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ABSTRACT

We present computational techniques for automatically generating
algebraic (polynomial equality) invariants for algebraic hybrid sys-
tems. Such systems involve ordinary differential equations with
multivariate polynomial right-hand sides. Our approach casts the
problem of generating invariants for differential equations as the
greatest fixed point of a monotone operator over the lattice of ide-
als in a polynomial ring. We provide an algorithm to compute this
monotone operator using basic ideas from commutative algebraic
geometry. However, the resulting iteration sequence does not al-
ways converge to a fixed point, since the lattice of ideals over a
polynomial ring does not satisfy the descending chain condition.

We then present a bounded-degree relaxation based on the con-
cept of “pseudo ideals”, due to Colón, that restricts ideal member-
ship using multipliers with bounded degrees. We show that the
monotone operator on bounded degree pseudo ideals is convergent
and generates fixed points that can be used to generate useful al-
gebraic invariants for non-linear systems. The technique for con-
tinuous systems is then extended to consider hybrid systems with
multiple modes and discrete transitions between modes.

We have implemented the exact, non-convergent iteration over
ideals in combination with the bounded degree iteration over pseudo
ideals to guarantee convergence. This has been applied to automat-
ically infer useful and interesting polynomial invariants for some
benchmark non-linear systems.

Categories and Subject Descriptors: F.3.1(Specifying and Veri-
fying and Reasoning about Programs):Invariants,
C.1.m(Miscellaneous): Hybrid Systems.

Terms: Theory, Verification.

Keywords: Ordinary Differential Equations, Hybrid Systems, Al-
gebraic Geometry, Invariants, Verification, Conservation Laws.

1. INTRODUCTION
An invariant of a system is an over-approximation of all the

reachable states of the system. Invariants are useful facts about the
dynamics of a given system and are widely used in numerous ap-
proaches to verifying and understanding systems. As such, they are
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used to establish temporal properties of systems such as safety, sta-
bility, termination, progress and so on [12, 3, 18, 15]. The invariant

generation problem consists of automatically computing useful in-
variants given the description of a dynamical system. The problem
of generating invariants of an arbitrary form is known to be compu-
tationally intractable. However, approaches based on discovering
invariants of pre-specified forms for a given class of systems have
been successful in generating non-trivial invariants.

In this work, we present a technique for generating algebraic in-
variants for algebraic systems whose variables evolve according to
nonlinear ordinary differential equations with multivariate polyno-
mial right-hand sides. Our work attempts to synthesize polynomial
invariants such as:

V

i pi = 0, without a priori restrictions on the
number of conjuncts involved. In order to discover polynomial in-

variants for a given system, we formulate the notion of an invariant

ideal I over the ring of polynomials, such that for any polynomial
p ∈ I , its Lie derivative also belongs to I . Further, we express
an invariant ideal as a fixed point of a monotonic refinement oper-
ator over ideals. We present techniques to find an invariant ideal
as a fixed point using Tarski iteration. Hence, our approach can
be viewed as an abstract interpretation framework for continuous
systems described by ODEs [5].

The main contributions of this work are as follows: (A) we present
invariant generation over continuous vector fields as the fixed point
of a monotonic refinement operator over ideals, (B) we present an
algorithm for computing the refinement operator over ideals, and
(C) we formulate the refinement operator over pseudo ideals, orig-
inally defined by Colón [4], by restricting the degree of the polyno-
mial multipliers involved in ideal membership. The resulting itera-
tion scheme is shown to converge in finitely many steps. The tech-
nique of generating algebraic invariants can be extended to handle
continuous algebraic systems with holonomic constraints as well
as hybrid systems by computing post-conditions over ideals. We
have implemented a prototype system inside Mathematica (tm) that
has been used to compute interesting invariants for numerous non-
linear systems.

Recently, there has been a considerable volume of work towards
analyzing algebraic systems using techniques from convex opti-
mization, commutative algebraic and semi-algebraic geometry [20,
23, 19, 14, 2, 21, 15, 16, 13]. Many of these techniques, including
our previous work, synthesize invariants by computing constraints
on the unknown coefficients of a single or fixed number of polyno-
mial equalities (inequalities) of a bounded degree, that guarantee
that any solution will also be inductive [20, 23, 19, 10, 13]. Bound-
ing the degree of the invariant is a restriction, only in theory. It has
been repeatedly demonstrated that useful low-degree polynomial
invariants can be found that can help prove properties of complex
systems [16, 15, 10]. A more subtle restriction, as pointed out by



Platzer et al. [16] is over the number of conjuncts involved in an in-
variant. For instance, our previous work as well as that of Matringe
et al. [20, 13] consider single polynomial equalities. This form re-
mains very useful for systems, where we find that a vast majority of
invariants that take the form of conservation laws can be efficiently
discovered. However, useful invariants may have a more com-
plex Boolean structure involving conjunctions of invariants such
as

V

pi = 0, wherein each pi = 0 is not an invariant by itself
(Cf. Example 1.1, below). Gulwani and Tiwari consider invariants
of an arbitrary but fixed Boolean structure (including disjunctions).
However, their encoding restricts the domain of proofs to an es-
sentially finite domain. In our experience, this restriction is much
more meaningful to discrete programs wherein invariants with unit
coefficients are the norm, than to hybrid systems where parameters
may assume irregular values such as 3.1415726.... Such parame-
ters may require more bits to represent or extra variables (dimen-
sions) and constraints. Nevertheless, this technique has been used
successfully to analyze the stability of complex adaptive flight con-
trol system [22]. The work of Carbonell and Tiwari is remarkable
in that it does not assume bounded degree or restrictions on the
conjuncts [2]. A key restriction however is that it applies mostly
to linear systems. Recently, Platzer et al. have proposed a pow-
erful theorem-proving framework for verifying properties of hy-
brid systems through differential logic that extends dynamic log-
ics using differential operators [16, 15]. The technique can also
synthesize invariants by parameterizing the coefficients of an un-
known polynomial to aid in its proof. Efficiency is guaranteed by
using local reasoning involving a subset of the state variables and
the dynamics. Our techniques, including most of the other invari-
ant generation techniques discussed here, can be naturally lifted to
this framework, and thus be used to discharge proof obligations for
larger, more complex hybrid system involving many more variables
such as collision avoidance maneuvers and automatic train control
systems [17].

Example 1.1. Consider the system

dx1

dt
= x2,

dx2

dt
= x3, . . . ,

dxn

dt
= x1 ,

with the initial state x1, . . . , xn = (0, . . . , 0) for n > 2. Our

approach can establish the invariant

x1 = 0 ∧ x2 = 0 ∧ . . . ∧ xn = 0 ,

without explicitly integrating the system dynamics. However, no

single assertion xi = 0 can be established without simultaneously

asserting that xj = 0 for all other j ∈ [1, n]. The same holds for

any fixed number of assertions.

Our overall approach can be viewed as an abstract interpreta-
tion over the lattice of ideals, in the form of a Galois connection
between the lattice of algebraic varieties representing a set of con-
tinuous states and ideals over a polynomial ring whose zeroes de-
fine the algebraic variety [5]. Our previous work on linear systems
also used an abstract interpretation scheme to compute linear in-
equality invariants for such systems [21]. Therein, we considered
the lattice of polyhedral cones and used heuristic widening opera-
tors to force convergence. Here, we consider polynomial equality
invariants for algebraic systems. Further, our approach here does
not employ widening operators. Instead, we prove that our iter-
ation over the lattice of degree-bounded pseudo ideals converges
in finitely many steps. In this respect, our work presents a lot of
similarities with the seminal work of Karr for discovering affine
invariants of programs [11]. This also raises the exciting possibil-
ity of a randomized algorithm for generating invariants efficiently
using pseudo ideals along the lines of Gulwani and Necula [9].

The rest of the paper is organized as follows: Section 2 presents
some basic notions from commutative algebra, Section 3 details the
fixed point characterization for continuous systems and presents the
algorithm for computing the refinement operator, Section 4 extends
our technique to pseudo ideals, Section 5 briefly discusses an ex-
tension to hybrid system, Section 6 presents experiments. We con-
clude by discussing some of the related work and future extensions
to our technique.

2. PRELIMINARIES
In this section, we define the basic concepts from commutative

algebraic geometry that will be used throughout this work. Let R
denote the field of real numbers and C, the field of complex num-
bers obtained as the algebraic closure of R. Many of the primitives
discussed here can be specialized to any field K (of characteristic
0). Unless, otherwise mentioned, we use K to denote one of the
fields Q,R, or C. Let x1, . . . , xn denote a set of variables, collec-
tively represented as ~x. The K[~x] denotes the ring of multivariate
polynomials over a given field K.

A monomial over ~x is of the form x
r1

1 x
r2

2 · · ·x
rn

n , succinctly
written as ~x~r, wherein each ri ∈ Z≥0. A term is of the form
c · m where c ∈ K, c 6= 0 and m is a monomial. The degree
of a monomial ~x~r is given by

Pn

i=1 ri = ~1 · ~r. The degree of a
multivariate polynomial p is the maximum over the degrees of all
monomials m that occur in p with a non-zero coefficient.

Def. 2.1 (Ideal). An ideal I ⊆ K[x1, . . . , xn] is a set of poly-

nomials with the following properties:

• 0 ∈ I ,

• If p1, p2 ∈ I then p1 + p2 ∈ I ,

• If p ∈ I and q ∈ K[~x] then pq ∈ I .

The ideal generated by a set P = {p1, . . . , pm} ⊆ K[~x], n ≥ 0,

of polynomials is written as

〈〈P 〉〉 = {

m
X

i=1

gipi | pi ∈ P, gi ∈ K[~x], for i ∈ [1, m]}

Ideal I is finitely generated if I = 〈〈P 〉〉 for some finite set P ,
called the basis of I . The Hilbert basis theorem states that ev-
ery ideal I ⊆ K[x1, . . . , xn] is finitely generated [6]. Informally,
ideals can be viewed as representing some of the polynomial con-
sequences of a finite set of polynomials. The algebraic variety (or
simply the variety) corresponding to an ideal I (denoted V(I)) con-
sists of a set of points ~x such that p(~x) = 0 for all p ∈ I . Similarly,
an algebraic variety X corresponds to the ideal I = I(X) con-
taining all the polynomials p ∈ K[~x] such that p(~x) = 0 for all
~x ∈ X.

Theorem 2.1. Let I be an ideal generated by P : {p1, . . . , pm}.
Then for any polynomial p, if p ∈ I then {p1 = 0, . . . , pm = 0} |=
(p = 0).

Theorem 2.1 states that in order to establish the entailment ϕ |=
(p = 0), it is sufficient to test membership of p in the ideal gen-
erated by ϕ. The “converse” of Theorem 2.1 is true, provided the
field K is algebraically closed: if ϕ |= p = 0 then pm ∈ I for
some m > 0. In general, we can ensure that index m = 1 for all p
by computing the ideal radical of I [6].

Def. 2.2 (Ideal Membership Problem). Given a finite set of

polynomials P ⊆ K[~x] and a polynomial p ∈ K[~x] the ideal

membership problem decides whether p ∈ 〈〈P 〉〉.



In general, there are multiple techniques for deciding the ideal
membership problem. The theory of Groebner basis [6] and Wu’s
method [8] remain popular for deciding ideal membership. We now
present the notion of Syzygies. Syzygies will be used in this work
to define a monotonic operator over ideals.

Def. 2.3 (Syzygies). Let P : {p1, . . . , pm} be a finite set of

polynomials. A Syzygy of P is a vector of polynomials (g1, . . . , gm)
such that

P

i gipi = 0. We denote the set of all Syzygies of P as

SYZ(P ).

If ~g : (g1, . . . , gm) and ~h : (h1, . . . , hm) are syzygies of P ,

then so are ~g +~h and p~g : (pg1, . . . , pgm) for any p ∈ K[~x]. As a
result, the set of all syzygies form a module over the ring K[~x]. In-
formally, a module can be viewed as the analog of a “vector space”
over a ring. Whereas the notion of a vector space is defined over a
field K, modules generalize vector spaces over rings.

Theorem 2.2. For a finite set P : {p1, . . . , pm} of polynomi-

als, the syzygies SYZ(P ) has the following property:

1. SYZ(P ) forms a module over K[~x].

2. SYZ(P ) is a finitely generated module for the ring polyno-

mials K[~x] over a field K.

3. The generators of SYZ(P ) can be computed using the Groeb-

ner basis G of P .

PROOF. A proof is available from Cox et al. [6] or Adams&
Loustaunau [1].

We note that once a Groebner basis G is computed, the genera-
tors of the Syzygy bases can be computed by modifying the stan-
dard Büchberger’s algorithm for computing the Groebner basis [1].

2.1 Algebraic Templates
A template polynomial p is a polynomial whose coefficients are

linear expressions over a set of unknowns A.

Def. 2.4 (Template). Let A be a set of template variables and

Lin(A) be the domain of all linear expressions over variables in A
of the form c0 +c1a1 + . . .+cnan, ci ∈ K. A template over A, X
is a polynomial in Lin(A)[~x]. An A-environment is a map α that

assigns a value in K to each variable in A, and by extension, maps

each expression in Lin(A) to a value in K, and each template in

Lin(A)[~x] to a polynomial in K[~x].

Example 2.1. Let A = {a1, a2, a3}, hence Lin(A) = {c0 +
c1a1 + c2a2 + c3a3 | c0, . . . , c3 ∈ R}. An example template is

(2a2 + 3)x1x
2
2 + (3a3)x2 + (4a3 + a1 + 10). The environment

α ≡ 〈a1 = 0, a2 = 1, a3 = 2〉, maps this template to the polyno-

mial 5x1x
2
2 + 6x2 + 18.

The generic template polynomial over x1, . . . , xn of degree m >
0 is formed by considering all monomial terms ~x~r such that

P

i ri ≤
m.

2.2 Vector Fields
For the remainder of this discussion, let K = R. A vector

field F over an (open) set X ⊆ Rn is a map F : X 7→ Rn

mapping each point ~x ∈ X to a vector F (~x) ∈ Rn. A vec-
tor field F is continuous if the map F is continuous. A polyno-
mial vector field F : X 7→ R[~x]n is specified by a map F (~x) =

〈p1(~x), p2(~x), . . . , pn(~x)〉, wherein p1, . . . , pn ∈ R[~x]. A system
of ordinary differential equations D ,

dx1

dt
= p1(x1, . . . , xn)
...

dxn

dt
= pn(x1, . . . , xn)

specifies the evolution of variables (x1, . . . , xn) ∈ X over time t.
Such a system can be viewed as a vector field F (~x) : 〈p1(~x), . . . , pn(~x)〉.

Def. 2.5 (Lie Derivative). Given a continuous vector field F (~x) :
〈f1, . . . , fm〉, the Lie derivative of a continuous and differentiable

function f(~x) is given by

LF (f) = (∇f) · F (~x) =

n
X

i=1

„

∂f

∂xi

· fi

«

Henceforth, wherever the vector field F is clear from the context,
we will drop subscripts and use L(p) to denote the Lie derivative
of p w.r.t F .

Example 2.2. Consider a mechanical system expressed in gen-

eralized position co-ordinates (q1, q2) and momenta (p1, p2) de-

fined using the following vector field:

F (p1, p2, q1, q2) :
˙

−2q1q
2
2 , −2q2

1q2, 2p1, 2p2

¸

The Lie-derivative of q2
1 − q2

2 is given by 4(p1q1 − p2q2).

A continuous vector field F is locally Lipschitz continuous [25],
if for each ~x ∈ X there exists an open subset S(~x) ⊆ X and
a constant L(~x) ≥ 0 such that for all ~y, ~y′ ∈ S(~x), ||F (~y′) −
F (~y)|| ≤ L(~x)||~y′−~y||. In general, all polynomial vector fields are
locally Lipschitz continuous, but not necessarily globally Lipschitz
continuous over an unbounded domain X.

2.3 Invariants
We first define algebraic systems and their semantics.

Def. 2.6 (Algebraic System). An algebraic system over ~x is

a pair A : 〈F, X0〉 such that F : ~x 7→ R[~x]n is a polynomial

vector field and X0 ⊆ Rn is an algebraic variety specifying the set

of initial states of the system.

Note: For algebraic system 〈F, X0〉, we assume that X0 is spec-
ified by the generators of its ideal I(X0) ⊆ R[~x].

Given an algebraic system A, its time trajectories are defined as
a vector-valued function over time whose gradient coincides with
the value of the vector field F at all times.

Def. 2.7. Given an algebraic system A : 〈F, X0〉, a continuous

and differentiable function τ : [0, T ) 7→ Rn is a time trajectory of

A upto time T > 0 if it satisfies the following conditions:

1. τ (0) ∈ X0,

2. ∀s ∈ [0, T ), dτ
dt
|t=s = F (τ (s)).

The Lipschitz continuity of the vector field F , ensures that given
~x = ~x0, there exists a time T > 0 and a unique time trajectory
τ : [0, T ) 7→ Rn such that τ (t) = ~x0.

Theorem 2.3 (Picard-Lindelöf). Let F be a (time indepen-

dent) polynomial vector field over an open subset U ⊆ Rn. For

any initial value ~x0 ∈ U there exists a time interval [0, T ), T > 0
and a unique, continuous and differentiable (local) time trajectory
τ : [0, T ) 7→ U of F such that τ (0) = ~x0.



The proof of this theorem involves an iteration of a contractive

operator over the space of continuous functions that is termed the
Picard iteration.

Def. 2.8 (Invariant Set). A set X is an invariant of a given

algebraic system A iff all time trajectories of the system lie in X.

Example 2.3. Consider the system from Ex. 2.2 using the ini-

tial set of initial states defined by

X0 : {~x : (p1, q1, p2, q2) | p
2
1 +p

2
2−4 = 0, q

2−1 = 0, q2 = 0} .

Using our approach, we show that the following set is an invariant

of the system above starting from the initial set of states X0:

H(p1, p2, q1, q2) : p
2
1 + p

2
2 + q

2
1q

2
2 − 4 = 0 .

Incidentally, H is an expression for the Hamiltonian of the system

in the co-ordinates ~p, ~q.

In this work, we wish to study algebraic invariants that are de-
scribed by the common zeros of a (finite) set of multivariate poly-
nomials inR[~x], i.e, invariant sets that are algebraic varieties. Nat-
urally, algebraic invariants can be described by their corresponding
ideals inR[~x] as follows:

Def. 2.9 (Invariant Ideal). An ideal I ⊆ R[~x] is invariant for

the algebraic system 〈F, X0〉 iff

1. (∀p ∈ I, ~x0 ∈ X0) p(~x0) = 0, alternatively, I ⊆ I(X0).

2. (∀p ∈ I), L(p) ∈ I .

Informally, an invariant ideal I is a sub-ideal of I(X0) that is
closed under the action of computing Lie derivatives of the polyno-
mials in the ideal. We wish to prove that any invariant ideal is truly
invariant w.r.t. to all the time trajectories of a system. Before we do
so, we first prove the following key fact about the time trajectories
of a system with polynomial right hand sides.

Lemma 2.1. Let trajectory τ : [0, T ) 7→ Rn be the unique

solution to the algebraic ODE d~x
dt

= F (~x), for initial value ~x0 ∈
U . Then τ is analytic around t = 0.

PROOF. This theorem is a special case of the more general Cauchy-
Kowalowskaya theorem for partial differential equations [7].

Using the fact that all derivatives exist for a trajectory around the
initial state ~x0, we show the soundness of the invariant ideal.

Theorem 2.4. Let I be an invariant ideal for the system A :
〈F, X0〉. For any time trajectory τ : [0, T ) 7→ Rn of A, τ (t) ∈
V(I) for all t ∈ [0, T ).

PROOF. We establish that p(τ (t)) = 0 for all p ∈ I and t ∈
[0, T ). Consider p ∈ I . It follows that since I ⊆ I(X0), p(τ (0)) =

0. Let pm : L(m)(p) denote the mth Lie derivative of p, and let
sm : pm(τ (0)).

We first prove by induction that pm ∈ I for all m ≥ 0, and thus
sm = 0 for all m ≥ 0. This holds for m = 0. Assuming that
pk ∈ I , we have pk+1 = L(pk) ∈ I . Therefore, since I ⊆ I0, it
follows that sk+1 = 0.

Consider the function f(t) = p(τ (t)). We have df

dt
= g(t) =

L(p)(τ (t)). The function f(t), satisfies the differential equation
df

dt
= g(t). We can show that g(t) = L(p)(τ (t)) is continuous (in

fact it is analytic around t = 0). First of all, f(0) = 0, g(0) =
0 and all derivatives of g(t) vanish at t = 0. Secondly, by the
continuity of g(t), the differential equation for f(t) must have a

unique solution in the entire interval [0, T ). We know that f(t) = 0
is one possible solution for t ∈ [0, T ). By uniqueness, it must be
the only possible solution in the interval [0, T ). As a result we
conclude that p(τ (t)) = 0 for all t ∈ [0, T ).

Therefore, τ (t) ∈ V(I) for each t ∈ [0, T ).

Example 2.4. Returning to Ex. 2.3,
˙̇

p2
1 + p2

2 + q2
1q2

2 − 4
¸̧

is

an invariant ideal. Its value as well as that of its Lie derivative are

both zero at the initial state of the system.

3. INVARIANT IDEALS
In this section, we present techniques for computing invariant

ideals using a characterizations of such ideals as the fixed point
under a suitably defined refinement operator.

3.1 Fixed-Point Characterization
Let A : (X0, F ) be an algebraic system and I be an invariant

ideal for A. We define a monotonic operator over the lattice of
ideals such that any invariant ideal I can be seen as a the pre fixed
point of this operator.

Def. 3.1 (Refinement Operator). Let I be an ideal and A be

an algebraic system. The refinement of the ideal I w.r.t A is defined

as:

∂A(I) : I(X0) ∩ {p ∈ I | L(p) ∈ I} .

In other words, the refinement operator intersects I(X0) with

the set of those polynomials in I whose Lie derivatives w.r.t F also

lie in I .

An ideal I is a pre fixed point of ∂A iff I ⊆ ∂A(I). We show
that the refinement operator is a monotone map over the lattice of
ideals ordered by inclusion and furthermore, any pre fixed point of
this operator ∂A is an invariant of the system A.

Lemma 3.1. For an ideal I , its refinement ∂A(I) is also an

ideal.

PROOF. It suffices to prove that the set

I
′ = {p ∈ I | L(p) ∈ I} ,

is an ideal and note that ideals are closed under intersections.
First of all, we note that 0 ∈ I ′. Secondly, if p1, p2 ∈ I ′ then

p1 + p2 ∈ I and furthermore, L(p1 + p2) = L(p1) + L(p2) ∈ I .
Therefore, p1 + p2 ∈ I ′.

Finally, for each p ∈ I ′, we wish to show that g · p ∈ I ′ for
g ∈ K[~x]. First, we observe that g · p ∈ I . Using the product rule
for Lie derivatives, L(gp) = pL(g) + gL(p) Note that, both the
terms belong to the ideal I and therefore L(gp) ∈ I . As a result,
gp ∈ I ′.

We now relate invariant ideals to pre fixed points of ∂A.

Theorem 3.1. An ideal I is invariant for a system A iff I ⊆
∂A(I).

PROOF. [⇐] We will establish that (a) I ⊆ I(X0), and (b)
∀p ∈ I,L(p) ∈ I . Note that,

I ⊆ ∂A(I)

⊆ I(X0) ∩ {p ∈ I | L(p) ∈ I}

We deduce that I ⊆ I(X0) and also I ⊆ {p ∈ I | L(p) ∈ I}. As
a result, we conclude that I is an invariant ideal of A.
[⇒] Similarly, if ∀p ∈ I,L(p) ∈ I , then I ⊆ {p ∈ I | L(p) ∈
I}. This combined with the fact that I ⊆ I(X0) completes the
proof.



Finally, we establish the monotonicity of ∂A.

Lemma 3.2. The refinement operator ∂A is monotonic in the

lattice of ideals ordered by set inclusion.

PROOF. Let I1 ⊆ I2, we would like to establish that ∂A(I1) ⊆
∂A(I2). This follows directly from the observation that

{p ∈ I1 | L(p) ∈ I1} ⊆ {p ∈ I2 | L(p) ∈ I2} .

The monotonicity of the operator ∂A allows us to apply the Tarski-
Knaster fixed point theorem to deduce the existence of a maximal
invariant ideal w.r.t set inclusion.

Theorem 3.2. There exists a maximal fixed point ideal I∗ such

that ∂AI∗ = I∗.

PROOF. The operator ∂A is monotone over ideals I . The lat-
tice of ideals is closed under infinite intersection. Applying Tarski-
Knaster theorem we conclude the existence of a maximal fixed
point I∗.

Note that the maximal fixed point ideal is the strongest possible
invariant for the given system A. We first demonstrate an algebraic
technique to compute the refinement operator ∂A. This enables us
to carry out Tarski iteration I0 : K[~x0], I1 : ∂A(K[~x0]), . . . to
compute I∗. However, this iteration may not necessarily converge
to a fixed point in finitely many steps.

Therefore, we present a relaxation of the refinement operator us-
ing the notion of degree-bounded pseudo-ideals due to M. Colón [4].
Using pseudo-ideals, we will provide an efficient as well as conver-
gent scheme that for computing an invariant ideal I ⊆ I∗. In prac-
tice, we combine exact refinement with pseudo-ideal relaxation in
order to obtain a powerful technique for discovering algebraic in-
variants.

3.2 Computing Refinement
In this section, we present the exact scheme for computing the

refinement operator. Our approach first computes a finitely gener-
ated Syzygy module (informally, a “vector-space” over the ring of
polynomials naturally derived from an ideal, Cf. [1, 6]). Given an
ideal I = 〈〈p1, . . . , pm〉〉, our approach for computing ∂A(I) is as
follows

1. We first characterize a module G(I) defined as follows:

G(I) = {(g1, . . . , gm) |

m
X

j=1

gjL(pj) ∈ I} .

We show that G(I) is a finitely generated module, obtained
by projecting the basis of the Syzygy module of the ideal I =
〈〈L(p1), . . . ,L(pm), p1, . . . , pm〉〉.

2. Given the matrix of polynomials H ∈ K[~x]k×m, whose
rows represent the generators of the module G(I), we com-
pute

∂A(I) : I(X0) ∩

**

H.

0

B

@

p1

...
pm

1

C

A

++

.

Derivative Module: Let I be an ideal and F a polynomial vector
field. The derivative module of the ideal I w.r.t F is defined as
follows:

G(I) = {(g1, . . . , gm) |
m

X

j=1

gjL(pj) ∈ I} .

We now show that module G(I) ⊆ K[~x]m completely character-
izes ∂A(I). Furthermore, we show that it is finitely generated. For
the ensuing discussion, let I = 〈〈p1, . . . , pm〉〉 and I ′ be the set

I
′ : {p ∈ I | L(p) ∈ I} .

We note that ∂A(I) = I(X0)∩ I ′. The following lemma provides
a link between the derivative module G(I) and the ideal I ′.

Lemma 3.3. p ∈ I ′ iff ∃(g1, . . . , gm) ∈ G(I), p =
P

j gjpj .

PROOF. Let p =
Pm

i=1 hipi ∈ I ′. By definition, p ∈ I and
L(p) ∈ I . Our goal is to show that p ∈ I ′ ⇐⇒ (h1, . . . , hm) ∈
G(I). Note that by product rule

L(p) =
m

X

i=1

L(hi)pi +
X

i

hiL(pi) .

Since
Pm

i=1 L(hi)pi ∈ I . Therefore, L(p) ∈ I iff
P

i hiL(pi) ∈
I . By definition of G(I), we note that this is equivalent to requiring
(h1, . . . , hm) ∈ G(I).

We now demonstrate that G(I) can be computed and represented
using a finite set of generators. This can be proved readily using
non-constructive techniques along the lines Hilbert’s basis theorem,
as shown below. We provide a constructive technique for comput-
ing G(I) through Syzygy modules.

Lemma 3.4. The module G(I) is finitely generated.

PROOF. We first note that G(I) is a submodule of K[~x]m, since

∀p ∈ K[~x], (pg1, . . . , pgm) ∈ G(I) .

The result follows from the observation that K[~x] is a Noetherian
ring and a theorem in commutative algebra that states that any sub-
module of Bm for a Noetherian ring B is finitely generated (here
B = K[~x]) [1].

The generators of G(I) can be computed by using the standard
techniques for computing Syzygies. Let S be the generators for the
syzygy module corresponding to the ideal:

I : 〈〈L(p1), . . . ,L(pm), p1, . . . , pm〉〉 .

As a result,

S = {(g1, . . . , g2m) |
m

X

i=1

giL(pi) +
m

X

i=1

gi+mpi = 0 .}

Let S be obtained by projecting m components away from S:

S = {(g1, . . . , gm) | (g1, . . . , gm, gm+1, . . . , g2m) ∈ S} .

The generators of the module S are obtained by projecting the last
m components away from the generators of S.

Theorem 3.3. G(I) ≡ S.

PROOF. Let (g1, . . . , gm) ∈ S. It follows that there exists a set
of polynomials (g1, . . . , gm, gm+1, . . . , g2m) such that

m
X

j=1

giL(pi) +
m

X

j=1

gi+mpi = 0 .

As a result, we conclude that
P

i giL(pi) ∈ I and thus (g1, . . . , gm) ∈
G(I).



Input: A : 〈I(X0), F 〉 (Algebraic System), I : 〈〈p1, . . . , pm〉〉
(Ideal)

Result: ∂AI
begin

I1 ← (L(p1), . . . ,L(pm), p1, . . . , pm)
M1 ← SyzygyModuleGenerators(I1)
M ← ProjectOutColumns(M1, m + 1, 2m)
I ′ ← MatrixVectorProduct(M, (p1, . . . , pm))
∂A(I) ← IdealIntersection(I ′, I(X0))

end
Algorithm 1: ComputeRefinement

Computational Complexity. The computational complexity of the
refinement step shown in Algorithm 1 depends on the number of
variables in the system A and the degree of the vector field. In
practice, the computation of Syzygy bases require an expensive
Gröbner basis computation, whose complexity is not well under-
stood, in general. Similarly, the ideal intersection is also based on
a Gröbner basis computation.

As mentioned earlier, the downward Tarski iteration on the lat-
tice of ideals does not converge since ideals over K[~x] do not ex-
hibit the descending chain condition unless K[~x] is an Artinian

ring. In practice, the rings Q[~x], R[~x], C[~x] of rational, reals and
complex polynomials are not Artinian.

We now present a convergent technique based on a relaxation of
the refinement procedure to consider degree bounded pseudo ide-

als. Such a relaxation also yields a convergence guarantee for the
Tarski iteration as well as providing an efficient refinement opera-
tor. Furthermore, the techniques developed in this section prove to
be quite useful as a starting point for the pseudo ideal relaxation.

4. INVARIANT PSEUDO IDEALS
In this section, we present our technique over the domain of

pseudo ideals. The notion of pseudo ideals was originally formu-
lated by M. Colón [4] in order to generate invariants for programs.
We first recall some basic properties of pseudo ideals.

4.1 Pseudo Ideals
Let Kd[~x] ⊆ K[~x] denote the set of polynomials p such that

degree(p) ≤ d. The set Kd[~x] can be viewed as a vector space
generated by a basis set consisting of all monomials over ~x whose
degrees are at most d.

Def. 4.1 (Pseudo Ideal). The pseudo ideal generated by a fi-

nite set of polynomials P = {p1, . . . , pm} using multipliers with

degree bound d is given by:

PSEUDO-IDEALd(P ) = {
X

i

gipi | gi ∈ Kd[~x]} .

Thus PSEUDO-IDEALd(P ) consists of polynomial combinations of

the elements in P using multipliers drawn from Kd[~x].

A pseudo ideal differs from an ideal as follows: whereas an
ideal generated by P considers polynomial combinations of the
elements of P using arbitrary polynomial multipliers drawn from
K[~x], a pseudo ideal restricts the multipliers to a degree bounded
set Kd[~x]. The basic properties of pseudo ideals can be formulated
clearly once we establish that pseudo ideals form a vector space

over K.

Lemma 4.1. For any finite set of polynomials P = {p1, . . . , pm},
the pseudo ideal PSEUDO-IDEALd(P ) is a vector space over K,

whose dimension is at most
`

n+d

d

´m
, where n = |~x|.

PROOF. Note that if p1, . . . , pl ∈ PSEUDO-IDEALd(P ) then for
any λ1, . . . , λl ∈ K,

P

i λipi ∈ PSEUDO-IDEALd(P ). As a re-
sult, PSEUDO-IDEALd(P ) forms a vector space over k.

Each element p of PSEUDO-IDEALd(P ) is represented by some
tuple 〈g1, . . . , gm〉 ∈ Kd[~x]m, such that

Pm

i=1 gipi = p. The di-
mension of the vector space is bounded by (dim(Kd[~x]))m, which
yields the required upper bound.

Example 4.1. Consider the set of polynomials P = {x2
1 −

1, x2
2 − 1, x2

3 − 1}. The parametric form (template polynomial)

ai1x1 + ai2x2 + ai3x3 + bi for i = 1, 2, 3 represents the un-

known multipliers from k1[x1, x2, x3]. As a result, any polynomial

in PSEUDO-IDEAL1(P ) can be written as

p =
P3

i=1(ai1x1 + ai2x2 + ai3x3 + ai4)(x
2
i − 1)

= a11x
3
1 + a12x

2
1x2 + a13x

2
1x3 + a14x

2
1

+ a21x1x
2
2 + a22x

3
2 + a23x

2
2x3 + a24x

2
2

+ a31x1x
2
3 + a32x2x

2
3 + a33x

3
3 + a34x

2
3

− (a11 + a21 + a31)x1 − (a12 + a22 + a32)x2

− (a13 + a23 + a33)x3 − (a14 + a24 + a34)

Def. 4.2 (Pseudo-Ideal Degree). The pseudo ideal degree of

I : PSEUDO-IDEALd(p1, . . . , pm) is defined as

degree(I) : d + max{degree(p1), . . . , degree(pm)} .

The degree of a pseudo ideal places an upper limit on the degrees
of the polynomials in it. Also, degree(PSEUDO-IDEALd(P )) > d,
unless all polynomials in P are of degree 0.

Representation: Any pseudo ideal I : PSEUDO-IDEALd(P ) can
be represented implicitly as a parametric polynomial form π[~c] whose
degree coincides with that of I , along with linear constraints on the
coefficients of the parametric form:

π[~c] :

(

X

α

cα~x
α |M~c = 0

)

.

In practice, many of the constraints on cα are of the form cα = 0.
We, therefore, optimize the representation of pseudo ideals by re-
moving the corresponding monomials from the parametric poly-
nomials, thus retaining a list of monomials that are part of the
parametric polynomial and linear constraints involving their coef-
ficients.

Lemma 4.2. A set of polynomials I is a pseudo ideal iff there

exists parametric polynomial π[~c] and a matrix M such that:

I : {π[~c] |M~c = 0} .

PROOF. Let ~c1, . . . ,~cN generate the kernel of the matrix M and
pi = π[~ci] be a polynomial. Thus, I = PSEUDO-IDEAL0(p1, . . . , pN).
Conversely, let I = PSEUDO-IDEALd(P ) and D = degree(I).
Since I is a vector space, we may conceive of I as a subspace of
KD[~x]. Let π[~c] be the generic polynomial form of degree at most
D with coefficients ~c. We can express the pseudo ideal I , a sub-
space of KD[~x], as the kernel of a matrix M .

We provide an example of a parametric representation.

Example 4.2. PSEUDO-IDEAL1(P ) from Example 4.1 can be

represented using a parametric polynomial represented implicitly

here for lack of space:

π :
X

ci,j,k~x
(i,j,k)

s.t.

»

i, j, k ≥ 0, i + j + k ≤ 3,
(i, j, k) 6= (1, 1, 1)

–

.

By convention, let the coefficient cα in a template correspond to

the monomial ~xα. Note that there is no term in π corresponding



to x1x2x3 (i.e., c1,1,1 = 0). The following constraints on ~c define

PSEUDO-IDEAL1(P ):

c0,0,0 + c2,0,0 + c0,2,0 + c0,0,2 = 0
c1,0,0 + c3,0,0 + c2,1,0 + c2,0,1 = 0
c0,1,0 + c1,2,0 + c0,3,0 + c0,2,1 = 0
c0,0,1 + c1,0,2 + c0,1,2 + c0,0,3 = 0

In practice, our data structures currently list the set of terms of

the parametric polynomials explicitly, storing the constraints in a

matrix.

Membership Testing: Testing whether polynomial p belongs to J :
PSEUDO-IDEALd(P ) is performed by checking if the coefficients
of p satisfy the linear constraints M~c = 0, corresponding to J .
Note that if degree(p) > degree (J), then we may conclude that
p 6∈ J .

Intersection: Informally, intersection of two pseudo ideals P1, P2

is performed by conjoining their constraints M1~c = 0 and M2~c =
0. In general, however, the monomial terms involved in the para-
metric representations of P1 and P2 differ. Therefore, (A) we first
compute a common set of monomials that occur both in P1 and
P2’s parametric form. (B) For P1(P2) we drop the coefficients cor-
responding to monomials that do not appear in P2( resp. P1) by
setting them to zero. This corresponds to removing the correspond-
ing columns from the matrix M1(resp. M2) to obtain a matrix M ′

1

(resp. M ′
2). Furthermore, the monomial terms corresponding to

these columns are eliminated. (C) Finally, we conjoin the two ma-
trices M ′

1 and M ′
2 as

MP1∩P2
:

»

M ′
1

M ′
2

–

.

Example 4.3. We recall the pseudo ideal PSEUDO-IDEAL1(P )
from Exs. 4.1 and 4.2. The degree 1 pseudo ideal Q = (x1 −
1, x2 − 1, x3 + 1) is represented by a generic degree two polyno-

mial
P

i+j+k≤2 di,j,kxi
1x

j
2x

k
3 with the following constraint on its

coefficients:

d1,0,0 + d0,1,0 + d0,0,1 = d0,0,0 + d2,0,0 + d0,2,0+
d0,0,2 + d1,1,0 + d0,1,1 − d1,0,1

.

PSEUDO-IDEAL1(P )∩ PSEUDO-IDEAL1(Q) is computed as fol-

lows: PSEUDO-IDEAL1(P ) has a higher degree template polyno-

mial. We therefore zero away all variables with degree 3 or above.

This corresponds to removing the corresponding coefficient vari-

ables from the constraints for PSEUDO-IDEAL1(P ). Finally, we

conjoin the two sets of constraints and obtain a pseudo ideal rep-

resented by a generic template of degree two

π12 = e0,0,0 + e2,0,0x
2
1 + e0,2,0x

2
2 + e0,0,2x

2
3 .

with the following constraint on its coefficients:

e0,0,0 + e2,0,0 + e0,2,0 + e0,0,2 = 0

This is, in fact, a representation of PSEUDO-IDEAL0(P ).

Lemma 4.3. Let I1, I2 be two pseudo ideals. It follows that

degree(I1 ∩ I2) ≤ min(degree(I1), degree(I2)).

Refinement: We discuss the computation of a refinement operator
over pseudo ideals. Let I be a pseudo-ideal of degree dI . Let
π[~c] be the parametric form associated with I and M~c = 0 be the
constraints on the coefficients of π[~c]. We seek to compute

∂F (I) : {p ∈ I | LF (p) ∈ I} ,

wherein the operator ∂F (I) is now interpreted over sets of polyno-
mials that are pseudo-ideals instead of ideals. Refinement proceeds
as follows:

1. We first compute the parametric form π′ : LF (π[~c]). This
will result in a polynomial whose coefficients are linear ex-
pressions over ~c.

2. We derive constraints over ~c to ensure that LF (π) ∈ I . Let
M ′~c = 0 be the constraints thus derived.

3. We conjoin M ′~c = 0 with the original constraints M~c = 0
and simplify based on these new constraints.

Example 4.4. Consider the pseudo ideal PSEUDO-IDEAL0(x
2
1−

1, x2
2 + 2x1 − 2x2

1) represented using parametric polynomial

π[~c] : c2,0x
2
1 + c0,2x

2
2 + c1,0x1 + c0,0

with constraints

M~c :

»

c2,0 + c1,0 + c0,0 = 0
c1,0 − 2c0,2 = 0

Let F be the vector field (x2x1,−x1). The Lie derivative of π is

π′ = 2c2,0x1(x2x1) + 2c0,2x2(−x1) + c1,0(x2x1)
= 2c2,0x

2
1x2 + (c1,0 − 2c0,2)x1x2

We would like π′ ∈ I . Note that the terms x2
1x2 and x1x2 do not

exist in π[~c]. As a result, we obtain the constraints:

c2,0 = 0 ∧ c1,0 − 2c0,2 = 0 .

The refinement can be expressed using the form π, satisfying these

constraints as well as the original constraints over π[~c]. After sim-

plification, we obtain

π1 : c0,2x
2
2 + c1,0x1 + c0,0 .

Note that the term for x2
1 is no longer present due to the constraint

c2,0 = 0. The constraints on the coefficients after simplification

are:

c1,0 − 2c0,2 = 0 ∧ c1,0 + c0,0 = 0 .

This is in fact, PSEUDO-IDEAL0(x
2
2 + 2x1 − 2).

Lemma 4.4. If I is a pseudo ideal, then the set

∂F (I) : {p ∈ I | LF (p) ∈ I}

is also a pseudo ideal.

PROOF. After computing the parametric representation of I , the
procedure for refinement yields a parametric form π1 with con-
straints on its coefficients. This is a pseudo ideal following Lemma 4.2.

We now state the theorem guaranteeing convergence of the over-
all Tarski iteration over pseudo ideals.

Lemma 4.5. Consider an infinite sequence of pseudo ideals

I1 ⊇ I2 ⊇ I3 · · · . There exists a limit N > 0 s.t. IN = IN+1 =
· · · . In other words, any descending chain of pseudo ideals con-

verges to a limit.

PROOF. Pseudo ideals are in fact finite dimensional vector spaces.
If Ij ⊃ Ij+1 then the dimension of Ij+1 is strictly lower than that
of Ij . As a result the descending chain of pseudo ideals converges
in finitely many steps.

Finally, we show that the fixed point obtained is an invariant
ideal. Before doing so, we first relate pseudo ideals to ideals.



Lemma 4.6. Given finite set P ⊆ K[~x], PSEUDO-IDEALd(P ) ⊆
〈〈P 〉〉.

Theorem 4.1. Let PSEUDO-IDEALd(P ) be a pre-fixed point over

pseudo ideals. It follows that 〈〈P 〉〉 is an invariant ideal.

PROOF. Let P = {p1, . . . , pk}. We note that each of the gen-
erators of I(X0) belong to PSEUDO-IDEALd(P ) and thus to 〈〈P 〉〉.
As a result, I(X0) ⊆ 〈〈P 〉〉. By the property of pseudo ideal refine-
ment, for each p ∈ P , L(p) ∈ PSEUDO-IDEALd(P ). As a result,
L(p1), . . . ,L(pk) ∈ 〈〈P 〉〉. Therefore, for every p =

P

i gipi ∈
〈〈P 〉〉, we have L(p) =

P

i giL(pi) +
P

i L(gi)pi ∈ 〈〈P 〉〉.

Complexity: Let N be the dimension of PSEUDO-IDEALd(I0) at
the start of the iteration. Each pseudo ideal encountered is, in gen-
eral, a subspace of N represented by a N ×N matrix. As a result,
each iteration requires a refinement followed by intersection, re-
quiring time O(N2). We may iterate for at most N steps, leading
to a O(N3) complexity. On the other hand, checking for conver-
gence is also a O(N3) operation. If we repeatedly check for con-

vergence, we have a O(N4) worst case, where N = O(
`

n+d

d

´m
).

In practice, we maintain d to be small d = 0, 1, 2, and observe
convergence in number of steps much smaller than N .

5. EXTENSIONS TO HYBRID SYSTEMS
We have thus far presented a technique for generating invariants

of continuous systems with polynomial ODEs. In this section, we
extend our discussion to hybrid systems with discrete modes and
transitions between them.

Continuous Systems with Constraints: We first consider an exten-
sion to continuous algebraic systems 〈X0, F 〉 in order to consider
the effect of holonomic constraints on the state-space. In other
words, the evolution of the system is constrained to remain inside a
domain X. We assume that X ⊆ Rn is an algebraic variety whose
corresponding ideal is I(X).

Def. 5.1 (Constrained Algebraic System). A constrained al-

gebraic system consists of 〈F, X0, X〉 wherein F is a polynomial

vector field, X0 is a variety describing possible initial states and

X is an algebraic constraint (commonly termed an invariant).

The semantics of the system are modified to ensure that all time
trajectories τ : [0, T ) 7→ Rn satisfy the condition τ (t) ∈ X for
all t ∈ [0, T ). Naturally, any invariant of such a system will also,
in general, be subsumed by X. Let ∂F be a refinement operator
over ideals (resp. pseudo ideals) defined for the system 〈F, X0〉
in the absence of any constraints. In the presence of constraint set
X represented by ideal I(X), the iteration scheme is modified as
follows:

In+1 = F(In) = (I(X0) ∩ ∂F (In))⊕ I(X) (1)

wherein ⊕ denotes the ideal addition (i.e, the union of generators
of the ideal), representing the intersection of the corresponding al-
gebraic varieties. Over pseudo ideals, we may interpret ⊕ as the
vector space addition of the two subspaces represented by the argu-
ments.

Theorem 5.1. Let F denote the operator in Eq. 1. The follow-

ing facts hold about F both over ideals as well as pseudo ideals.

Monotonicity: I ⊆ J then F(I) ⊆ F(J).

Inclusion: F(J) ⊆ I(X).

5.1 Hybrid Systems
We now extend our notions to hybrid systems.

Def. 5.2 (Algebraic Hybrid System). An algebraic hybrid sys-

tem is a tuple 〈S ,T 〉, wherein S = {S1, . . . , Sk} consists of k dis-

crete modes and T denotes discrete transitions between the modes.

Each mode Si ∈ S consists of an algebraic system 〈X0,i, Fi, Xi〉.
Each transition τ : 〈Si, Sj , Pij〉 ∈ T consists of an edge Si →

Sj along with an algebraic transition relation Pi,j [~x, ~x′] specifying

the next state ~x′ in relation to the previous state ~x. Note that the

transition is guarded by the assertion ∃~x′Pij [~x, ~x′].

Discrete transitions are treated in the process of generating in-
variants using the post-condition operator.

Def. 5.3 (Post-Conditions). The post condition of a (pseudo)

ideal Ii over a transition τ : 〈Si → Sj , Pij [~x, ~x′]〉 is defined as:

post(Ii, τ ) : (∃~x) [Ii[~x]⊕ Pij [~x, ~x
′]] .

We recall that the operation ⊕ over ideals represents the inter-
section of the associated variety and is computed by combining the
generators of Ii and Pij . The elimination of the variables ~x from
the resulting ideal is performed by computing the Groebner basis
using an elimination ideal [6]. The computation of post conditions
over pseudo ideals is described in detail elsewhere [4].

Thus far, we have computed invariant ideals for continuous al-
gebraic systems as fixed points over ideals as well as pseudo ide-
als. For the case of hybrid systems with multiple modes, our goal
is to compute multiple invariant ideals, one for each mode of the
system. Therefore, we lift our notions from invariant (pseudo) ide-
als to a map that associates (pseudo) ideals to each mode S ∈ S :
η : S 7→ P(K[~x]), s.t. η(Si) ⊆ K[~x]. The notion of an invariant
(pseudo) ideal for an algebraic system is extended to an invariant
(pseudo) ideal map.

Def. 5.4 (Invariant Ideal Map). A map η : S 7→ P(K[~x]) is

an invariant map iff the following facts hold:

Initiation and Mode Constraints: ∀Si : 〈X0,i, Fi, Xi〉, we have

I(Xi) ⊆ η(Si) ⊆ I(X0,i). In other words, the invariant

associated with mode Si must respect the initial condition

and constraints at Si.

Continuous Sub-system: ∀Si : 〈X0,i, Fi, Xi〉, the ideal η(Si)
is a fixed point w.r.t Fi: η(Si) ⊆ [I(X0,i) ∩ ∂Fi

η(Si)] ⊕
I(Xi) .

Discrete Transitions: ∀τ : 〈Si, Sj , Pij〉, the ideals η(Si) and

η(Sj) must satisfy consecution: η(Sj) ⊆ post(η(Si), τ ).

In order to compute the invariant map, we start with an initial
map η(0) such that η(0)(Si) = K[~x], and update using the rule

η(i+1) = G(η(i)) such that

η
(i+1)(S) = I(Xi)⊕

2

6

6

6

6

4

T

τ :S′→S post(η(i)(S′), τ )
| {z }

Discrete Transition
∩ I(X0,i) ∩ ∂Fi

(η(i)(S))
| {z }

Continuous System

3

7

7

7

7

5

The extensions to pseudo ideals proceeds along similar lines. The
initial map is set to η(0)(Si) = Kd[~x] for the case of iteration over
pseudo ideals.

6. EXPERIMENTS
In this section, we describe our prototype implementation and

some results on some interesting non-linear systems.



Table 1: Results of various runs of our technique. Note: Ideal

Iter: number of initial refinement steps, Pseudo Degree: degree

of pseudo ideal, Steps: number of steps taken to converge, #

Inv: number of generators in invariant ideal.

System Var Ideal Pseudo Steps Time # Inv
Iter Degree (sec)

Volterra-3D 3 1 1 3 1.1 4
Coup-Spring 5 1 2 23 21 4
Collision2 12 1 1 3 570 10
Collision3 16 1 0 2 4 4
Collision3 16 2 0 3 196 14
Collision3 16 1 1 6 372 15
Collision3 16 3 0 3 12900 13

6.1 Implementation.
The techniques described here have been implemented inside

Mathematica(tm) for finding invariants of continuous systems, us-
ing Singular package interface to Mathematica(tm). We have im-
plemented the Syzygy-based refinement procedure as well as the
one based on pseudo ideals. In practice, our iteration scheme con-
sists of running a small and fixed number of iterations of the exact
refinement operator. The resulting generators form the generators
of a pseudo ideal for some fixed degree d. The iteration is then
carried out further over the lattice of pseudo ideals until conver-
gence. The soundness of this scheme follows from the fact that
∂m

A (I) ⊆ I(X0) for all I and from the soundness of the pseudo
ideal fixed point. The Mathematica(tm) implementation along with
the systems analyzed and invariants computed will be made avail-
able on-line1.

6.2 Experiments
We now present the results obtained over some interesting bench-

mark systems. Table 1 summarizes the parameters used in our exe-
cutions and the performance of our technique at a glance.

3D-Lotka-Volterra System: We considered the following 3D Lotka
Volterra System over variables x, y, z:

F(x, y, z) : (xy − xz, yz − yx, zx− zy) .

The initial states lie over the vertices of an unit cube:

X0 : (x2 − 1, y
2 − 1, z

2 − 1) .

The initial pseudo ideal involved 18 unknown parameters in our
initial template. We obtained the following invariants:

p1 : −1− 2yz − y2z2 + y4z2 + 2y3z3 + y2z4,

p2 : −x− y + y2z + xz2 + 3yz2 − y3z2 + z3 − 2y2z3 − yz4,

p3 : −x + xy2 + y3 − z + 3y2z − y4z + yz2 − 2y3z2 − y2z3,

p4 : −3 + x2 − y2 − 4yz + 2y3z − z2 + 4y2z2 + 2yz3

All of them are mutually dependent on each other. Further, attempt-
ing to obtain these using generic templates of degree 4 requires
126 × 4 unknowns as opposed to 18 unknowns that were used.

Coupled Spring-Mass System: Consider a mechanical system mod-
eling the undamped/unforced oscillation of two masses coupled us-
ing springs with constants k1, k2 and masses m1, m2 tuned such
that k1

m1
= k2

m2
= k. Furthermore, we assume that m1 = 5m2.

1 Cf.\url{http://www.cs.colorado.edu/
~srirams/algebraic-invariants}.

p1 : 576 + 1200v2
1 + 625v4

1 + 2880v1v2 + 3000v3
1v2+

528v2
2 + 4150v2

1v2
2 + 1320v1v

3
2 + 121v4

2

−1860kx2
2 + 2750kv2

1x2
2 + 1600kv1v2x

2
2

+710kv2
2x2

2 + 525k2x4
2,

p2 : 240x1 + 250v2
1x1 + 600v1v2x1 + 110v2

2x1

+396x2 − 525v2
1x2 − 260v1v2x2 − 131v2

2x2 − 105kx3
2,

p3 : 24 + 25v2
1 + 60v1v2 + 11v2

2 + 50kx1x2 + 5kx2
2

p4 −21 + 25v2
1 + 10v1v2 + 6v2

2 + 25kx2
1 + 5kx2

2

Figure 1: Invariant obtained for coupled mass spring system.

p1 : e2
1 + e2

2 − b2, p2 : d2
1 + d2

2 − a2

p3 : e1 − r2θ + θy2, p4 :− a + d1 − r2ω + ωx2

p5 :b− e2 − r1θ + θy1,
p6 :− br1 + by1 + e1r2 − e1y2 − e2r1 + e2y1

p7 :br2 − by2 − e1r1 + e1y1 − e2r2 + e2y2

p8 :− d2 − r1ω + ωx1

p9 :ad2r2 − ad2x2 + d1d2r2 − d1d2x2 − r1d
2
2r1 + d2

2x1

p10 :ar1 − ax1 − d1r1 + d1x1 − d2r2 + d2x2

Figure 2: Invariants obtained for the two aircraft collision

avoidance system.

The resulting system consists of variables ~x : (x1, x2, v1, v2, k)
representing the displacements, velocities and the spring constant.
The evolution is specified using the vector field:

F(~x) :
`

v1, v2,−kx1 −
k
5
(x1 − x2), k(x1 − x2), 0

´

.

The initial condition is set to x1 = x2 = 0, v1 = 1, v2 = −1.
This resulted in the invariant ideal shown in Fig. 1. p3 and p4 are
seen to be conservation laws satisfying dp3

dt
= dp4

dt
= 0. How-

ever, p1, p2 are mutually dependent on themselves as well as p3, p4.
Finding these invariants parametrically require a degree 6 template
with 4 × 462 unknowns. Our initial pseudo ideals involves an ini-
tial parametric form with 84 unknowns. The choice of m2 = 5m1

in this example was arbitrary. We found interesting invariants of a
similar form for all other choices we experimented with including
m1 = 2m2, 3m2, 11m2, . . ..

Collision Avoidance Maneuvers: Finally, we consider the alge-
braic abstraction of the collision avoidance system analyzed re-
cently by Platzer and Clarke [16] and much earlier by Tomlin et
al. [24]. The two airplane collision avoidance system consists of the
variables (x1, x2) denoting the position of the first aircraft, (y1, y2)
for the second aircraft, (d1, d2) representing the velocity vector for
aircraft 1 and (e1, e2) for aircraft 2. In addition, the parameters
ω, θ, a, b, r1, r2 are also represented as system variables. The dy-
namics are modeled by the following differential equations:

x′
1 = d1 x′

2 = d2 d′
1 = −ωd2 d′

2 = ωd1

y′
1 = e1 y′

2 = e2 e′1 = −θe2 e′2 = θe1

a′ = 0 b′ = 0 r′1 = 0 r′2 = 0

We note that the form of the equations are invariant under time
reversal t 7→ −t. The initial set

»

x1 = y1 = r1 ∧ x2 = y2 = r2 ∧ d1 = a ∧
d2 = 0 ∧ e1 = b ∧ e2 = 0

–

represents a collision. Fig. 2 presents the invariants. The initial
parametric form had 252 unknowns. p1, . . . , p5 and p8 are conser-
vation laws. The remaining invariants are dependent on p1, . . . , p5



and p8. Our tool also was run on a larger system with 3 aircrafts
consisting of 16 variables in all (removed three parameters from the
model). Table 1 shows the behavior of our implementation under
various values for the number of initial iterations and the starting
degree of the pseudo ideal. The blowup involved in going from
2 initial iterations to 3 is interesting. The overall time required to
compute three iterations of the exact refinement remains roughly 5
seconds for this case. However, the result has roughly 230 polyno-
mials. Most of the time is spent parameterizing the initial pseudo
ideal, computing its derivatives and so on. We hope to reimplement
parts of our system inside C++/Java to avoid such a slowdown in
the future.
Conclusions: Thus far, we have presented an invariant generation
technique using a fixed point iteration over ideals and pseudo ide-
als. A prototype implementation of our technique has been shown
to compute interesting and non-trivial invariants for systems that
would currently be considered non trivial. In the future, we hope
to explore extensions to compute inequality invariants as well as
to integrate these techniques inside a theorem proving environment
such as KeYmaera [17].
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