image-processing method or training another 

neural network.  

In addition to the future works discussed in the previous 

paragraph, some other future directions are also worth 

exploring, including segmenting out the heart region first to 

exclude the influence of extra-myocardial activity, training and 

evaluation based on images in the resliced views and applying 

the proposed approach to dynamic imaging of other organs (for 

example, brain imaging) and dynamic SPECT imaging. 

V. CONCLUSION 

This work presents an automatic motion correction framework 

for dynamic cardiac PET using deep learning. The proposed 

LSTM-based network can detect and correct inter-frame rigid 

motion for both early frames with fast tracer distribution change 

and later frames with slower tracer kinetics. Evaluation with 

patient data demonstrated the effectiveness of motion 

correction and improved accuracy of MBF quantification. 
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