
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely. event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in

reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly

to order.

UMI
A Bell &Howell Information Company

300 North Zeeb Road. Ann Arbor. M148106-1346 USA

3131761-4700 800:521-0600

Order Number 9519432

Automatic labeling, modeling and recognition for line-drawing

interpretation

Cheng, Tse, Ph.D.

University of Hawaii, 1994

U·M·!
300N. ZeebRd.
AnnArbor,MI48106

AUTOMATIC LABELING, MODELING AND RECOGNITION

FOR LINE-DRAWING INTERPRETATION

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE

UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOcrOR OF PHILOSOPHY

IN

ELECTRICAL ENGINEERING

DECEMBER 1994

By

Tse Cheng

Dissertation Committee:

David Y. Y. Yun, Chairperson

Robert Cole

Vassilis Syrmos

Tong-Jyh Lee

Galen Sasaki

Copyright 1994

by

Tse Cheng

All Rights Reserved

ill

To the memory ofmy mother, Hui-Qun Xu.

IV

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. David Y. Y. Yun, from the bottom of my

heart for the years of guidance and encouragement which made this research realizable and

enjoyable. I have been particularly impressed by his clear logical thinking and have

benefited greatly from his helpful criticisms over every discussion.

I am honored to have Dr. Robert Cole, Dr. Vassilis Syrmos, Dr. Tong-Jyh Lee,

and Dr. Galen Sasaki as my dissertation committee members. They have offered me lots

of valuable help and useful comments during this work. I also want to express my

appreciation to Dr. H. M. Chen Garcia for discussion and suggestions at each research

group meeting.

The content of Chapter 3 is primarily based on the results of a project envisioned

and supervised by Dr. Yun and supported, in part, by the Department of Business and

Economic Development, state of Hawaii through Pacific International Center for High

Technology Research (PICHTR). I highly appreciate Mr. Bill Kern for his project

management, Mr. Javed Khan, and Mr. Hui Liu for their intellectual contribution to this

project. I sincerely thank Mr. Xiangrning Feng, Mrs. Grace Ge, Mr. Zong Ling, Mr. Jun

Yu and all other members of the Labs. of Intelligent and Parallel Systems (LIPS) and

Image/Data Processing Lab. (IDPL) for their valuable assistance and suggestions

throughout the whole implementation and dissertation preparation. Special thanks to

Charles Lee for his exhaustive program testing and model base construction and Mr. Kui­

Yu Chang for helping me with English.

I gratefully acknowledge the 4-year financial support provided by the Industrial

Technology Research Institute, Taiwan, Republic of China. Finally, I would like to give

my heartfelt thanks to my wife, Orchid Ong. Her love and understanding gave me the

strength to complete this work.

v

ABSTRACT

With the advent of the information era, line-drawing with digital form has become

increasingly important in engineering applications. Unfortunately, there is a big media gap

between paper and computer. For line-drawings to be useful and manageable they must

be archived and understood by computers. However, the mere gathering of those

digitized line-drawings certainly does not provide an economic way to store and retrieve.

The need has always existed for a real-time system that automates the conversion process

to obtain the symbolic descriptions of line-drawing images. Current technology for line­

drawing interpretation involves excessive human supervision and is not easily extendible.

Furthermore, it also fails to achieve both objectives of minimal model storage requirement

and object matching time.

A general paradigm for both 2D and 3D line-drawing interpretation systems is here

developed and demonstrated with three major phases: labeling, modeling and recognition.

The labeling module extracts a set of features known as symbolic labels of the

corresponding objects from the image. These strategically selected labels facilitate

automatic modeling and fast recognition dramatically.

For interpreting 2D line-drawings, an automatic symbol segmentation approach for

the electrical engineering drawings via the process of image blurring is first devised. A

hierarchical neural network is then deployed for symbol modeling and recognition, thereby

minimizing human intervention and achieving incremental extendibility capability.

For interpreting 3D line-drawings. a linear-time-complexity polygon-division-based

surface extraction algorithm for the projected trihedral objects is proposed. Then, a

robust and efficient labeling approach is developed under a Cascaded Constrained

Resource Planning (CCRP) model. Its near-linear-time complexity to the classical NP-

VI

complete problems enables extensive usage of symbolic labels for modeling and

recognition. Traditional viewer-centered object representation and matching approach

requires excessive storage and computation time. Numerous less informative and

redundant views are designated to be eliminated and thus gaining the efficiency for model

searching. Each valid view is assigned a signature for automatic model base indexing.

From the labeled line-drawing, valid-view modeling and multi-view matching are

implemented to achieve the goals of lesser storage and faster retrieval time, which

combine to realize a real-rime and geometrically invariant line-drawing interpretation

system.

Vll

TABLE OF CONTENTS

ACKNOWLEDGMENTS v

ABSTRACf vi

LIST OF TABLES xii

LIST OF FIGURES xiii

CHAPTER 1: INTRODUCfION 1

1.1 MOTIVATION 1

1.2 APPROACH OVERVIEWS 7

1.3 ORGANIZATION " 9

PART I: TWO-DIMENSIONAL LINE-DRAWING INTERPRETATION .. 10

CHAPTER 2: SYMBOL LABELING AND SEGMENTATION 11

2.1 INTRODUCfION 11

2.2 PROBLEM DEFINITION AND RELATED WORK 13

2.3 SYMBOL SEGMENTATION BY IMAGE ABSTRACfION AND

BLURRING 18

2.3.1 Image Abstraction 20

2.3.2 Image Blurring 23

2.3.3 Symbol Segmentation 25

2.3.4 Parallelization of the Overall Segmentation Process 26

2.4 EXPERIMENTAL RESULTS 27

2.5 SUMMARy 29

CHAPTER 3: SYMBOL MODELING AND RECOGNITION 32

3.1 INTRODUCTION 32

3.2 PROBLEM DEFINITION AND RELATED WORK 34

3.3 FEATURE GENERATION 35

viii

3.3.1 Image Pre-processing 36

3.3.2 Invariant Feature Extraction 37

3.4 HIERARCHICAL NEURAL CLASSIFIER 38

3.5 EXPERIMENTAL RESULTS 43

3.6 SUMMARy 48

PART II: THREE-DIMENSIONAL LINE-DRAWING INTERPRETATION51

CHAPTER 4: SURFACE EXTRACTION ALGORITHM 52

4.1 INTRODUCTION 52

4.2 PROBLEM DEFINITION AND RELATED WORK 53

4.2.1 Surface Extraction Problem 53

4.2.2 Previous Work 54

4.3 POLYGON-DIVISION-BASED SURFACE EXTRACTION

ALGORI11IM 55

4.3.1 Algorithms 56

4.3.1.1 Find the Outer-most Contour 57

4.3.1.2 Find a Divisible Polygon 59

4.3.1.3 Find a Divider 59

4.3.1.4 Do Actual Division 60

4.3.2 Complexity Analysis and Comparison 61

4.3.2.1 Jiang and Bunke's Algorithm 61

4.3.2.2 Polygon-division-based Algorithm 63

4.3.2.3 Comparison 65

4.4 EXPERIMENTAL RESULTS 67

4.5 SUMMARy 69

CHAPTER 5: LINE LABELING AND JUNCTION LABELING 70

5.1 INTRODUCTION 70

ix

5.2 PROBLEM DEFINITION AND RELAlED WORK 71

5.2.1 Line-Drawing Labeling Problem 71

5.2.2 Previous Work 72

5.2.3 Motivation and the Proposed Solution 73

5.3 PRELIMINARIES 75

5.3.1 Review of Huffman-Clowes Labeling Scheme 75

5.3.2 Constrained Resource Planning (CRP) Model 77

5.4 LINE AND JUNCfION LABELING BY CASCADED CRP (CCRP)

MODEL 79

5.4.1 Architecture of CCRP Model 79

5.4.2 Prior Knowledge for Selecting Soiutions 81

5.4.3 Planning-based Labeling Algorithm 86

5.4.3.1 Main Function 86

5.4.3.2 Pre-classification Rules of Junction Labels 88

5.4.4 Data Representation 88

5.5 EXPERIMENTAL RESULTS 89

5.5.1 An Example 89

5.5.2 Results and Performance Analysis 90

'5.6 SUMMARy 93

CHAPTER 6: 3D OBJECf MODELING AND RECOGNITION 95

6.1 INTRODUCfION 95

6.2 PROBLEM DEFINITION AND RELATED WORK 98

6.3 PRELIMINARIES 101

6.4 VALID- VIEW OBJECT MODELING BY LABELING 103

6.4.1 Object Modeling Process 104

6.4.1.1 How to Remove Accidental Views 104

x

6.4.1.2 How to Remove Extreme Views 105

6.4.1.3 Size of Model Base 107

6.4.1.4 How to Remove Redundant Views 109

6.4.1.5 An Upper Bound of the Number of Valid Views 112

6.4.2 Canonical View List. 115

6.5 MULTI-VIEW OBJECT MATCHING BY INDEXING 118

6.5.1 Approach Description 118

6.5.2 A New Confidence Computation ModeL 119

6.5.2.1 Rules of Confidence Combination 120

6.5.2.2 Advantages of the Model., 121

6.5.2.3 Influence of Input Sequence 122

6.6 EXPERIMENTAL RESULTS 124

6.7 SUMMARy 126

CHAPTER 7: CONCLUSIONS 128

7.1 CONTRIBUTIONS 129

7.2 DIRECTIONS FOR FUTURE RESEARCH 132

7.3 CONCLUSIONS 136

APPENDIX A: 3D OBJECT MODELING AND MATCHING SYSTEM (3DOMMS)137

APPENDIX B: EXPERIMENTAL MODEL BASE 160

BIBLIOGRAPHY 181

xi

LIST OF TABLES

3.1 - Component Error Table 48

5.1 - Six Concepts for Both CRPs 81

6.1 - The Accumulated Confidence Table 121

6.2 - The Accumulated Confidence Table for Different Viewing Sequences 122

XlI

LIST OF FIGURES

1.1 - Line-drawing Interpretation Process vs. Information Enhancement.. 2

1.2 - (a) 2D Line-drawing (b) 3D Line-drawings 2

1.3 - Processing Flow of Traditional 2D Line-drawing Interpretation Systems 4

1.4 - Processing Flow of Traditional 3D Line-drawing Interpretation Systems 4

1.5 - Traditional Viewer-centered Representation of a Tetrahedron 5

1.6 - A General Paradigm for Line-drawing Interpretation 6

1.7 - Proposed Approaches for 2D Line-drawing Interpretation 7

1.8 - Proposed Approaches for 3D Line-drawing Interpretation 8

1.1 - A Complete 2D Line-drawing Interpretation System Diagram 10

2.1 - Line Tracing with Symbol Window on a Raw Image 14

2.2 - Line Tracing on a Runlength Coded Image 15

2.3 - The Flow of Proposed Symbol Segmentation Approach 19

2.4 - The Process Example of Proposed Symbol Segmentation Approach 20

2.5 - Rules for Image Abstraction (a) 4-pixels (b) 3-pixels (c) 2-pixels (d) Boundary

Conditions for (c) 21

2.6 - Image Abstraction (a) 256*256 original (b) 128*128 (c) 64*64 (d) 32*32

(line width =8) 22

2.7 - Image Blurring (a)f =O.5s (b)f = O.8s (c)f = s (wherefis the defocus distance and

s is symbol size) 24

2.8 - Symbol Segmentation Around the Local Maximum after Blurring 26

2.9 - Image Abstraction on (N+l) Processors for M*M Line-drawing Image 27

2.10 - Experimental Results on Symbol Segmentation 28

2. I I - Some Test Results of the Text and Picture Segmentation 30

Xlll

2.12 - A General Image Segmentor 31

3.1 - Image Pre-processing 36

3.2 - A Two-layer Perceptron Network 39

3.3 - Hierarchical Neural Network Classifier 42

3.4 - SRS Basic Architecture 43

3.5 - The Detection Rates for Both Training and Test Sets 44

3.6 - Hidden Layer Width Selection 45

3.7 - Symbols Used in SRS system (34 symbols, 23 classes and 4 groups) 47

ILl - A Complete 3D Line-drawing Interpretation System Diagram 51

4.1 - The Surface Extraction Problem 54

4.2 - A Step-by-step Example of Polygon-division-based Algorithm 56

4.3 - Three Different Orders of Edge <SJ, J2> 58

4.4 - Two Extreme Cases (a) Size of CEL :::: #E (b) Size of CEL :::: 0 65

4.5 - An Example 65

4.6 - Find Outer Contour 66

4.7 - Find Divideri-) and Do_Divide(·) 67

4.8 - Performance of the Surface Extraction Algorithm 68

5.1 - Different Junction Interpretation Results Different Line Labels 74

5.2 - Edge Definitions ofT- and W-junctions 75

5.3 - Huffman-Clowes' Labeling Dictionary 76

5.4 - The Corresponding Junctions in Realistic Line-drawings 77

5.5 - Configuration of the CRP Model 78

5.6 - Architecture of Cascaded CRP Model 80

5.7 - Case 1: One Y- and Three W-junctions 83

5.8 - Case 2: One T- and Three W-junctions 83

5.9 - Case 3: Four Wejunctions 84

xiv

5.10 - Extreme View of a Perspective Projection 84

5.11 - Contradictory Examples 85

5.12 - A Y-L Pair for a Convex or Concave V-junction 85

5.13 - Y-LPairfora V-junction with Different Labeling 86

5.14 - An Contradictory Example for Any Trihedrons 86

5.15 - Flowchart of Cascaded Junction/Line Labeling CRP 87

5.16 - Thresholds for Junction Type Pre-Classification 88

5.17 - The Data Structure Used for Junction/Line Labeling Cascaded CRP 89

5.18 - Example of (a) Original Drawing (b) Drawing After Pre-processing 90

5.19 - Labeled Line-drawing with No Backtrack 91

5.20 - Labeled Line-drawing with One Backtrack 91

5.21 - Performance of Lableing Algorithm for 12 Modeled Line-drawings 92

5.22 - Performance of Labeling Algorithm for Differenct Problem Sizes 93

6.1 - Two Similar Objects 97

6.2 - 3D Viewing Space with an Example of L-shaped Object.. 99

6.3 - Some Extreme Views of the Object in Figure 6.1(a) 102

6.4 - (a) Labelable View (b)-(c) Accidental (Non-Iabelable) Views 102

6.5 - An Imperfect Line-drawing 105

6.6 - A V-junction Has At Least One Neighboring W-Junction 106

6.7 - (a)f = 6, v = 8, e = 12 (Cube); (b)f = 4, v = 4,.e = 6 (Tetrahedron) 109

6.8 - (a)f= 8, v = 12, e = 18 (L-shaped); (b)f= 9, v = 14, e =21.. 109

6.9 - Valid-View Object Modeling Process 111

6.10 - Right-angle Trihedrons 112

6.11 - Two Topologically Different Views but Have Same Signature 116

6.12 - Example of Model Base 120

6. I3 - Valid Views of L-shaped Object.. 125

xv

6.14 - Performance of the Simulated 3D Object Recognition System 126

7.1 - A Multi-object Scene 133

7.2 - Three Different Interpretations of a Line-drawing 134

7.3 - Extended Junction Types for General Polyhedral and Curved Objects 135

A.l - Screen Layout 138

A.2 - Reading obj7.2 143

A.3 - Inputing 3-dimensional T 146

A.4 - Browse 148

A.5 - Browsing T 150

A.6 - Extracting Faces ofT 151

A.7 - Labeling T 152

A.8 - obj9.2 154

A.9 - Canonical View for object 9 155

B.l - Experimental Model Base 161

xvi

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Line-drawing remains one of the essential representations for data processing,

transmission, and archiving. Drawings described in an electronic format are known to

facilitate storage, retrieval and management as well as easy manipulation and

reproduction. However, a vast amount of existing drawings that are not yet stored in this

format need to be computerized. Since CCD (Charge-Coupled Device) cameras and

scanners have become immensely popular and inexpensive, drawings can be captured into

a computer as bitmaps. Consequently, the simplest way to store and retrieve the line­

drawings is to create a large image database. However, the mere gathering of image data

certainly does not provide an intelligent and fast retrieval system to a large and complex

collections of images. In order for those line-drawing images to be useful, they must be

"understood" or "described symbolically" by computer. However, current solutions

involve too much human re-entry or digitizing effort. Moreover, not only special

knowledge of the drawings and computer software are required in order to perform such

task, it is also time-consuming and labor-intensive. It is envisaging a need for developing

an automatic and intelligent approach that uses minimal storage for fast information

retrieval to a vast usage of those line-drawings in the near future. Figure 1.1 shows the

four line-drawing interpretation processes and the corresponding input and output

information it involves at each stage. This research primarily aims at developing some

faster labeling and recognition techniques for interpreting both 2D and .:m line-drawings.

Since the recognition domain is pre-determined, the objects to be recognized are modeled

beforehand.

Line-drawing Image

Information
Enhancement

l ~ '
Figure 1.1 - Line-drawing Interpretation Process vs, Information Enhancement

A given line-drawing contains a wealth of information which can however be

categorized into two main types: 2D and 3D. Examples of popular 2D line-drawings are

engineering designs such as electrical circuit diagrams, mechanical parts drawings and

maps. Symbols are usually the most important information contained in these drawings.

Therefore, symbol recognition will be the main focus for the overall automated 2D line-

drawing interpretation system. On the other hand, as 3D objects are usually recognized

from their 2D projections (images), a typical 3D line-drawing is thus just an edge mapping

of the projections of 3D objects onto the 2D viewing plane.

E_?~
(a)

is a view of...

(b)

Figure 1.2 - (a) 2D Line-drawing (b) 3D Line-drawings

2

For example, as depicted in Figure 1.2, engineering drawings (e.g. circuit

diagrams, architecture layouts, etc.) as well as maps, are 2D line-drawings; and

information embedded in the silhouettes of 3D object scenes are 3D. Due to the variety of

information contained in 2D and 3D line-drawings, there are different ways to label,

model, and recognize the objects in the drawings. The drawing on the left in Figure 1.2 is

a 2D electrical logic diagram containing one each of the following: AND, OR, XOR,

XNOR, and INV (inverter) gates. The drawing on the left of Figure 1.2(b) has 4 visible

surfaces, 13 line segments, and 10 junctions. In addition, it is a view of the 3D object

shown at drawing on the right.

Traditionally, the labeling or segmentation of a 2D line-drawing has mostly been

based on a thinned image or vectors. Most of the previous solutions look for objects

(symbols) by tracing the connecting lines on the vectorized line-drawing and analyzing or

segmenting the regions whenever some special (pre-defined) features have been

encountered. In the mean time, the recognition is usually accomplished by graph-based

structure pattern analysis, which includes decision tree and graph matching techniques.

Figure 1.3 shows the processing flow of traditional 2D line-drawing interpretation

systems. Those traditional methods are usually inefficient and hard to parallelize, as well

as hard to accommodate new objects or applications. In this research, segmentation and

recognition processes are performed on raw image. Symbols are segmented by blurring

mechanism, which looks for each aggregation of pixels on the abstracted and blurred

image. Moment features of each symbol image are extracted and input to a hierarchical

neural network for a fast and adaptive classification.

Raw Image Thinned Image Vectors

Capturing

f-- Thinning
Text/Graphics

Line-drawing r--- Vectorizing r--
Separation

I-

Graph representation

Character Character Structured,... r------. Recognition
- Line-drawing

Segmentation
Reconstructing

Converting to
- Graph representation l.--+ Semantic and Topological I-t

Relations CAD Systems

Symbol Symbol

L....t
Segmentation f------ Recognition -

Figure 1.3 - Processing Flow of Traditional 20 Line-drawing Interpretation Systems

Most of the 30 object recognition systems are model-based, where features

extracted from 20 line-drawings are matched with stored 30 object models. A 20 line-

drawing of a 3D object scene is obtained from the intensity image after edge detector and

line tracer. Since many satisfactory approaches have been proposed to produce near-

perfect line-drawings [GuHu87] [LieC90] [Huan93], one may assume that all of inputs are

perfect line-drawings. A perfect line-drawing is a line structure without dangling points or

line segments and no missing comers or line segments.

Raw Image Edge Image Short Vectors
Perfect

Line-drawing

Capturing

f---+ Edge Detection ~ u ~ T n 1 ~ Rcli",m,",>-Line-drawing

Graph representation

~ ~ 9r"' Modeling

'--- .:
Graph-matching- Recognition ~ Object Description

Figure 1.4 - Processing Flow of Traditional 3D Line-drawing Interpretation Systems

4

A traditional 3D object recognition system based on its 2D line-drawings is shown

in Figure 104. In this research, it is assumed that the input is a perfect line-drawing and the

object domain is limited to the trihedral. A trihedral object is a polyhedron which has

exactly three plane surfaces meeting at each vertex.

Presently, viewer-centered, or multi-view object representation, is one of the most

popular 3D object modeling approaches. In this approach, a 3D object is represented by

many (often a large number, e.g. 71 for an L-shaped block) 2D projections (views). Thus,

the object in any particular view can, then, be matched directly with the views stored in the

model base. However, this traditional method ofmodel storage and matching frequently

suffers from the problems of excessive storage and computational requirements. Given a

view of an unknown object, the cost of searching, even for a simple object, in a large

model base is very high. Figure 1.5 shows a traditional viewer-centered representation of

a tetrahedron [SteB90]. Fourteen views are connected as a graph. Each arc represents

direct path from one view to another view (an visual event), where a topological

difference appears. To show the these difference, four surfaces are colored with different

shadings.

Figure 1.5 - Traditional Viewer-centered Representation of a Tetrahedron

In addition, since the line-drawing of 3D projection IS a planar graph, the

traditional matching is usually accomplished by a time-consuming graph-matching

5

approach. In this research, a set of symbolic features, which includes the visible sunaces,

the type of junctions and the convexity/concavity of edges, of line-drawing is efficiently

extracted. These linear-time-performance feature extraction algorithms and symbolic

representation enable to construct a rapid and reliable 3D recognition system via indexing

multiple input views.

Line-drawing
Images LABELING

Description

Figure 1.6 - A General Paradigm for Line-drawing Interpretation

Based on an extensive literature search, it is concluded that a general paradigm

needs to be established for both 2D and 3D line-drawing interpretation, shown in Figure

1.6. Current solutions for interpreting either 2D or 3D line-drawings involve much

domain knowledge in model encoding and recognition of the input image. This, in turn, is

done by an inefficient graph-matching approach that usually takes an exponential time

complexity for each pair of input and model graph. The above reasons motivated us to

propose and develop a set of general but highly efficient computational approaches that

will overcome all of the shortcomings. The labeling process involves feature-extraction

and grouping. The output of the labeling module is a set of features also known as

symbolic labels of the corresponding symbols or objects. The modeling process

automatically encodes these object features into the model base. The input to the

recognition module is also a set of symbolic labels, however, the module performs

recognition by matching the input labels to the encoded object labels in the model base.

6

1.2 APPROACH OVERVIEWS

Three major components for 2D and 3D line-drawing image interpretation systems

have been first developed and demonstrated in this dissertation. As shown in Figure 1.5,

they are: labeling, modeling and recognition. For the 2D case, this dissertation first

formulates an automatic object (symbol) segmentation (labeling) approach for the

electrical engineering line-drawing image by image abstraction and bluning. Next, a set of

translation-, scaling- and rotation-invariant features are designated for symbol modeling

and recognition. A hierarchical neural network approach for symbol modeling, and

recognition is then proposed to achieve the goals of incremental extension and minimal

human involvement and storage. The above 2D line-drawing labeling, modeling and

recognition approaches are validated by the experiments of circuit diagrams (schematics).

Figure 1.6 shows a mapping of our proposed 2D line-drawing labeling, modeling and

recognition approaches to the general paradigm.

2D Line­
Drawing
Images

LABELING

Image Abstraction

Image Blurring

Symbol Segmentation

Moment Feature Extraction

liNN Learning

liNN Recalling

Description

Symbol name

Figure 1.7 - Proposed Approaches for 2D Line-drawing Interpretation

In the second part of this dissertation, a linear-rime complexity surface extraction

algorithm is proposed. Unlike other previous approaches, this algorithm divides the

object's exterior contour into a sets of minimal regions, which correspond to visible

surfaces of the 3D objects in the scene. Recursive divisions will be carried on if the
7

divided polygons are still divisible. A robust and efficient 3D line-drawing labeling

approach has been proposed and tested. Traditional line labeling approach only labels

lines under the assumption that junction types were known in advance, whereas the

proposed approach labels lines and junctions alternatively and is developed under a

Cascaded Constrained Resource Planning (CRP) model. A near-linear-time computational

complexity of this approach has been verified by a number of test line-drawings from the

experiments.

Based on the labeled line-drawing images, a novel valid-view 3D object modeling

and multi-view constant-time complexity matching approach has been developed, which is

able to achieve less storage and faster retrieval time. Instead of using the time-consuming

(usually an NP-complete) graph-matching approach, in this research, a set of invariant

features are extracted and the signature of each valid view is generated for automatic

object matching by symbolic indexing. A 3D Object Modeling and Matching System

(3DOMMS) for the recognition of trihedrons has been implemented which not only

demonstrates the feasibility of the proposed approaches but also provides an interactive

modeling environment to the users. Figure 1.8 shows a mapping of our proposed 3D

labeling, modeling and recognition approaches to the general line-drawing interpretation

paradigm.

Valid-view Modeling

3D Line­
Drawings LABELING

Surface Extraction
Line I Junction Labeling
Feature Extraction
Signaturing

Multi-view Indexing

Description

Object name

Figure 1.8 - Proposed Approaches for 3D Line-drawing Interpretation

s

1.3 ORGANIZATION

This dissertation is composed of two parts. Part I, Chapter 2 and 3, contains all

three major components which are developed by the new approaches for understanding

20 line-drawing images. Chapter 2 describes the symbol segmentation approach by image

abstraction and blurring for electrical engineering drawings. Chapter 3 presents a

hierarchical neural network approach for a successful recognition of 34 different types of

logic gates. In each chapter, the problem is defined and related work are summarized

before introducing the proposed approach. Experimental results and analysis are given at

the end of each chapter. In Part II, Chapter 4, 5, and 6, a set of new labeling, modeling,

and recognition approaches for the interpretation of 3D line-drawings are given. The

fourth chapter will present a new surface extraction algorithm, which can extract surfaces

from a given projection of any trihedron in linear time. In chapter 5, a robust and efficient

line-drawing labeling algorithm, which labels lines and junctions alternatively, is presented.

Its effectiveness, in terms of average execution time, seems to enable extensive usage of

the labeling process for 3D object modeling and recognition. In chapter 6, a labeling­

based valid-view object modeling and multi-view matching (recognition) approach will be

shown. In that chapter, some proofs and experimental results will demonstrate the

advantages of these new approaches over other traditional object modeling and matching

techniques in terms of storage usage and computational efficiency. Conclusions are drawn

in the last chapter, which details the contributions of this research and provides

suggestions of future enhancements. A simulated 3D object modeling and matching

system (3DOMMS) is described detailedly in Appendix A. The experimental model base

which includes several typical 3D objects is given in Appendix B. Statistical information

such as the number of valid views and the number of backtrackings of individual object arc

also listed. Finally, a bibliography follows at the end of this dissertation.

9

PART I

2D LINE-DRAWING INTERPRETATION

Test Data

InputDrawing

,

=....,,, !fOR
rXOR - x:-.:OR TNCTr-

Recognized Drawing

Model Drawings

Training Data

Figure 1.1 - A Complete 2D Line-drawing Interpretation System Diagram

Companies using CAD (Computer Aided Design) systems often face the problem

of converting existing or hand-drawn designs into digital format. Conventional human-

reentry or digitizing work is often time-consuming and usually error-prone. A new

industrial need is in performing the recognition task leading from the line-drawings to its

description automatically and thus enhancing the capabilities of existing CAD systems.

10

CHAPTER 2

SYMBOL LABELING AND SEGMENTATION

2.1 INTRODUCTION

Drawings stored in electronic formats are easier to manage, modify and reproduce.

However, a vast amount of existing drawings created by traditional means remain to be

computerized. For a long time, one of the industrial needs has been an automatic

engineering drawing conversion system capable of replacing conventional human-reentry

or digitizing work that is labor-intensive, time-consuming and usually error-prone.

The widespread introduction of scanning devices to industries has established the

first step of conversion paper drawings into bitmaps which can be stored by computer

media. However, the mere gathering of those bitmaps certainly does not provide an

economic way to store and retrieve. Second level of conversion involves extracting line

structures from line-drawing images dominates the Automatic Conversion of Image

Document (ACID) market presently. Many thinning and vectorizatrion algorithms have

been proposed [CFMP84J(PavI86] to convert the bitmaps into line structures for lesser

storage and easier edition. However, the output of these systems still does not reach the

level of interpretation required for (Computer Aided Design) CAD input. A need for

higher level of interpretation such as symbol and text recognitions is then emerged

obviously.

Recognizing the symbols of an engineering drawing in bitmap format is a critical

step towards computer interpretation of line-drawings. For engineering drawings not

generated by a computer or where the original computer file is accidentally destroyed,

11

they can be scanned and stored as bitmaps. To understand the bitmap or to restore the

original data format, the symbols in the drawings must be segmented first

Segmentation is a process of extracting, from a given image, a set of pixels that

have pre-specified meanings or associated utilities. Symbol segmentation is one of the

most crucial tasks during the image conversion process. A good segmentation will result

in a good recognition as well as a higher conversion accuracy and efficiency. Symbols are

different from texts or characters in most of the engineering drawings because they are

usually inter-connected by either straight or cursive lines. In engineering or science

applications, a variety of graphical symbols are used in diagrams or drawings to express

human ideas or intentions which are otherwise difficult to describe in plain words.

Previous works involve thinning, line-tracing, and structural analysis, which are the three

most common steps for segmenting symbols from line drawings. Approaches based on the

above methodology usually suffer from poor performance on noisy images, slow

sequential operation (line tracing step) and little expandability to accommodate new

applications.

The rest of this chapter is organized as follows. Problem definition and related

work is given in section 2.2. A three-stage symbol segmentation technique is introduced

in section 2.3. The first step, called image abstraction, reduces the size of the working

bitmap while maintaining the geometry of each symbol. The second step utilizes image

blurring to locate the possible positions of each symbol. Finally, each symbol is segmented

around the detected positions. This approach works directly on the raw images as neither

thinning nor vectorizing is needed. Furthermore, the parallelization of the overall process

is also proposed. Experimental results are shown in section 2.4. Finally, a discussion and

possible extension of this approach are given in the summary section.

12

2.2 PROBLEM DEFINITION AND RELATED WORK

A symbol is defmed as a collection of line segments or graphical primitives

representing a specific meaning or possessing a particular property with respect to its

position in the drawing. From the geometrical shape of a symbol, individual

characteristics can be clearly recognized. For example, a rectangle in Electrical

Engineering Line-Drawings (EELDs) represents a flip-flop. Furthermore, from its

placement, one may understand the topological relationship. to its neighbors, ultimately

understanding the content of the overall drawing. For example, if the rectangle has one

terminal on the top, it is a D-type flip-flop. Symbols used in EELDs are divided into two

major categories: close-loop symbols and open-loop symbols. AND, OR, XOR, ...etc. are

called close-loop symbols because all symbols of this category have drawings that are

connected and formed a close loop. On the other hand, BAT (battery), CAP (capacitor),

Gt\TJ) (ground), ...etc. are open-loop symbols since their drawings are not fully connected.

In general, symbol segmentation for EELDs can be divided into two major

categories: line-tracing with symbol window and line-filtering. The first approach usually

starts from an endpoint of a line segment and traces the line in the scope of a symbol

window. The tracing stops after it has detected a possible symbol or reached another

endpoint. An analysis then proceeds to find the exact symbol location and size.

Segmentation follows after the analysis shows a high probability that the symbol is

completely inside the window.

The second approach, line-filtering, uses a totally different idea to segment

symbols from EELDs. Line-tracing looks for a symbol, but line-filtering searches for

connecting lines and removes them from the drawings. All previous solutions are based

on one assumption: the length of the line connecting two symbols is much greater than the

13

lengths of the line segments within each symbol. A pre-defmed threshold removes the

longer straight lines after vectorization or line classification. However, this assumption is

very dangerous and impractical for real cases. The reasons will be explained in the

following subsections.

Youji Fukada proposed a line tracing approach, Figure 2.1, which tracks

connecting lines that have thickness using a line sensor [Fuka84]. The line sensor is made

up of three parts, namely a front sensor and two side sensors. Once either or both side

sensors detect(s) picture pixels, this area (significant area) will be examined in detail

because it may contain a symbol. Otherwise, cracks, slants or Y-type junctions are

checked to determine whether the line being traced is a connecting line or a part of a

symbol. For given drawings, eight constraints are used for this algorithm of which some,

such as line width and symbol size, are either unnecessary or too restrictive to the

designers.

Side Sensor

Line Image

Side Sensor

Tracing Direction

~

Front Sensor

Figure 2.1 - Line Tracing with Symbol Window on a Raw Image

Furuta et. a1. proposed a method for symbol segmentation by tracking the line on

runlengtli coded image [FuKE84], shown in Figure 2.2. A symbol is deemed to exist and

line tracking is suspended after one of the following four conditions is identified during

line tracking: I) length of run > maximum line width; 2) length of run > 1.5 * average run

length of line being tracked; 3) existence of bending points; 4) non-existence of a run that

14

has cornmon run-direction domain with a run of a previous row. A symbol frame is

formed after a continuing line is detected. The following two conditions are used to check

the existence of a continuing line: 1) length of run ~ 1.5* average run length of line being

tracked; 2) row of runs ~ minimum number of runs to be defmed as a continuing line. A

symbol is segmented after the line tracer has detected a continuing line.

Symbol Ending Run

Symbol Start Run

Figure 2.2 - Line Tracing on a Runlength Coded Image

The third type of line tracing methods is based ona thinned image. This is the

most popular image representation for structural analysis of line patterns. Groen et. aI.

used global analysis to divide the thinned line drawing image into objects (symbols) and

interconnections fGrSS85]. The candidate objects are those skeleton parts enclosing a

connected background component. They are found by component labeling of the

background, expansion of the background component and taking the AND function of the

expanded background component and the skeleton. Lee applied Groen's top-down global

analysis approach to segment different components in EELDs [Lee92]. A similar

approach to detect symbols on thinned image was proposed by Okazaki et. aI.

[OKi\lT88]. Loop-structure-based (close-loop) symbol is first extracted and a minimum

region for analysis (MRA) is then formed for symbol identification. In the second phase ­

loop-free symbol segmentation, symbols are segmented and recognized by first searching

15

key feature points such as an end point for a GROUND symbol, a comer point for a

RESISTOR or a functional rectangle for flip-flops. These structural features are relatively

easy to be detected and extracted by performing line-tracing from those key points.

A rule-based segmentation approach was proposed for understanding chemical

plant engineering drawings by Harada [HaII85]. In this approach, the image is first

vectorized, and a hierarchical decision tree is followed to classify vectors into characters,

lines, and symbols according to 40 segmentation rules. Loop information, connection

information, and the density of short vectors are used for classification. Hamada proposed

a hypothesis building and validation method to select and verify the symbol area where

constituting a loop structure or neighboring to a text component [Hama93]. This method

also works on the vectorized line-drawing.

In contrast to the above line tracing approaches for symbol segmentation, line

filtering approaches remove (interconnecting) line structures from the drawing instead of

finding symbols along the lines. Clement [Clem81] proposed a method to remove lines in

a multi-resolution framework. The line structure will be removed and symbols will

become isolated blocks by averaging neighboring pixels from fine to coarse resolution.

The merging window size and cut-off value are two experimental parameters to be

optimized. In his paper, a five-by-five window gives a reasonably good result and twelve

seems to be an optimal threshold value. Meaning that a pixel in a coarse level is 'I' while

the corresponding window in the fine level has more than twelve black pixels. British

engineering drawing standard was used in his work which constraints that two parallel

lines should not be closer than I mm, Line width and symbol size are also restricted and

depended on the merging window size and cut-off value.

Bley's method [Bley84] splits and merges runlength codes for lengthy straight-lines

extraction. After runlengtli code generation, a picture graph is built for split-and-merge

16

iterations. The line elements are computed by two different methods. First, primary

component graphs are split or merged into classified line elements which describe the

dominant large lines of the drawing. The line elements are then connected to each other,

forming "connected components" larger than letters. Therefore, it is easy to classify line

elements and objects (or letters). Second, the details are analyzed within the context of

dominant lines using production systems.

Lin [LSMS85J has proposed a grid merging technique for logic symbol

segmentation.. In his paper, he first divides the image into small rectangular regions and

then extracts long straight lines by merging neighboring grids. At first, the image is

divided by a regular grid. Every square plane of the grid is called an unit mesh. An unit

mesh contains plural pixels (e.g., several tens to several hundreds). Combining all of the

possible appearances of the five regular patterns on the four sides of a unit mesh border,

47 characteristic patterns are derived. Horizontal and vertical long straight line segments

are then extracted by analyzing the types and connectivity of neighboring line patterns.

Connecting lines are treated as noise while segmenting symbols. Therefore, the

line-filtering method is a promising approach that removes noise as much as possible

before recognition. Nevertheless, it is quite difficulr to distinguish open-loop symbols

from connecting lines. Most of the current solutions are based on a fact that connecting

lines are long straight lines and symbols are composed of short straight lines. As a

consequence, those previous approaches do not work well if the drawings contain large

symbols and short connecting lines.

In summary, previous symbol segmentation approaches identify symbols from

localized or narrowly focused manipulations of pixels. They are sequential in nature and

do not perform well for open-loop symbols. In addition, they are usually sensitive to the

17

symbol size, average length of connecting lines and noise (such as spurs) caused by the

thinning process.

2.3 SYMBOL SEGMENTATION BY IMAGE ABSTRACTION AND BLURRING

Instead of using localized pixel-tracing to search for spatial relationships,

segmentation is performed by global extraction of coarse associations among groups of

pixels. Image blurring, which first proposed by F. Bergholm for edge focusing [Berg87],

is a mechanism of blending influence of neighboring pixels into a central pixeL The

influence of every other pixels to a particular concerned pixel is in the reverse proportion

of their distances. Any bounded symbol is usually an aggregation of its component pixels.

Through blurring, such an aggregation of nearby pixels will generate a local intensity

maximum around the geographical center of the symbol and other unrelated pixels will

fade away due to either the remoteness of the distance or the lack of enough black pixels

[Chen92].

The method proposed for segmenting electrical engineering symbols is comprised

of three stages. First, an image abstraction process is used to reduce the size of the raw

image, thereby reducing the computation time in subsequent steps, while maintaining the

characteristic shape of each symboL The abstracted image is then blurred with an

appropriate distance of defocusing in the second stage so that a local peak of intensity will

appe3r within the scope of each symbol. In the third stage, a window with the

appropriate size for a particular kind of symbol is superimposed on the given drawing

image and moved about around each local peak in an attempt to cover the entire symbol

by maximizing the number of black pixels lying within the window. After three steps, all

symbols with size of smaller or equal to the moving window can be properly segmented

within the original image. Compared to the traditional segmentation approaches, e.g. line

18

tracing that concentrates on the details of each pixel, this three-stage method focuses

directly on global information of the image, ignoring a large amount of irrelevant details so

that neither thinning nor vectorizing is needed (Figure 2.3).

Original

Image

Abstracted

Image

Symbol

Locations

Segmented

Symbol Images

Figure 2.3 - The Flow Diagram of Three-stage Symbol Segmentation Approach

In addition, this algorithm can also be efficiently implemented on a multi-processor

computer. Results from segmenting logic-gate symbols in electrical schematics

demonstrated in this chapter will show that this method can detect and segment not only

close-loop symbols (e.g. AND gates) but also open-loop symbols (e.g. capacitors and

resistors). Therefore, the feasibility and practicality of using image abstraction and

bluning techniques to segment symbols of an engineering drawing image have been

established. Figure 2.4 shows an example of results obtained after each main steps of the

proposed method. Figure 2.4(a) is an original raw image containing 3 symbols (one OR

and two AND gates). Figure 2.4(b) is the abstracted image, which is small-sized and

thinned image of the origianl one. Figure 2.4(c) shows three symbol locations detected by

image blurring technique and Figure 2.4(d) is the results of 3 segmented symbols.

19

(a) Original Image (b) Abstracted Image

(c) Symbol Locations (d) Segmented Symbols

Figure 2.4 - An Example of the Different Stages

2.3. I Image Abstraction

Before doing image bluffing on the large matrix of raw bitmap images, an

abstraction process is performed. This abstraction will greatly reduce the size of the raw

image while still retaining the original shape of each symbol in an abstracted image. The

whole abstraction is processed in a series of steps, in the process of generating a pyramid

(hierarchical layers) of images. The size of the image is reduced to a quarter after each

step and the number of abstractions depends on the prior knowledge of the image,

particularly the average line width.

Assuming that the average line width in the raw image is d. After one abstraction

step, the average line width in the new image is reduced by half. In order to keep the

original geometry of the symbols, one basic requirement is that any chosen line in the raw

image should have a corresponding line in the final abstracted image. Since the minimum

line width in a bitmap format image is one, the number of abstraction steps should not

exceed log, d.

20

Before Abstraction After Abstraction

(a)

HIE GJ
1 1

(b) fIE] ern 5!EHIa []

(c)

~5B ill

rn
DE

then [J]
if its top neighbor is else 0

ffij HE
then OJ

if its right neighbor is else 0

DE if its bOllom" neighbor iSm
then OJ
else 0

[8 if its left neighbor is BE then [j]

else 0

(d)
ifrn appears at LOp image boundary then 0

ifffij apperars at right image boundary then 0

if@Jj appears at bottom image boundary then 0

if [8 appears at left image boundary then 0

Figure 2.5 - Rules for Image Abstraction (a) 4-Pixels (b) 3-Pixels (c) 2-Pixels (d)

Boundary Conditions for (c)

In each step of abstraction, every four neighboring pixels fanning a square will be

simplified into one pixel, thus reducing the sizes in each dimension by half. A set of rules

is established to determine whether the abstracted pixel is black or white. For example,

among 4 raw pixels, if there are more than 2 black pixels, the resulting pixel will be black;

if there arc marc than 2 white pixels, the resulting pixel will be white. More detailed rules

arc used if there are equal number of black pixels and white pixels. If two pixels of the

same color lie on either diagonals, the resulting pixel will be black: otherwise, the two

black pixels concluded to be adjacent and pixels in the neighboring square will be

21

examined if the two pixels are not at the image boundary (Figure 2.5). If they are both

black, the resulting pixel will be black; If not, the resulting pixel will be white. For two

consecutive pixels at the image boundary, the abstracted pixel is set to white if they are

isolated from the symbol image. For example, if two black pixels appear at the top of the

boundary image and no pixels appear below them, they are certainly not connected to the

original image and will be treated as noise.

Unlike thinning methods which take up a lot of computation time to maintain the

precise shape of the original image, this method is simple and beautiful because the exact

shape of the image need not be maintained As long as pixels from a symbol is still close

to each other in an abstracted image, they will meet the requirement of the subsequent

blurring step. Obviously, the above simple heuristic is good enough to fulfill the

requirements elegantly. An example of an abstracted image is shown in Figure 2.6. As

the raw image has an average line width of 8, three abstraction steps were carried out.

The abstracted image clearly retains the geometry of the original image.

(a) 256*256 - original

I

CI
I

(b) 128*128 (c) 64*64 (d) 32*32

Figure 2.6 - Image Abstraction (line width =S)

22

2.3.2 Image Blurring

All pixels in a sharp imagecontain only the local information of the corresponding

symbol. Image bluning is a mechanism of blending influence of neighboring pixels into a

central pixel. Any bounded symbol is usually an aggregation of its component pixels.

Through blurring, an aggregation of close-together pixels will generate a local intensity

maximum around the geographical center of that symbol and preclude other unrelated

single lines and aggregation of pixels due to either remoteness or lack of enough black

pixels. This is very much like the zoom-out effect of a picture taken by a camera. Some

significant objects will become groups of vague objects after zooming out. Under

appropriate de-focusing, this local peak will be situated inside the symbol and influence

from pixels not belonging to that symbol will not be strong enough to drag this peak out

of the symbol boundaries. Thus, by checking local maximum positions, the symbols can

be approximately located. The only restriction is that the distance between symbols

should not be smaller than the symbol's size so that the influence from pixels of the

involved symbol is ensured to exceed that of other pixels.

A carefully selected defocus distance is critical ill generating a blurred image

whereby each local intensity maximum represents a symbol in the original image. The

defocus distance decides the distance within which each pixel will be influenced by every

other pixels. In case of a small defocus distance, only the pixels that are close enough will

be influenced by each other and pixels at the two ends of a symbol is still too far away to

exert any influence. When the defocus distance is too large, pixels from one symbol may

receive greater influence from extrinsic pixels than their intrinsic pixels resulting in no

local maximum being generated. Take a sharp image of a single circle for example (Figure

2.7). if the defocus distance is too short, the resulting image will contain a group of local

maximums inside the circle (Figure 2.7(a». If the defocus distance is appropriate. a local

?~-.,

maximum will appear inside the circle (Figure 2.7(b». Obviously, the defocus distance

depends entirely on the symbol's size. However, it is not very depending on the exact size.

A local maximum will still appear in the example image if one uses a greater defocus

distance, for instance, as shown in Figure 2.7(c).

(a) (b) (c)

Figure 2.7 - Image Blurring (a)j= 0.55 (b)j= 0.85 (c)j= 5 (wherejis the defocus

distance and 5 is symbol size).

The blurred image is generated through a two-dimensional Gaussian filter, Each

pixel in a sharp image will influence other pixels by

i(x,y)
1

I 21[/ 2 e
(x'.y')"'(X,y)

(X_X,)2+(y_ y')2

2/ 2

(2. I)

where i(x,y) is the intensity of pixel (x,y), and j is the blurring coefficient or defocus

distance. Experiments show that for symbol size s, a defocus distance of O.8xs will be

appropriate.

Theoretically, each pixel in the blurred image is affected by any other pixel.

However, since the magnitude of influence decrease exponentially with respect to the

distance, the computational time is reduced by calculating only influences from pixels that

are close enough to each other. From the experiments, it is clearly that the peak position

14

will not be influenced by pixels 3 times the symbol's size away. Thus, for an n x n image,

the amount of computation for the Gaussian function is reduced from O(n
4

) to O(sn2
) ,

where s is the symbol size.

In an engineering drawing, symbols may not be of the same size. For instance,

CAP and GROUND are usually drawn in smaller shapes than AND gates or FLIP-FLOPs.

Although the appropriate defocus distance is not very sensitive to the symbol's size, a

single defocus distance is not sufficient for processing raw images with vastly different

symbol sizes. In this case, a series of blurring is being carried out. As mentioned above, if

a defocus distance is not large enough, it will generate many local maximums around the

symbol. In other words, small symbols will not be detected if the defocus distance is too

large. In lieu of the above, the blurring process is started with the largest defocus

distance, locating the local maximum for larger symbols, after which it is segmented using

a moving window as described in the following section. Next, the image is blurred using

the next largest defocus distance. Any local peak within the already segmented image area

will be ignored. The remaining local peaks correspond to the symbols with the next

largest size. These steps are repeated until the smallest symbols are completely

segmented.

2.3.3 Symbol Segmentation

After the symbol locations have been located, a window as large the symbol is

displaced around each peak of the original image until the entire symbol is within the

window (Figure 2.8). The window that captures an entire symbol must contain the

maximum number of black pixels among all windows covering the peak. The requirement

that the average symbol distance should exceed the symbol size works here to ensure the

COITt~ct segmentation.

2S

•
D Segmentedsymbolimage

o Symbol window

• Local maximum

Figure 2.8 - Symbol Segmentation Around the Local Maximum after Blurring

Image bluffing is performed starting from the largest symbol even if there are

multiple-sized symbols. Windows with the corresponding sizes are used to segment

symbols of various sizes, i.e. smaller windows are used to move around the local minimum

of blurred image with smaller defocus distance. A segmented image part is ignored if it is

within the area that has already been segmented in previous steps.

2.3.4 Parallelization of the Overall Segmentation Process

Each step of the proposed segmentation algorithm can be implemented as a parallel

algorithm in a multi-processor computer. Calculations in the abstraction step and blurring

step are being performed for each pixel sequentially. These calculations have no relative

data dependencies among different pixels and thus are suitable for parrllelizing

individually. Since the raw image is two-dimensional, it can be divided evenly according

to the number of processors available (data parallelization), shown in figure 2.9. Let the

original image size is M*M and there is (N+ 1) processors, the size of sub-image for each

salve processor will be «M/JN)+2)*«M/.J"N)+2). After each iteration, the image

size will become the one fourth of the original one. In actural implementation, it is

possible 10 load entire image to each processor initially and pass the origin and the size of

image 10 be executed to the slave processor, which can reduce die data communication

cos!.

26

Processor 1 Processor 2 ProcessorN

Figure 2.9 - Image Abstraction on (Ns-I) Processors for M*M Line-drawing Image

Similar to the image abstraction process, during image blurring process, each slave

processor will receive the coordinates of an origin and the size of the sub-image to be

blurred. As mentioned in section 2.3.2, the size of each sub-image is always 3 trnes the

symbol size. Parallelization for the third step can be performed at an even higher level.

For example, each processor can be responsible for a local maximum (symbol location).

Since the data (image) only needs to be downloaded to the slave process onece, a

completion message should be acknowledged at the end of each iteration. The central

(master) processor plays an important role in issuing command, passing and receiving

parameters to and from every slave processor. The parallelization of the overall

segmentation process is achieved

2.4 EXPERIMENTAL RESULTS

Several examples of segmenting logic gates from electrical engineering drawings

are shown in Figure 2.10 in next page. The experiments were done on SUN SPAR C'

I Product Trademark or SUN microsystcms Inc.

27

workstations and the imeges were captured by HP Scanjet- using a Black/White mode at a

resolution of 150 dpi (dots per inch) in TIFF (Tagged Image File Format) representation.

All test images have a size of 256><256. Figure 2.1O(a) is an example with three close­

loop symbols. A dot which represents the local maximum after image blurring process is

shown at near center of each symbol. Figure 2.1O(b) is an example with four open-loop

symbols. The result of the upper-left symbol has been shifted right a little bit because the

line width of the right vertical line is much greater than the average line width, 3. Figure

2.lO(c) is an example that includes symbols of different sizes and both open- and cIose­

loop symbols. Figure 2.lO(d) shows one error segmentation on the two crossing lines and

one extra segmentation at the center of drawing because the pixels are distributed on

balance at two sides in those regions. The error segmentations can later be detected and

rejected during the symbol recognition process, which will be introduced in the next

chapter. These experimental examples show that the new segmentation approach can

correctly segment either open- or close-loop symbols of different sizes.

(a) (b)

Figure 2.10-- Experimental Results on Symbol Segmentation

~ Product Trademark of Hewlett-Packard Inc.

28

-,
>r-J

1.

~.

(c) (d)

Figure 2.10 - Experimental Results on Symbol Segmentation (contd.)

2.5 SUMMARY

A new symbol segmentation method based on image abstraction and blurring is

developed to meet the needs of an automated electrical symbol recognition system. It is

observed that most of the current approaches use thinning or vectorization as required

pre-processing steps followed by sequentially skeleton tracing but the proposed approach

can be implemented in parallel machines. The experiments further proved that the

blurring-based algorithm works well for both open- and close-loop symbols with different

sizes. It is a global and fuzzy (human-like) way to detect the locations and sizes of

symbols. Due to the blurring effect, noise of the given line drawing image will be filtered

since they are usually not aggregated. Therefore, it is less sensitive to the noise compared

to other approaches. The only drawback of this approach is that the segmentation results

are affected by the density of the surrounding connecting lines. As a result, it may identify

more symbols than the actual number in some cases. However, this drawback can be

overcome by the following symbol recognition process, since the erroneous segmentations

will not be recognized as pre-defined symbols in the encoded symbol model. Thus, the

feasibility and advantages of segmenting symbols by image abstraction and bluning has

29

been proved and demonstrated. In addition, an extension to the feature detection of image

or text segmentation for any paper documents is also proposed in this research. The

following illustration in Figure 2.11 shows some preliminary results of applying this three­

stage symbol segmentation method to text and image (picture) data.

(a) Text Segmentation (b) Picture Segmentation

Figure 2.11 - Some Test Results of the Text and Picture Segmentations

Image segmentation is the most fundamental task for understanding the contents of

the given image. At present, there is no general technique for segmenting text, symbols,

graphics primitives, and pictures all together since most of current researches are

emphasizing on the recognition of segmented images or how to compress these images so

as to reduce the storage size and communication cost. In summa)', based upon the image

abstraction and image blurring techniques, a general segmentor, shown in Figure 2.12, for

various types of documents is expected to be developed in the future.

30

I
I

TV."mo&t~

_lnU.5.A.

..
Pre-processing..

I--

Input Documents

T_.. ./ Character- Recognition
/" (General Applications)

Symbols

Post-processing

A General Segmenter

Figure 2.12 - A General Image Segmentor

31

CHAPTER 3

SYMBOL MODELING AND RECOGNITION

3.1 INTRODUCTION

A long time industrial need has been identified as automatic conversion of

image documents (ACID), which includes the process of scanning paper drawings to

recognize of symbols (including characters) and lines, as well as ·understanding their

relationships and semantics. After the relative success in character recognition (as seen

in the recent commercialization of pen-based computers), automatic image document

conversion is naturally the next frontier in the total image intelligence (feature

extraction, recognition and understanding) arena.

The majority of current solutions for ACID involve vectorization, thinning, edge

detection, segmentation and recognition based on pre-defined object/symbol models .

The drawbacks of these methods include intensive human involvement to encode symbol

models, the need of special hardware (e.g. vectorizer) to speed up the conversion

process and the lack of adaptability with increasing level of image complexity or number

of symbols. The goals of this work are to develop a technique and the associated

prototype system to facilitate symbol model encoding as well as to allow symbol set

update and modification with minimal human recoding.

Neural network (NN) techniques have been developed to mimic human biological

nervous and learning systems. A NN is composed of numerous simple processing

elements called neurons inter-connected via weighted links. The strength of each link is

updated through a series of iterative training steps that present training samples to the

neural networks one by one until it converges (error is minimized). After training is

completed, the network produces the desired (classified) outputs via a simple parallel

calculation done by every neuron, thus achieving high computational rates. Moreover,

NN provides a much higher degree of robustness and adaptation than conventional

classifiers. Besides, systems based on the neural network approach can tolerate input

noise and be adapted to a larger application domain without any major modification.

Neural networks typically operate in two modes (phases): learning and recalling.

The recalling mode maps an input data to an corresponding output data. The mapping is

one to one and there is no restriction for the types of inputs and outputs. Basically, in

most of neural networks, the recalling phase can be performed in constant time. On the

other hand, the learning mode is much more complicated than the recalling model. The

learning phase converges or stops until the outputs of two consecutive time stages are

the sarne or their difference is less than a pre-defined value. Both operations are highly

parallel and neurons communicate each other locally.

Several neural network models for solving pattern recognition problems have

been proposed and applied successfully [ChKi92][KhLu88]. The major advantage of

NN approaches is the automatic model extraction from training data and adaptivity to

new symbols. This in turn can significantly reduce human involvement

This chapter presents a hierarchical neural network approach for the automatic

conversion of image documents. Specifically, a Symbol Recognition System (SRS)

prototype for automatic processing of electrical engineering drawings will be described.

This approach achieves a significant reduction of human involvement in the symbol

model encoding and recognition processes, in contrast to traditional approaches based on

thinning, line tracing and other geometrical feature extraction techniques.

A set of image intensity moments are used as features which are naturally more

easily extracted and evaluated by machines. These features also demonstrate a higher

level of cognitive invariances like scaling, translation and rotation. This hierarchical

33

approach have proven to have a/aster and more accurate capability for model encoding

and recognition. The test results from hand-drawn images using templates show that the

hierarchical neural network can easily achieve a recognition rate of 98.5% on training

symbols and 89% on new test symbols (not encountered during training). The analysis

of the number of training cycles and the width of the hidden layer are provided. The

hierarchical organization of the neural network also facilitates incremental extension and

minimum disturbance modification to the already encoded model. Thus, this approach

possess the properties of allowing adaptability to other engineering drawing domains as

well as scalability to complex and varying real-world applications.

The remaining sections of this chapter is organized as follows. In section 3.3, the

pre-processing of the segmented image is described. Section 3.4 discusses the feature

extraction using geometric moments. The hierarchical Multi-Layer Perceptrons (MLP)

with the Back Propagation (BP) learning model is covered in section 3.5. Section 3.6

presents the experimental results on both monolithic and hierarchical neural networks.

The summary and future work of this research are given in the section 3.6.

3.2 PROBLEM DEFINITION AND RELATED WORK

Symbols and characters are two major information to be recogninzed in an

engineering line-drawing. The character recognition is one of mature sub-topics in

drawing interpretation research area and many commercial products are available in

market. However, the progress of symbol recognition research has not shown

apperantly in recent year. Since (electrical) engineering symbols are usually connected.

have various sizes and can be located anywhere and in any orientation, symbol

recognition is much more difficult than character recognition.

34

Most of previous solutions of identifying symbol types from the segmented

symbol regions are based on structural pattern analysis method that analyzes the

segmented line structures by either decision-tree [OKMT88], graph-matching

[Bunk82][GrSS85][Lee92][KiSK93], or knowledge-based [ToHL84] approaches.

These previous solutions involve vectorization, thinning, edge detection, segmentation

and recognition based on pre-defined object/symbol models. Their decision-tree or rules

of symbol interpretation are encoded and could not be adapted to new symbols or new

applications. Since open-loop symbols can not be represented as a graph structure, the

most of above approaches are not able to recognize or need special mechanism to handle

those open-loop symbols.

3.3 FEATURE GENERATION

Selecting representative feature from an image is a critical step in the pattern

recognition process since each neuron in the classifier can only see a portion of the

whole image. Every (segmented) symbol should have the same number of features that

are invariant to their orientation, size and location in the entire drawing image. The

moment-invariant approach, which is invariant to rotation, scaling, and translation, was

first introduced by Hu [Hu62]. Applications of this approach to pattern recognition such

as aircraft identification [DuBM77], 3D shape analysis [RPAK88] and character

recognition [KhLu88J, etc have been met with significant success. In this research, six

moment invariants are selected as features to classify 23 logic-gate symbols from

schematic drawings. To ensure the stability of these moment features, some pre­

processing steps such as autocropping, centralization and normalization will be needed

before feature extraction.

35

3.3.1 Image Pre-processing

The image pre-processing step performs three basic functions on the segmented

symbol images: autocropping, centering and normalization. This pre-processing step is

necessary in order for the bitmaps to be presented to the feature extraction module in a

consistent way, invariant to the position and size. The pre-processed image is then

centered onto a 64 by 64 pixels window.

The autocropping pre-processing can eliminate the potential errors arising from

user cropping, i.e. user may crop symbols with windows of different sizes. Under such

circumstances, unstable scaling may occur. The autocropper finds the real boundary of

an image by searching for extreme black pixels in the following positions: the right-most,

the left-most, the upper-most, and the bottom-most. To achieve rotational invariance as

defined in the moment extraction function, the symbol must be located at the center of

the window. The centroid of a symbol is calculated by taking the average of both x and

y coordinates of all black pixels in the image window. After the symbol is centered, a

scaling operation is performed if the size of symbol is greater than the window size. The

larger scaling factor of both sides of the symbol is selected to maintain a correct aspect

ratio and thus prevent shape distortion. And also if the symbol is smaller than the

window, no scaling is performed to avoid scalar distortion.

Original
Symbol Image Autocropping

Normalized
Symbol Image

Figure 3.1 - Image Preprocessing

36

3.3.2 Invariant Feature Extraction

Electrical engineering drawing symbols may have different sizes and orientations

and their positions are usually distributed randomly in the entire drawing. To recognize

the symbols independently of their position, orientation and size, six invariant moment

features are extracted from each symbol image as inputs to the hierarchical neural

network. The invariance and domain-independent properties of these six invariant

moments are the principal reasons for using them as features in the symbol recognition

application.

The generic moment function for a given two-dimensional discrete image,f(x,Y)

takes on the following form fTeCh88]:

M-I M-I

m"q=L. 'LxPyq{(x,y),
=0 y=0

where f(x,y) is the intensity andx,y =0, ... ,M-I.

wherep, q =0, 1,2, ... (3.1)

To make an image invariant to translation, the moments should be mapped into

the centroid of the image. The central moments can then be calculated by the following

equation:

/If-I/If-I

~ p q = L. L.(x-x)P(y-y)q{(x,y), where x= ~ o and y= "01 (3.2)
x=O ~=o /lbo noo

Central moments are then normalized for size invariance by defining

-&2.
IIp'l - y'

!loa
where r = p + q + 1

2

37

(3.3)

The centered, normalized and rotational invariant moments are then derived from a set of

non-linear functions defmed as follows:

<1>1 = TJ20 +TJ02

2 2
<1>2 =(1120-1102) +41111

2 2
<1>3 =(1130 - 31112) + (31121 -1103)

2 2
<1>4 = (1130 + 1112) + (1121 + 1103)

<Ps =(TJ30 - 31112)(T13o +1112)[(TJ30 +TJ12f -(31121 + 1103)2]

+ (31121 - 1103)(1121 +1103)[3(1130 +1112)2 - (1121 + 1103)2]

<P6 = (1120 - 1102)[(1130 + 1112)2 - (1121 + 1103)2]

+41111 (1130 + 1112)(1103 +1121)· (3.4)

The logarithmic values, i.e. log/<j>j I, where i=1 ... 6, of these moments are used to

scale up the small numerical values. In this work, only six moments are used primarily

due to the excellent results (showing their sufficiency) obtained by Khotanzad et. a1.

[KhLu88] in character recognition.

3.4 HIERARCHICAL NEURAL CLASSIFIER

Among the various neural network classifiers, the multi-layer perceptron (MLP)

classifier using back propagation (BP) learning algorithm has been successfully applied

to many pattern recognition problems especially in Optical Character Recognition

(ChKi92, KhLu88]. However, in many practical pattern recognition problems, single

neural network classifier such as MLP with BP learning model does not converge to its

solution state. Even if the network converges, the time required for convergence may be

roo long for practical usage. Therefore, in this new prototypical system, a hierarchical

38

neural network with two-stage MLPs under BP learning is proposed to improve the

convergence time as well as the recognition rate over traditional monolithic MLP. In

this model the symbols are first classified into four major classes, after that each class is

assigned a specialized network to perform further classification and fine-tuning,

A neural network can be considered as a mapping function, F, which maps input

I into the corresponding output 0 (F: I --> 0). A neural network classifier maps the

feature space into a set of output classes. Recently, many successful applications using

neural networks, especially MLP trained with BP algorithm [KhLu88], as the classifier in

either image or speech recognition problems, have been implemented in place of

traditional classifiers.

Output Layer

Hidden Layer

Input Layer

Figure 3.2 - A TWO-layer Perceptron Network

Figure 3.2 shows a two-layer perceptron with n input units, h hidden units and c

output units. All input-layer units are fully connected to the hidden layer units, which in

turn fully connected to the output-layer units.

39

During learning, an input vector (in feature space) x = (x., X2' •••• , "n) is applied

to the input layer. First, the weighted input summing into each hidden unit i is computed

as:

/I

t, = LWijxj

j=l

(3.5)

where wij is the weight connecting input unitj and hidden unit i. Next, this input value is

passed through the activation function, a sigmoid function, such as:

1
f(/ .) =----,,-

• (1+e-1
,)

(3.6)

After this process, the output of each hidden unit is obtained. The output of each output

unit can be calculated in a similar way. The output unit with the highest output value

represents the input vector class.

The back propagation algorithm uses a generalized delta rule to minimize the

errors with respect to a series of examples. The generalized delta rule specifies the

change in a given connection weight as: twij = IIE f(I). Here E is the error for this unit,

P is the learning constant parameter between zero and one and f(l) is the input to the

unit. The net error in each hidden-layer unit is thus the weighted sum of the error

contributions from each of the output-layer unit. The error computation for both output-

layer units and hidden-layer units are as follows:

40

(3.7)

where dj(·)Id! is the derivative of the sigmoid function defined in (3.6).

In summary, BP algorithm performs gradient descent in the weighted space until

the total error between the desired and actual outputs of all nodes is stable and reaches a

minimum. It has been shown that a two-hidden-layer MLP is capable of forming any

arbitrarily complex decision region [RuHW86]. In addition, Kolmogorov's theorem

[Kolm63] suggests that the required number of hidden units is 2n+l, where n is the

number of input units. However, in practice, more neurons are required to obtain

reasonable performance, especially when the number of output classes is large. This will

be discussed in the next section.

Due to the previous experience in designing a practical neural network for the

pattern recognition problem [ChKi92], the conventional single-level neural network

classifier known as monolithic neural network has poor convergence performance. Even

if it converges, the time required is usually too long and time-consuming for practical

applications. Therefore, a two-level hierarchical neural network (Figure 3.3) to train and

test the invariant moments extracted from the raw image has been developed based upon

various experiments. It is obviously show that this hierarchical neural network performs

better than the traditional monolithic network. This hierarchical architecture simplifies

the learning task of each neuron and each stage can be trained concurrently and

independently. On the other hand, the number of output classes of each sub-network is

smaller, thereby decreasing the size of hidden layers and shortening the training time.

41

Feature Vector

Major Classifier

Feature Vector

Fine Classifier 1 Fine Classifier 2 Fine Classifier 3 Fine Classifier 4

1 221 2223

Figure 3.3 - Hierarchical Neural Network Classifier

The recall process also works faster for the same reason and the modular design

makes system maintenance easier. After considerable training, if some new symbols need

to be added, the entire network need not be retrained from scratch. Only the top level

classifier among the existing modules requires retraining. The concepts learned by the

lower level classifiers can be left as is. Likewise, if some previously learned model is

required to be retracted, only the involved modules along the hierarchy need to be

retrained. In the same way, the region of generalization/specification on individual

components can be selectively adjusted with greater flexibility. Such a 1\TN architecture

with reusable components becomes increasingly critical in resource savings situation

(computer training time, human expen effon, etc), especially with increasing complexity

of target applications.

42

3.5 EXPERIMENTAL RESULTS

A prototype that has been built is called the Symbolic Recognition System (SRS).

In essence, the system takes a scanned electrical drawing as input and through user

interaction (comprises primarily manual segmentation for this SRS prototype), provides

recognition results on the user's display. The SRS architecture is shown in Figure 3.4.

The user interface is a graphical environment based upon X-windows on the Sun

workstation. The user is provided with several pull-down menu options to control

operations of the SRS application" such as reading image file, selecting the symbols and

recognition settings, etc. The image segmentation module is designed to automatically

perform both symbol segmentation and pre-processing.

01

e

User ~

Interface
~

wing Symb

ge Nam
,r

Image Feature Neural Network

Segmentation ~ Extraction ~ Classifier

Dra
Ima

Figure 3.4 - SRS Basic Architecture

At the present stage, the segmentation step IS performed under the user's

supervision. The feature extraction module performs a set of non-linear mathematical

operations on the pre-processed bits in a 64 by 64 window. These operations generate a

vector of 6 fractional numbers, referred to as the invariant moments of the bits. These

invariant moments are expected to be unique to each symbol type, and these "symbolic

signatures" form the basis for the neural network based recognition. The classification

module takes the invariant moments for the given scanned bits and identifies the closest

43

matching symbol. The classified symbol and other analytical data are then passed onto

the user interface module for displaying.

Some results of the experiments are presented and discussed below. Figure 3.5

shows the dynamic convergence behavior of the network as training progresses for the

symbol set of Figure 3.7. The X-axis represents the training progress and the Y-axis

represents the network detection efficiency in terms of error-count. The lower curve

shows how the error can be reduced when tested with the images used during training.

The upper curve shows the performance on a test set not used in the training. Clearly,

the training set detection rate is better. Another important observation is that training

error rate keeps on improving with more and more training, although at a diminishing

rate. Nevertheless, performance with the unseen test set stabilizes quite early at about

2000 cycles.

TEST vs. TRAINING PERFORMANCE

ST

10o

+ 1\

I. I ~I\"" - W ...
11 X' Dr

D\l" .. I...... 1'Oj: .1

;,

20
19
18
17
16
15
14
13
12

#OF 11

ERRORSlg
8
7
6
5
4
3
2
I
o

2 4 6 8
(Thousands)

TRAlNNING CYCLES

o N=O,TRN /:). N=O,TST

Figure 3.5 - The Detection Rates for Both Training and Test Sets

Another important factor in BP training is determining the optimal number of

hidden layers. Below is an experiment where the performance of the major classifier is
44

monitored with varying hidden layer width. The width of the hidden layer can greatly

influence the training/recovery time. Figure 3.6 reveals that 20 is approximately the best

width for the hidden layer in this application. The error rate increased when there was

less than 20 hidden units being used. On the contrary, the detection efficiency dropped

with approximately 30 hidden units. The reason of this behavior can be informally

explained in terms of the generalization capability of the BP learning. Conceptually, each

of the hidden units can be visualized to represent abstract intermediate concepts from the

image. If the number of hidden units is smaIl and the images are sufficiently complex, the

performance suffers because of the lack of intermediate concept storage _space.

Conversely, if too many hidden units are employed, then the network tends to memorize

the image instead of learning the general concepts. As a result, when the network is

faced with unseen images, it fails to demonstrate the expected detection capability.

EFFECf OF HIDDEN LAYER WIDTH
(Detection of 170Test VCClOrs)

(\ l./'-" f----'-... -J\

'\ 3

I { '-'-.....

5m

,J-
V

h:.----- ~ f-- 11

I,.r- '--/1 \,. '--'

h J
'<,

2

80

70

60

50

WRONG 40

DEITCllONS

30

20

10

a o 2 4 6 S
(Thousands)

1 R A I ~ l ~ G CYCLES

10

DEN

Figure 3.6 - Hidden Layer Width Selection

The MLP with BP learning algorithm was used as the basis for symbol

classification due to its good track record capability to classify a input set into a set of

desired outputs. This module was implemented as a two-level hierarchy with one major

45

classifier and four minor classifiers as shown in Figure 3.3. Each minor classifier had

approximately 6 symbol outputs (for a total 23 outputs) in Figure 3.7. This hierarchical

structure contributes to the efficient training time and slightly better classification

accuracy over the monolithic structure. The architecture for the monolithic neural

network has 6 inputs, 20 hidden units and 23 output units. Each of the input unit

corresponds to an element of the feature vector and each of the output unit corresponds

to a class. The internal structures of the major and minor classifiers are just like the

monolithic one, except in the number of output units.

For the symbol set shown in Figure 3.7, the SRS prototype was trained with 340

input patterns taken from a set of 34 symbols grouped into 23 classes (some symbols,

e.g. Al'H) and At\TD-L, are considered to be from the same class). Each set also includes

rotated symbols. The training constant (learning rate) was varied from 0.5 to 0.05 with a

corresponding momentum of 0.1. 170 additional input symbols were used for the testing

phase (after training) and the following recognition results were achieved:

• Correct Recognition: 85.9%

• Class Rejection: 3.5%

• Incorrect Recognition 10.6%

(Output symbol class matches scanned test data)

(Low confidence by all class)

(Recognized class is a mismatch)

46

Group 1(6 classes) I Group 2 (6 classes) I Group 3 (6 classes) I Group 4 (5 classes)

XOR

.-;
SWTCH

FUSE

-t:>I­
DIODE

...L
T

BAT

1..
GND

-it- •

CAP XTAL

OPAMP

cncxn

:t}- J//[0

~D- ::)U-: -l ~
XNOR : MOSFET_N MOSFET_P:

Figure 3.7 - Symbols Used in SRS system (34 symbols, 23 classes and 4 groups)

In the above experiment, a modified interpretations of the term "recognition" is

used. In the traditional sense, recognition means the maximum relative response of each

class identifier. In this situation, the output producing the maximum response is used as

the class of the input. However, this interpretation runs the risks of committing

"blunders". Just winning the response bid is not a good enough indication of the

classification. If the winning bid is too low, then it is safer to label the case as non-

recognition or "rejection", meaning that the network is confused. Therefore, another

more cautious interpretation is used, in which if the output showing maximum relative

response falls below a threshold then it is classified as "rejection" rather than

"recognition".

After the recognition, the results were divided into correct and incorrect

categories. In table 3.1, the column "Error by MAX" shows the result according to the

first criteria. On the other hand, the column, "Error by Swing" refers to the error

according to the second and more restrictive criteria. Since the values 0.9 and 0.1 are

used to represent class and non-class respectively, a maximum swing of 0.4 is allowed to

validate a decision. Thus, any value between 0.0 and 0.5 is considered as 0.0 and any

47

value between 0.5 and 1.0 is considered as 1.0. When one and only one output response

is between 0.5 and 1.0 range, it is considered as a successful recognition. The "Error by

Swing" refers to the recognition error according to this criteria. The ability to detect the

"confusion" is important from a decision-making point of view. The successful

recognition rate on the 340 training input data and 170 test input data are 98.5% and

89% respectively. For the monolithic structure, the recognition rate is 80% with test

symbols and 97.5% with the training symbols.

Table 3.1 - Component Error Table

Patterns Layer Error by Error by MSE

SWING MAX

Major 3 3 7.39

Fine 1 0 0 4.04

Training 340 Fine2 0 0 0.68

Fine3 0 0 0.32

Fine4 0 0 0.36

Total 3 3 x

Major 13 7 10.88

Finel 13 5 10.59

Test 170 Fine2 5 4 4.32

Fine3 2 2 2.33

Fine4 5 5 5.73

Total 38 23 x

3.6 SUMMARY

A successful attempt is shown in this chapter to increase the automation in model

generation for recognizing electrical design documents. A neural-network-based symbol

recognition system has been developed and demonstrated on an application of electrical

engineering drawings. Six invariant moments were selected as features and a hierarchical

MLP with BP learning algorithm was implemented in this system. The experimental

48

results show that the correction recognition rate are 98.5% and 89% on training and test

set of hand drawn symbols, respectively. This result demonstrates the effectiveness of

the. hierarchical classifier. From the experiments shown in this research, it is clear that

the moment features and the hierarchical neural network for symbol modeling and

recognition have met the ultimate goals: faster symbol model development, speedier

recognition, more robustness and adaptability and less human involvement.

Experience from simulating the monolithic neural classifier reveals that the

addition of some high level human judgment can significantly improve modeling and

recognition accuracy. Generally, the complexity of monolithic classifier tends to increase

the training time super-linearly as well as decrease the recognition accuracy as it grows

in size. On the other hand, hierarchical classifier requires increased human intervention

in the form of appriori-c1ass assignments of the symbols on the basis of similarity. In this

case, a higher-level human assistance has been utilized to improve the practical limits of

neural networks. The human expert is required to assign classification labels to the

symbols according to their perceptual similarity. This intervention is done only one time,

and is not very tedious. However, as a payoff this assistance greatly reduces the burden

on the neural classifier both in terms of training time and recognition accuracy.

The modularity of the hierarchical classifier also facilitates the maintenance of the

generated model. A new class can be added by training the new minor classifier module

and retraining the major classifier module. Moreover, an existing class can be modified

without disturbing previously learned unrelated modules. In addition to these

maintenance advantages, the training of the minor modules can be performed

concurrently. Therefore, hierarchical classifier system offers a promising means for

flexible and reliable technology in symbol recognition with minimum human involvement.

The combination of the symbol segmentation technique: image abstraction and blurring

approach, mentioned in chapter 2 and the result of this work holds promise for achieving

49

the automatic conversion of image documents in both symbol segmentation, modeling

and recognition processes.

50

PART II

3D LINE-DRAWING INTERPRETATION

Model Views

Training
Surface Extraction

& Labeling

IModeling

• Valid Views

-

Input View

Testing

-.. Surface Extraction

& Labeling
---.1 Recognition 1.--

-
Model

Base

Request for more input views

Recognized Object

. Figure 11.1 - A Complete 3D Line-drawing Interpretation System Diagram

For the purpose of rapid recognition, humans represent a 3D object by a set of

characteristic views or aspects, i.e. by a set of commonly occurring 2D projections

[Rose871.

For the purpose of reliable recognition, humans perceive a 3D object usually by

looking for a set of different but informative views from different viewpoints [CheYv-l].

51

CHAPTER 4

SURFACE EXTRACTION ALGORITHM

4.1 INTRODUCTION

A 3D object can be characterized by its line drawings generated from the intensity

images of object in 3D space. Junctions in the given line-drawing correspond to the

vertices of the 3D object whereas line segments are the projections of the 3D edges.

Junctions and line segments form an edge map of the projected image and can be obtained

by the various popular edge-detection algorithms available in literature. [Cann86] Due to

the noise from the viewing environment or input devices, the line-drawing may not be

perfect. In other words, missing lines, displaced junctions and spurs can often be found in

the low-level image pre-processing stage. Since some heuristic search algorithms

[GuHu85][Huan93] for obtaining perfect line-drawings from noisy images have been

already proposed, the line-drawing-extraction subject will not cover in this research. The

surface conveys significant information and is one of the essential features in

characterizing a 3D line-drawing. Thus, the extraction of surfaces is of practical interest

for object modeling and matcing.

In this chapter, a novel surface extraction algorithm with linear-time computational

complexity will be introduced. This algorithm, called polygon-division-based algorithm,

works on line-drawings projected by trihedral objects. A trihedral object is a polyhedron

which has exactly three plane surfaces meeting at each vertex. This efficient algorithm,

based on a polygon-division procedure, divides the larger polygon (which is not an

elementary polygon) into two smaller polygons (which mayor may not be elementary

52

polygons) at each iteration until no more division can be made. An elementary polygon is

a planar swface with no interior edges and all line segments located at the boundary.

The rest of this chapter is organized as follows. A formal problem definition and

some previous approaches are given in section 4.2. The polygon-division-based algorithm

and the corresponding complexity analysis will be described extensively in section 4.3. In

addition, an experimental result to demonstrate the linear-time performance of this

algorithm will also been shown in that section. Finally, the significance of this work and

the possible extensions will be discussed in the summay section.

4.2 PROBLEM DEFINITION AND RELATED WORK

4.2.1 Surface Extraction Problem

The problem need to be solved in this chapter is to automatically extract the

surfaces embedded in the line-drawings of trihedral objects. The inputs to this problem

are a set of line segments, of which each is a portion of a line having two endpoints on

junctions. Each junction has a corresponding data structure comprising an index, a list of

lines connected to it, and its x-y coordinates.

A polygon is a closed plane figure formed by three or more connected line

segments. A polygon is simple [Sham78] if and only if 1) no non-consecutive line

segments intersect; 2) consecutive line segments intersect only at endpoints. For

simplicity, only simple polygons are considered throughout this chapter. A surface is a

simple polygon representing a visible plane of a 3D object at a specific viewpoint. The

following figure shows the relationships between junctions, line segments, and the

surfaces, which arc the outputs of the algorithm.

53

Output [SUlf1I Q3j1... j£rfk I
Input ~

~
'-ju-nc-t1--'" Ijunct 2 I Ijunet 3 I ... bunct n I

ego

Figure 4.1 - The Surface Extraction Problem

The problem described in this research is a subset of the problem for extracting

regions from a planar graph since its application domain is limited to trihedral objects. Let

m be the number of line segments in the given line-drawing. Although an optimal,

O(mlogm) solution for general planar graph has already been proposed [JiaH93], it is

believed that thjis new surface extraction algorithm tailored especially for trihedral objects

is better becaues of its linear-time, Oem), complexity.

4.2.2 Previous Work

Shih et a1. first proposed a systolic algorithm for extracting regions from a planar

graph [ShLY89]. It takes Oem) computation time and uses Oem) processing elements. In

their approach, instead of using edges the concept of wedges is first proposed and played

a fundamental role as the basic computational element. A linear time sorter is then applied

to find the closed regions from the extracted wedges at the second phase.

Fan and Chang have presented a sequential algorithm by using the adjacency

matrix and the minimum-positive angle seeking technique [FanC9I]. No complexity

analysis was given in their paper. Recently, Jiang and Bunke proposed an O(mlogm)

sequential algorithm based entirely on Shih's work - extracting regions from the sorted

wedges. However, they have proved that this sorting-based algorithm is optimal for

54

extracting regions of general plane graphs and provided a complexity analysis of Fan and

Chang's algorithm, which is quadratic in both time and space.

Another interesting previous approach is the "heuristically guided polygon finding

algorithm" [WoKI91]. In this approach, heuristic rules are used to control the

combinatorial explosion associated with unconstrained associations of junctions and

triples. Physical rules are used to reject polygons which are incompatible with a single

planar surface hypothesis. The algorithm works mainly for the imperfect line drawings of

trihedral objects by merging two consequent line segments with the same chaining

direction. It is very similar to the Fang and Chang's work. A quadratic computational

complexity is expected.

4.3 POLYGON·DIVISION-BASED SURFACE EXTRACTION ALGORITHM

In this section, a new algorithm that is very efficient in extracting surfaces from

line-drawings of trihedral objects will be discussed. This algorithm is based on polygon­

division to divide the larger polygon (which is not an elementary polygon) into two smaller

polygons (which mayor may not be elementary polygons) at each iteration until no more

division can be made. In the following algorithm, each polygon (surface) has associated

with it an index and a list of junction indexes. Each junction has an edge list containing all

edges connected (0 it, and a polygon list comprising all polygons sharing this junction.

During the extraction process, the first extracted polygon is the outer contour of the given

line-drawing and at each successive iteration, an old (divisible) polygon, if there exists any,

will be deleted and two new polygons will be generated simultaneously. A step-by-step

example shows how these surfaces are extracted is given in Figure 4.2. Since there arc

only four surfaces in the given line-drawing, four interations arc required to finish the

whole dividing process.

55

Figure 4.2 - A Step-by-step Example of Polygon-division-based Algorithm

4.3.1 Algorithms

The following is the main algorithm for extracting surfaces from a given line­

drawing. The inputs to the algorithm are a set of junctions, edges and their connections.

Find Contourt-) is an algorithm for finding the outer contour of a given line-drawing in

linear time, which will be explained in the following text. Store Polygoni-) is used to

store the extracted polygons into a polygon table. Tesr If' Divisiblei-) is a function to test

if a junction has more than one untraced line segments. In other words, a polygon is

divisible if such a junction could be found from its junction list. Find_Divider(·) is a

procedure to find a common_edge_list that can divide the polygon into two smaller

polygons. The actual division is done by Do_Divide(·) procedure. The original polygon

will be deleted and the resulting polygons will be added into the polygon table by the

procedure Update_Tables(·). Since each outermost WHILE loop deals with a connected

component (a set of connected line segments and junctions), a hole in the object can be

detected by checking for more than one connected component in which case it will be

isolated and inside a surface.

void main(void) {

I. WHILE there exist untraced edges (

3.

-+.

polygon = Find_Contour(line_drawing);

Storc Polygontpolygon):

eli visible=TescI CDivisble(&stanjunction);

56

/* Find contour. */

5. WIDLE (divisible--TRUE) {

6. polygon_index=Find_Divider(startjunction, &common_edge_Iist);

7. Do_Divide(polygon_index, common_edge_list);

8. Update_Tables();

9. divisible=TescICDivisible(&Startjunction);

} } }

4.3.1.1 Find the Outer-most Contour

(A) Contour-Finding Algorithm

1. Find the starting junction, SJ which has the smallest y-coordinate;

2. WHILE (not a cycle) {

3. Starting from SJ, find all of its neighboring junctions, 1s- and their corresponding

connected lines, Ls;

4. FOR all 1s

5. Compute the angle between «SJx' SJy), (00, Sly» and «SJx' SJy), (lA'

Jy» ;

6. Sort the neighboring junctions' angles in ascending order;

7. IF 5J is a L-type junction, we then pick the junction which has not been visited as

the next SJ;

8. IF S1 is a three-line junction (W-, Y-, orT-typejunction) {

9. IF the first junction is SJ, pick the second one as the next S1;

r Figure 4.3(a) */

10.

11.

IF the second j unction is S1, pick the third one as the next 51;

r Figure 4.3(b) "I

IF the third junction is SJ, pick the first one as the next S1;
57

/* Figure 4.3 (c) */

} }

Note that <X, Y> represents a vector from junction X to Y. Figure 4.3 shows three

different examples ordering of the edge <SJ,h>.

JyJ'x
1

3

(a) (b) (c)

Figure 4.3 - Three Different Orders of Edge <S1, 12>

Hence, the junction sequences in the sorted lists shown in Figure 4.3(a), 4.3(b),

and 4.3(c) are hl]l], ljl2h, and l]J]h respectively.

(B) Angle, eAR' calculation (in counterclockwise)

Let A = <Sl, X> = (a], a2) and B = <Sl, li> = (b], b2). The Cross product of A

and B is defined as: A x B = ~b2 - a;.b
1

(from A to B). The Scalar product of A and B is

defined as: A-B=jAJ lE1cosEl. Then, we have 8=cos-1(A.B / /AJ 1E1). IfAxB > 0 then

e,H! =e else eN J = 2rr-e.

(C) Complexity Analysis

Assuming m lines in the given line-drawing, step 1 takes Oem) time to find the

minimum, since each line has two endpoints. Steps 2 to 11 take 0(3) iterations in the

worst case (visits all junctions) since each iteration needs to search at most three lines to

compute and compare their angles. Thus, the complexity of this while loop is oem).

58

Therefore, the total complexity of the contour extraction algorithm is in the order of

Oem), which is proportional to the number of line segments in the given line-drawing.

4.3.1.2 Find a Divisible Polygon

This subroutine return a TRUE argument and a starting junction for the division if

there exists an untraced edge in one of the junctions of the extracted polygons.

Otherwise, it will return a FALSE argument.

int Test_If_Divisible (int *startjunction)

1. FOR each exracted polygon, Pi {

2. FOR each junction, Ji, in the polygon {

3. IF (number of untraced edges> 0) {

4. *startjunction=Ji;

5. RETURN (TRUE);

J J }

6. RETURN (FALSE);

4.3.1.3 Find a Divider

This subroutine extracts a Common_Edge_List (CEL) and a polygon_index of the

polygon to be divided.

int Find_Dividerfsrartjunction, **CEL)

1. Store stan_junction into *CEL:

J FOR(::) I
59

3. Obtain one of the untraced edges, Ei, from the start-Junction;

4. Obtain the other end of Ei, as the end-Junction;

5. If (end-Junction is not a member of *CEL) {

6. Compare polygon_lists of start-Junction and end-Junction.

7. IF (there is no intersection) {

8. Store endjunction into *CEL;

9. startjunctioneendjunction;

10. Go to step 3;

11. IF (there is one intersection) RETURN (the intersection);

12. IF (there are more than one intersection) (

13. p_index=PoinCIndusion(middle of start-Junction and

end-Junction, the intersections);

14. RETURN(p_index);

15. ELSE find another untraced edge;

} }

4.3.1.4 Do Actual Division

The main functionality of this subroutine is to divide the polygon p_index into p l

and p2 according to the given Common_Edge_List (CEL). The Polygon size is 1Z and the

CEL size is last-«I.

void Do_divide (p_index, CEL)

1. Obtain the junction list of polygon p_index from polygonjable;
60

2. PI=P2=NULL;

3. FOR (i=O; n-I .. i++){

4. IF ((Vi != CEL[O)) or Vi != CEL[/astJ) {

5. move Vi to PI;

6.

7.

8.

9.

IF (Vi == CEL[O]) {

PI=PI + CEL;

PI=PI + (all Yk after CEL[lasl] of Polygon);

P2=(all Vk between CEL[O] and CEL[lasl] of Polygon) +

reverse(CEL);

IF (Vi == CEL[lasl]) (

PI=PI + reverse(CEL);;

PI=PI + (all Vk after CEL[O] of Polygon);

P2=(all Vk between CEL[lasl] and CEL[O] of Polygon) + CEL;

10.

11.

12.

13.

} }

14. Delete polygon p_index and Store PI and P2 into polygon table.

4.3.2 Complexity Analysis and Comparison

4.3.2.1 Jiang & Bunke's Algorithm

• Input: A list of undirected edges in an arbitrary order.

• Output: A list of wedges for each extracted region.

61

Step Jian & Bunke's Algorithm Complexitv

1 • Duplicate each undirected edge (Vj,vh) to form two Oem)

directed edges<v-,vh> and <Vh,V;>.

2 • Compute the angle e of each directed edge <Vi,vh> to Oem)

form a list of (<v;,Vh>,e).

3 • Sort the list into ascending order using vi and e as the O(mlogm)

primary and secondary key, respectively.

4 • Scan the goups of the sorted list. A group is defined Oem)

as a set of entries «vi,vh>,e) with equal Vj.

• Within each group, combine each pair of consecutive

entries: «Vj,vh>,e1) and «Vj,vk>,e2), and build a
-

wedge (vk>Vj,vh).

• Within each group, combine also the last and the first

entry.

5 • Sort the wedge list using vi and vh as the primary and O(mlogm)

secondary key, respectivelv.

6 • Mark all wedges as unused. Oem)

7 • Find the next unused wedge W1=(vl,v2>v1). Oem)

• Record the initial region list (WI), and initialize i to 1.

• Mark WI as used.

• If WI can not be found, the algorithm terminates and

all regions will be extracted. Go to 10.

8 • Search for the wedge Wi+1=(vi+j,Vj+2,vi+1) following O(mlogm)

Wj=(Vj,vi+j,vi+2) by means of a binary search in the

sorted wedge list using vi+l and vi+2 as the primary

and secondary key, respectively.

• Append W- .1 to the region list.

9 • If Wi+1 and WI are contiguous, then the region has

been extracted. Go to Step 7.

• Else increase i by 1 and Go to Step 8.

10. • Delete the pseudo region (the contour).

Since Jiang and Bunke have proved: "Sorting is linear-time transformable to the

region extraction problem. Therefore.finding all regions ofa plane graph with straight

line segments requires Q(mlogm) time under the algebraic decision-tree model." in their

paper, the total complexity of their algorithm is O(mlogm), where m is the number of

edges of the given plane graph.

4.3.2.2 Polygon-Division-Based Algorithm

• Input: A list of undirected edges in an arbitrary order.

• Output: A list of junctions for each extracted surface.

Step Polvaon-Division-Based Alzortithrn Com.

I • Construct the outer contour P using the Contour Extraction O(m)

Algorithm.

• Mark all edges of the P as traced.

• Append P to the polygon list.

2 • Find a vertex Vs from all P' with more than one untraced O(m)

edge in the polygon list.

• Set Vj=vs.

• Obtain all P's sharing Vl and form a list PV1.

3 • Get one of the untraced edge <vs,ve> starting from vs. O(c)

• Mark the edge as traced.

• Obtain all P's sharing V p and form a list pv».

4 • Find the intersection of PVl and pv., O(c)

63

5

6

• If there is no intersection Then

• Append ve to CEL.

• Set vs=ve,

• Goto Step 3.

• Else If only one intersection Pk has been found, divide Pk

using the extracted CEL and update the polygon list.

• Else If there are more than one intersections Then

• Identify the polygon Pk which the edge <vs, ve> is

inside.

• Divide Pk usmg the extracted CEL and update the

polygon list.

• If no more untraced edge could be found from the polygon

list then the algorithm terminates and all surfaces have been

extracted.

• Else Go to Step 2.

G(e)

Oem)

Oem)

Oem)

Where m is the number of edges, e stands for a constant and CEL is

Common_Edge_List which is a divider. The data structure of each junction contains:

junction_index, edge_list, polygon_list, and its x-y coordinates. Each edge is represented

by two junction indices and a traced/un traced flag. Each polygon (region or surface) is

represented by a list of junctions. Section 4.3.1.1 has shown that the contour extraction

has Oem) time complexity. Since each line segment is shared by two surfaces and each

junction has at the most two branches (excluding the current one) while finding the

divider, each remaining line segment will only be traced once. Hence the complexity of

constructing the divider also requires Oem). The actual division process, Do jDividef-},

obviously takes Oem). Thus the total complexity of overall algorithm is Oem), which IS

linear with respect to the number of line segments in the given line-drawing.

Figure 4.4 shows two extreme cases for the problem. Compared to Jiang and

Bunke's algorithm, our algorithm works much more efficiently for both cases. In the first

64

case, size of CEL (Cornmon Edge List) is approximating to the number of total edges of

the given line-drawing and thus the most of the computation cost is spent on constructing

CEL. On the other hand, size of CEL is very small, i.e. 1, contour-finding takes the

largest amount of computation time.

CELlO)

(a)
CEL[last]

(b)

Figure 4.4 - Two Extreme Cases (a) Size of CEL :: #E (b) Size of CEL :: 0

4.3.2.3 Comparison

The following is an example of the two different solutions step-by-step. From the

example, the efficiency and simplicity (in terms of implementation) of this new algorithm

could be obviously seen and measured.

(A) Jiang and Bunke's Algorithm: (Six steps are required.)

54

2f----...,3

Figure 4.5 - An Example

(1) Angular Computation (VI' v2' 8)

(1,2,2250
) , (2,1,45°), (1,3,315°), (3,1,135°), (2,3,00), (3,2,18()<», (2,4,2700), (4,2,900),

(3,5,2700), (5,3,900), (4,5,00), (5,4,1800).

(2) Sorted by vl and 8

(1,2,225°), (1,3,3150
) , (2,3,00), (2,1,45°), (2,4,2700), (3,1,135°), (3,2,1800),

(3,5,2700), (4,5,0°), (4,2,90°), (5,3,9()O), (5,4,180°).

(3,1,2), (2,1,3), (1,2,3), (4,2,1), (3,2,4), (2,3,1), (5,3,2), (1,3,5), (2,4,5), (5,4,2),

(4,5,3), (3,5,4).

(4) Sorted by VI and "2

(1,2,3), 0,3,5), (2,1,3), (2,3,1), (2,4,5), (3,1,2), (3,2,4), (3,5,4), (4,2,1), (4,5,3),

(5,3,2), (5,4,2).

(5) Extracted Regions by Searching Loops from the Sorted Wedges

(6) Delete the Pseudo Region: Rz.

(B) Polygon-Divisible-Based Algorithm: (Needs two steps only.)

(1) Find Outer Contour: Start from the rightmost and lowest junction, 5, and search in a

COUll terclockwise direction.

1

2~]
4c=JS

Figure 4.6 - Find Outer Contour

66

(2) Start dividing if a divider can be found.

(5,3,1,2,4)

divider

(2,3)

6
I I

(5,3,2,4), (1,2,3)

Figure 4.7 - Find_Divider(·) and Do_Divide(·)

The simplicity and elegance of the polygon-division-based algorithm, in terms of

efficiency, has been clearly demonstrated in the above example. In summary, there are

many advantages of this algorithm over others (Those have been mentioned in section

4.2.2.) They are listed them below:

• Easy implementation: Based on the given data structure, only three main functions

are needed. They are Test JfDivisiblet-), Find_Divider(·), and Do_Divide(·).

• No angular computation is required.

• No sorting is required.

• No pseudo surface is generated and thus no extra deletion is needed.

• Automatic hole detection (as explained in section 4.3.1).

4.4 EXPERIMENTAL RESULTS

The algorithm has been implemented by C++ language on a 486-PC. The total

number of line segments of the test data are reanged from 6 to 75. Figure 4.8(a) shows

the execution time of 12 test data (drawings) which are listed in Figure B. I of Appendix

13. The objects of those drawings are the models for the recognition. Since the number of

67

line segments of these twelve line-drawings are randomly distributed, to show the linear­

time performance of this algorithm, a designed set of nine line-drawings are tested and the

corresponding performance chart is shown in Figure 4.9(b).

0.7

Performance of Surface Extraction Algorithm

(of 12 modeled objects)

0.6

0.5

] 0.4

g
::r. 0.3

0.2

0.1

30252015

Number of Edges

105

O+-I--+-+--+-of--l-+--+-+-If-+-+--+--I--+-+--+-+--f--+--+-+--t--+--+-+-il-+-+--l

o

(a)

Figure 4.8 - Performance of the Surface Extraction Algorithm

68

Performance of Surface Extraction Algorithm
1.4

1.2

1

~ 0.8
c
e
~

"-' 0.6

0.4

0.2

8070605040302010

04-+-I-t-+-4-+-I-t-+-4-+-I-+-+-++-+-I-+-+-+-+-I-I-........-+-I-I-........-+-+-I-........-+-+-+-I

o
"umber of Edges

(b)

Figure 48 - Performance of the Surface Extraction Algorithm (contd.)

4.4 SUMMARY

A practical linear-time algorithm for extracting surfaces from the line-drawing of

trihedral objects have been developed. Searching for divisible polygons, finding the

divider of the divisible polygons, and then dividing the polygon into two seperated smaller

polygons are the three major steps of this polygon-division-based algorithm. The

algorithm will terminate once no untraced line segments can be found. As the object

surface is one of the most important and necessary features for symbolically describing a

3D object, the efficiency of this surface extraction algorithm significantly speeds up the

modeling and recognition process.

69

CHAPTERS

LINE LABELING AND JUNCTION LABELING

5.1 INTRODUCTION

The intelligent labeling of junctions and lines for a line-drawing has been a long

standing challenge in the field of object recognition, computer vision and artificial

intelligence. Previous approaches often assume a pre-processing phase that }abels the

junctions first, followed by line labeling. T. Regier [Regi91] pointed out that junction

types cannot be realistically distinguished merely by angle between edges due to limited

numerical precision. This chapter will present an approach where both the junction and

line labeling processes are executed in a round-robin manner. Each labeling process uses

the Constrained Resource Planning (CRP) model to pass the results to the other,

allowing both processes to work in conjunction until all lines and junctions have been

consistently labeled. The computational complexity of CRP has been proven to be linear

with respect to the number of tasks (in this case, the total number of lines plus junctions),

assuming that few backtracking steps are needed. Experimental results have proven that

Cascaded CRP (CCRP) not only validated this "near-linear" performance of this

approach but also displayed a predominantly high number of test cases that resulted in

zero backtracking.

The line-drawing labeling is a classic image understanding problem. However,

since it is well known to belong to the class of NP-complete problems, little effort has

been directed to the applications of these 2D labeled line-drawing images. In contrast, the

near-linear-time computational complexity of this CRP-bascd labeling approach leads to

enable extensive usage of these symbolic labels for 3D object modeling and recognition.

70

5.2 PROBLEM DEFINITION AND RELATED WORK

5.2.1 Line-Drawing Labeling Problem

The line-drawing of an image is a representation of discontinuities in the intensity

of the image. Information pertaining to one view of a 3D object projection is sometimes

called a 3D line-drawing image. Recovering 3D information such as depth, surface and

object types from a single 3D line-drawing image has always been a very difficult problem.

Presently, this is still an open problem owing to the loss of spatial information. Line­

drawing labeling allows the understanding of a 3D object in a scene by interpreting line

and junction types as surface intersections. Line-drawing labeling is a classical image

understanding problem often mentioned in computer vision and artificial intelligence

research literatures. It can be formulated into one of the Constraint Satisfaction Problems

(CSP) that is typically defined as the problem of finding (searching) consistent assignment

of values (labels) to a fixed set of variables uncer some given constraints. Formally, a

general labeling (or consistent labeling) problem is defined as follows:

Let A={aj, ..., a,J be a set of units or variables to be labeled, L={lj, ..., InJ a set of

labels, T a set of variable constraint relations, and R a set of label compatibility

relations. A consistent labeling is one which satisfies all compatibility relations. The

labeling problem is to find all consistent labelings of variables (lji, ljn)' where lji

E L, and i= / ,... .n [HarS79].

Since CSP is known to be NP-complete, searching for consistent labels in a given

line drawing is also an NP-complete problem. The labeled line-drawing provides or

presents basic 3D information of the corresponding objects in a scene from a single

71

projection. In order to utilize this information for various applications such as 3D object

modeling and recognition, a robust and efficient labeling approach should be developed.

5.2.2 Previous Work

The major analytical focus in 3D line-drawing interpretation has previously been

on labeling lines and assigning depth attributes to different object domains. Guzman

[Guzm68] first developed a SEE program to partition line-drawings into objects by

assigning different labels to lines in 1968. However, he did not give a 3D description of

the scene. The Huffman-Clowes labeling scheme, which was developed independently by

Huffman and Clowes in 1971, [Huff71][Ciow7l] limited Guzman's work to a trihedral

polyhedron, i.e. objects with exactly three plane surfaces coming together at each vertex.

They defined a set of possible labels for four different types of junction: L's, T's, Y's and

W's (Arrows). Huffman-Clowes' work is so important and famous because it represents

the first non-heuristic approach to the line-drawing interpretation. They built up a

junction labeling dictionary by enumerating all possible labels in trihedral polyhedron

domain. Their work will be introduced in section 5.3.1 in length since our work is also

based on their labeling dictionary. Waltz [WaIt72] extended Huffman-Clowes labeling

dictionary to include shadow boundaries and cracks while adopting a constraint

propagation algorithm to label line drawings. The worst-case performance of Waltz's

algorithm has been proven to be exponential time [Kiro90]. Mackworth [Mack73]

developed a POLY program that can interpret line-drawings and remove unrealizable

labelings by reasoning about the gradients (orientations) of surfaces. Based on Huffman­

Clowes' junction dictionary, Kanade's approach [Kana80] is able to deal with polygonal

planar surfaces such as paper-made objects. He constructed a list of possible junctions for

vertices having three or less planar surfaces and demonstrated the validity of the labeling

scheme to this new object world. origami world. Malik IMali87] extended Huffman-

72

Clowes approach to deal with both polyhedral and curved objects. Sugihara [Sugi86]

derived a set of algebraic equalities and inequalities, which are both necessary and

sufficient for judging the correctness (realizablility) of a labeled line drawing under

orthographic projection. However, Nalwa argued that Sugihara only provided an

exceptionally weak claim [Nalw88]. In the mean time, Nalwa has tried to give a

mathematical theory of line-drawing interpretation. He developed a series of theorems to

prove that straight lines and conic sections in line-drawings are projections of their

respective scene edge counterparts. An excellent generalized mapping from orthographic

to perspective projection was also described in his paper. Recently, many neural network

approaches were proposed to speed up the conventional line labeling algorithms

fLiYD88][TsaL90][SaIY91]. Cooper [Coop93] has extended the work of Malik on

curved objects with piecewise C3 surfaces. Lamb and Bandopadhay [LamB93] have

proposed a heuristic rule to reject many geometrically impossible interpretations.

5.2.3 Motivation and the Proposed Solution

The line-drawing labeling solution via a single CRP model has been developed and

demonstrated under the assumption that each junction type has already been correctly

determined in the pre-processing stage [Chen91]. It was pointed out by T. Regier that in

practical cases the junction type cannot be distinguished merely by the angle size between

edges because of the precision errors in numerical computation [Regi91]. A rnis­

classification, e.g. classifying a Y- as a T- or W-junction, will result in a totally different

line labeling and even unsolved configurations (Figure 5.1). For example, there is one

solution in Figure 5.I(a) and no solution for 5.1(b) and 5.1(c) even though all three

neighboring junctions arc correctly classified as \V-junctions.

w
>>>>

w W ,e--~Ea---""I W W
>>

w

w

(a) Y -junction

w

(b) T-junction

w

(c) W-junction

Figure 5.1 - Different Junction Interpretation Results Different Line Labels

Regier has proposed a solution for line and junction labelings by using a coupled

probabilistic system which performs line/junction detection and labeling by two Markov

Random Fields (MRFs). The labeling MRF computes likelihoods (probabilities) of

junction types or line labels from the neighborhood graph and a set of cliques are

collected. However, the success of his approach depends highly on the prior probabilities

and line roles in different junction types. Besides, only a few simple test results have been

shown in his paper.

In this chapter, a Cascaded CRP model that can efficiently solve both junction and

line labeling problems in an alternating manner will be introduced [CheY94b]. The

.Junction Labeling CRP (JCRP) procedure determines the junction types from the labeled

connecting lines and the Line Labeling CRP (LCRP) procedure assigns line labels to the

connecting lines of the known junction types. Each CRP passes the computed results to

the other and this continues until all lines and junctions have been consistently labeled.

Since most of the experiments have no backtracking at all, the Cascaded CRP solution

approaches to near-linear time performance.

The remaining sections of this chapter is organized as follows. In section 5.3, the

Huffman-Clowes labeling scheme and basic operations of the general CRP model will be

briefly reviewed. Six fundamental concepts of Cascaded CRP model for both line and

junction ·labcling are given in section 5.4, along with the overall algorithm. A traced

74

example and two experimental results are shown in section 5.5. The achievements and the

usage of the resulting labeled line-drawing will be explained in the concluding section.

5.3 PRELIMINARIES

5.3.1 Review of Huffman-Clowes Labeling Scheme

In the Huffman-Clowes labeling scheme, lines in images are classified into three

categories: convex lines (represented by plus labels, '+'), concave lines (represented by

minus labels, '-') and occluded lines (represented by arrow labels, '>'). A convex line lies at

the intersection of two surfaces perceived as a ridge. On the other hand, a concave line

lies at the bottom of a valley formed by two intersecting surfaces. The direction of the

arrow label on the boundary lines depends on whether its right-hand side of the line is

visible. Since the junctions in 2D line-drawings correspond to vertices in the physical 3D

objects, they can be categorized according to the number of lines coming together and the

angle size between the lines. In other words, the junctions can be classified according to

the number of intersecting surfaces at the vertex. The four types of junction are called L-,

Y-, T- and W-junctions and are defined as follows: Angles between every two lines in a Y-

junction are smaller than 1800; if one of the angles equals 180°, it is called a T-junction; if

one of the angles is greater than 180° then it is called a W-junction. Formally, the lines for

W- and T-junctions are defined in Figure 5.2. They are useful in the following proofs and

in chapter 6. In addition, their possible labels defined by Huffman and Clowes are shown

in Figure 5.3.

Bar Branch

1=,,,, Side Line (~ ' ;)

Middle Line (~'ll)

Figure 5.2 - Edge Definitions ofT- and \V-junctions

75

The following assumptions in the Huffman-Clowes scheme restrict the number of

junction types to four, and the application domain to trihedral polyhedron or trihedron.

1. Curved objects are not considered.

2. There are no shadows or cracks in the drawings.

3. All vertices are intersections of exactly three object surfaces, i.e. three-face vertices.

4. Drawings are captured at a general view point, i.e. no junction will change its type

with minute eye movement and orthogonal projection.

5. The object is solid and opaque; no hanging faces or edges are allowed and no hidden

line are displayed in the image.

L-junctions V-junctions W-junctions

2 faces 2 faces 1 face 3 faces 3 faces 3 faces 3 faces 2 faces

V V V Y Y W W\i(
(A) (B) (C) (G) (H) (N) (0) (P)

T-junctions

2 faces 2 faces 1 face 2 faces 3 faces 2 faces 2 faces 3 faces

V V V T
> < > < > < > <

T T T T
(D) (E) (F) (I) (J) (K) (L) (M)

Figure 5.3 - Huffman-Clowes' Labeling Dictionary

Figure 5.4 shows the explanations of the different types of junction labels in some

actual line-drawings. As one can observe from the definitions of junction types, it is not

possible to make such a clear distinction between angles greater than, equal to or less than

ISO° due to numerical errors in angular computation or noise in the original images. This

can result in coordinate-shifts during the edge-extraction process and therefore junction

76

types could not be determined directly. As a result, line labeling has been found to be

helpful in solving the junction labeling problem as well. This observation leads to the

approach of cascading the two labeling processes in an alternating manner.

@" L /Ga;)M
E n I .

r---

Figure 5.4 - The Corresponding Junctions in Realistic Line-Drawings

In essence, this research work is also based on Huffman-Clowes' junction labeling

dictionary but a novel labeling algorithm, constrained resource planning [Ken Y89] is

used. The whole line drawing is treated as the resource and the task is a label assignment

Solution from the Huffman-Clowes labeling dictionary with consistency constraints could

then be chosen for each unassigned task. However, as mentioned before, those solutions

are developed on the basis of pre-classified junction types. Once a junction type is

determined, the line labeling process can proceed. On the other hand, a junction type can

be determined when its line labels are already assigned. In other words, the two processes

rcly on one another.

5.3.2 Constrained Resource Planning (CRP) Model

The eRP model, based on the original work of Keng and Yun in 1989 [Ken Y89j,

has already been firmly established as a broadly applicable technique to solve numerous

resource management problems. The model is a general and effective methodology to

solve resource management problems by two domain-independent guiding principles,

called most-constrained and least-impact strategies. At each iteration, the eRr model

77

shown in Figure 5.5 can be simply described by a four-comer loop that includes 1)

choosing the most constrained task from an agenda; 2) constructing the solution space; 3)

selecting the least impact solution; and 4) generating a new agenda by constraint

propagation. Resources come from the collection of usable elemental units to perform the

tasks of a given problem. The set of active tasks is called a task agenda. A solution to a

task is a collection of resource units assigned to perform a selected task. The solution

space for a task comprises all possible solutions of that task.

Most­
constrained

Strategy

TASK

A G E ~ l) A

Constraint

Propagation

SELECTED

SOLUI'IO:,\

Least­
impact

Selection

"

Solution

Space
Generation

SOLUTION

SPACE

Figure 5.5 - Configuration of the CRP Model

The most-constrained strategy guides the task identification process by choosing

the task with the least number of possible solutions, or most critical task which has the

least flexibility for delay and hence has the highest priority, i.e. criticality value. The least-

impact strategy selects the solution of the current task by minimizing the impact to other

tasks, as a result, maximizing the feasibility of completing all remaining tasks. The impact

of a solution 011 others is measured by the cruciality function, which estimates the total

demand on the resource units it utilizes. The algorithm is shown as follows IKeng89j.

1. Construct the task agenda T =[1iJ;

2. While T is not empty { /* Four comer loop starts */

3. Compute the criticality OJ for task 1';:

4. ~ = 1/..Q, where D, is the number of solutions of task 1';;

Compute the resource demand Yk for resource unit r
k

:

5.

6.

Select a task 1'; with highest criticality; /* Select the most critical task */

7.

8.

9.

10.

~ (1, if 'k E .0.
Yk = L./,j' where OJ = 0 th . ~ /* Solution space formulation */

. , 0 erWISt:. .

For the selected task T;, compute the cruciality r
j

for each solution Pij

I (
1, ifr EPr. = co v where co = k IJ.

v i s):> k 0 h .,
k , ot e r ~ s e

Select a solution Pij with the lowest cruciality;/* Select the least impact solution */

11. Constraint propagation; } /* Constraint Propagation */

The CRP model has shown its prowess in solving many resource management

problems such as the traveling salesman problem [YuQC92], the switchbox routing

problem [Ho YH85], and job-shop scheduling [KeYR88].

5.4 LINE AND JUNCTION LABELINGS BY CASCADED CRP (CCRP) MODEL

5.4.1 Architecture of CCRP Model

From previous experience, it is not easy to construct two domain-independent

heuristics, i.e. selecting the most-constrained task and the least-impact solution of CRP for

solving a complex problem. If there are two (or more than two) sets of tasks which

consume the same resources but are constrained to each other, a eRP solution can be

79

developed for each of them independently and exchange their constraints. This is the basic

motivation in developing such a Cascaded CRP solution for this kind of problem. This

concept is then examined and implemented by using a cascaded CRP architecture, shown

in Figure 5.5, for both line and junction labelings simultaneously.

Solution_ ... Selccted_ ... Task_ Identified_...
Space_I .. SoIution_I ... Agenda_2 ... Task_2

~ R 4~ RSolution Exchange

" 'U

Identified_
~

Task- A
Selected- ~ Solution,

Task_l Agenda_I
Solution_2

....
Space_2

Figure 5.6 - Architecture of Cascaded CRP Model

The system will start after some pre-processing operations on the lines and

junctions. For lines, boundary lines (contour of the junction graph) will be labeled first

because they have only one solution, ">". A different interpretation can be made when all

boundary lines are labeled with "_". In this case, the base of the object is connected to a

infinite-large background plane. This interpretation is excluded from normal cases. An

object is always located at the right-hand side of the boundary if one traces the outer

contour of the junction graph in a clockwise direction. For junctions, L-junctions (two-

line junctions) can be labeled directly.

The outputs (constraints) of these two CRPs are propagated to both Agenda_l

and Agenda_2 immediately because they are useful in the selection of the next task. The

following table shows six essential concepts used in both line and junction labeling CRPs.

The two CRPs, LCRP and JCRP are both constrained by line-drawing's geometry

consume the same resources, Huffman-Clowes' labeling dictionary, but there IS no

resource competition between them because they are executed interactively. Their

80

constraints and omain-independent measurement functions - criticality and cruciality, are

also very similar. However. their tasks and solutions are different.

Table 5.1 - Six Concepts for Both CRPs

Line Labeling CRP Junction Labeling CRP

Resource Possible line label set Possible junction label set

Task Unlabeled lines of a specific junction Unlabeled junctions

Solution A consistent line label assignment A correct junction label assignment to

based on the known iunction label the junction with consistent line labels.
-

Constraint Labels for the two end junctions Line labels incident to the junction

Criticality Number of possible line labels Number of possible junction labels

Cruciality l/I (number of possible line labels III (number of possible junction

for unlabeled lines of the labels for unlabeled neighboring

neighboring junctions to a specific junctions to a specific line label)

junction)

5.4.2 Prior Knowledge for Selecting Solutions

The following prior knowledge help reduced the number of solutions as well as

speeds up labeling processes during the cruciality calculation.

(1) The middle line (em) of W-junctions can only be labeled by either '+' or '-'.

(2) There is at least one line being labeled by "+' or '-' for Y- and W-junctions.

(3) Whenever a Y- or T-junction has the same line labels such as (I) and (1) in Figure

5.3, it will be classified as a Y-junction given that it is shared by only two visible

faces in the given line-drawing. Otherwise, it will be classified as a Tijunction.

(4) Similarly, when a W- or T-junction has the same line labels such as (E) and (K) ill

Figure 5.3, it will be classified as a W-junction provided that it is shared by two

HI

visible faces in the given line-drawing. Otherwise, it will be classified as a T­

junction.

(5) There is no ambiguity between W- and Y-junctions because they are separated far

away, i.e. transitions are always from Y- to T- or T- to W-.

(6) In the projection of right-angle trihedron, all neighboring junctions of a Y-junction

are three-line junctions, but not vice versa.

Lemma 5.1 shows if all neighbors of a three-line junction (T-, Y-, or W-) are W-,

the three-line junction will be a Y-junction. Lemma 5.2 further concludes fhara Y­

junctions will never have a L- neighbor in the right-angle trihedrons. In other words, in

the orthographic projection of right-angle trihedral objects, all neighboring junctions of a

Y-junction are three-line junctions. This is also a proof of the prior knowledge (6).

Lemma 5.1: In a single-object scene, if all neighbors of a three-line junction are

W-junctions, the three-line junction will be a Y-junction. Conversely,

under the same assumptions, if all three neighbors ofa Ysjunction are

three-line juncitons, they are not necessarily all W-junctions.

Pmof

It is noted that the middle line and the two side lines of W-junction are defined as

em and e, respectively, as shown in Figure 5.2.

(l) It is always true for "=>":

In Figure 5.7, +, -, and> represent the labels for convex, concave and occluding

edges respectively. The number of the middle lines (em) and side lines (e) of neighboring

\V-junctions connected to the given three-line junction is drawn at the bottom of each

sample drawing in the following figures.

82

W
J/-

(a) (b) (c) (d)

Figure 5.7 - Case 1: One Y- and Three W-junctions

In the first case, shown in Figure 5.7, if the three-line junction is a Y-junction,

there are only four different combinations of the three W- neighboring junctions.

If the three-line junction is a T-junction then there are only two exactly types of

connections, as shown in Figure 5.8. This is because the middle line of a W-junction can

never have a ">" or "<" label but the two bar-branches of a T-junction can only be labeled

by">" and "<". In addition, these situations can only happen in multi-object scenes.

y < >

-.+ +. -, >

ie + 2e -,
m s

(a) (b)

Figure 5.8 - Case 2: One T- and Three W-junctions

In the third case, if the three-line junction is a W-junction, its connections with all

w- neighbors are shown below (Figure 5.9), where CD, 0, and Q) represent three faces

that intersect at the three-line junction.

C ' ~

n.'

-'~+'~'+ +,- -,+

<D®
-,+ -,+

+,- +,-

®
3e m

(a) (b)

. ,+'>'f'>'- I,
+.>,-~ +.>,-

+.<.- +.>.~

(c)

~
- ' + + ' -

-.+ +.>.-
+,>,-

+,<,- +,>,-

(d)

Figure 5.9 - Case 3: Four W-junctions

In the first of two drawings in Figure 5.9, (a) and (b), the third face should be

broken into two faces. The drawing in Figure 5.9(c) has valid labels but it, can only'

happen in an extreme view (we will define an extreme view in chapter 6) under a

perspective projection, as shown below.

+,>,- +,>,-

Figure 5,10 - Extreme View of a Perspective Projection

Similarly, the fourth drawing (Figure5.9(d» does not exist due to

convexness/concaveness. Therefore, it can be concluded that if all neighbors ofa three-

line junction are oj W-, the three-line junction must be a Yvjunction in the non-extreme

vicw ofa single-object scene.

(2) Conversely, "<=" is not true and can be exemplified by the followings

contradictory examples for multi-objects and single-object scenes.

84

(a) (b)

Figure 5.11 - Contradictory Examples

In the line-drawings of Figure 5.11, one of the neighbors of the Y-junction,

indicated by the filled circle, is a T-junction. Therefore, "<=" is not true. However, the

following conclusion can still be obtained: all neighboring junctions of a Ysjunction are

three-line junctions (i.e. Y-, T-, or W-) in the non-extreme orthographic projection of

right-angle trihedral objects. Q.E.D.

Lemma 5.2: Ysjunction will never have an L- neighbor in any projection of right­

angle trihedrons.•

Pm()f

(1) If a Y-junction has either all "+" labels or all "-" labels, then all possible

connections of Y-L pairs are shown in Figure 5.12. For the L-junction, face CD is a

background face. However, for the Y-junction, it is not. Therefore, these connections

will never exist in real scenes.

+,-

(a)

+,-

(b)

Figure 5.12 - A Y-L Pair for a Convex or Concave Y-junction

85

(2) If the Y-junction has two arrow labels and one minus label, then the possible

connections to the L-junctions are listed in Figure 5.13. In the two leftmost figures, using

the same reasoning as above, face (j) is the background of the L-junction but not for the

Y-junction. In the two rightmost figures, face (3) is a background face of Y-junction but

face <D is also a background face of the L-junction. So, they contradict each other.

> >

(a) (b) (c) (d)

Figure 5.13 - Y-L Pair for a Y-junction with Different Labeling

A contradictory example can be found for any trihedons (not limited to right­

angle trihedrons), as shown in Figure 5.14.

Figure 5.14 - An Contradictory Example for Any Trihedrons

Q.E.D.

5.4.3 Planning-based Labeling Algorithm

SA.J.I Main Function

The input to our labeling system is a line-drawing represented by polygon, edge,

and iuncuon tables. Given a drawing, the outer contour of this drawing is extracted first

86

and assign '>' labels to each line belonging to it. The contour extraction algorithm has

been presented in section 4.3.1.1 (chapter 4) of this dissertation. L-junctions can be

labeled directly because there are only two connecting lines. Some of the junction labels

which have passed the pre-classification rules can be classified or identified before entering

CCRP loop. The pre-classification rules will be described in section 5.4.3.2. The first

single line labeling CRP is applied to junctions of known types. The remaining unlabeled

junctions and lines are then fed into the main part of our system, CCRP loop, where

junction types and line labels are determined altematingly between JCRP and LCRP until

all tasks (junctions and lines) are completed or have consistent labels. The overall flow­

chart of the algorithm is shown in Figure 5.15.

(pre-processing)

(for the known labels of junctions)

(for the unknown labels of junctions)

(No Solutions !)

no

(Consistent Labeling l)

Figure 5.15 - Flow-chart of Cascaded Junction/Line Labeling CRP

87

5.4.3.2 Pre-Classification Rules of Junction Labels

To provide enough clues in accomplishing the whole labeling process, some of the

junction types will be classified soley based on the angle sizes rather than relying on their

line labels. From the definition of junction types, a junction type is determined according

to the largest angle between two junction edges. The range of angle sizes is then divided

into 5 regions within [0, 2n]: W-, WT-, T-, TY-, and Y-. It is noted that WT- and YT-

are two fuzzy regions for classification purposes. The junctions that fall into these regions

need to be classified by the following Cascaded CRP.

o ...

Y-typc

141(/16 n 18nl16

I I I I
IT-"1'C ~ T·')1'CtWT.,,-,,,, w·_

n- 0.0001 n+ 0.0001

Figure 5.16 - Thresholds for Junction Type Pre-Classification

5.4.4 Data Representation

The first three tables: polygon, junction and edge tables, are commonly used in

both CRPs and are implemented by a linked-list structure. The polygon table contains all

20 polygons which are projections of 3D surfaces. Edge and junction tables storeline and

vertices information such as junction labels, edge lists and coordinates. The only

difference between JCRP and LCRP is in their solution types. In JCRP, the solution

comprises junction indexes and the corresponding type. In LCRP, the solution includes all

line indices and the corresponding labels for a specific junction.

3) JlU1ction Table

IJ~~~on IJU~~o; ~ x-ooord./ Y-COOrd·1

4) Huffrnan-Qowes Junaion Dictionary (Constraints)

IJ:.:::m IFng~~1 I
5) Solutions

LCRP JCRP

funaionlJUnaiTIJ l
Index Label -=

6) Solution Space

~
Figure 5.17 - The Data Structure Used for Junction/Line Labeling Cascaded CRP

5.5 EXPERIMENTAL RESULTS

5.5.1 An Example

A simple example is given in this section and the corresponding input-drawing is

shown in Figure 5.18(a). After pre-processing, lines a, b, k, p, z, D, C, B, A, v, u, and g

have arrow labels because they all belong to the outer contour of the given drawing.

Consequently, junctions 2,21 and 17 are classified as Ljunctions. Since junctions 1,3,4,

5, 6, 7, 8, 9, 10, I I, 12, 16 are apparenrly classified into appropriate types in the junction

labeling pre-classifying step, the following line labeling CRP (LCRP) can obtain some

labeling results from those already known junction types. The resulting (preprocessed)

labeled line dra wing is shown in Figure 5.18(b). The remaining unlabeled junctions arc:

13, 14, IS, 18, 19 and 20. And the unlabeled lines are: r, s, w, x and y. Hence, the

agenda of the CCRP is the set of unlabeled junctions (13, 14, 15, 18, 19, 20). The first

iteration in the junction CRP, JCRP, will select junction 13 as the most constrained task

because the number of solutions for this junction is the smallest among all candidates.

Two tvpcs of solutions, Y- or T-, arc formed after solution formulation. For the solution

of a Y-junction, the corresponding cruciality is 0.33 and the solution of a T-junction has

cruciality 0.2. Therefore, W- is selected as the solution for junction 13. After junction 13

is classified into a Y-junction, there is only one line labeling solution for it. In the

following LCRP, labels of line r and y can be determined immediately. Prior knowledge

(4) is useful for junction label classification. According rules (4) and (5), junction 18, 19,

and 20 have labels W, Y and W respectively.

16

v

17

(a)

12

21

w

>

L

(b)

w

>

L

Figure 5.18 - Example of (a) Original Drawing (b) Drawing After Pre-processing

5.5.2 Results and Performance Analysis

The following figures show the resulting labeled line drawings by this cascaded

CRP approach. The first example has no backtracking (Figure 5.19). The types of six

junctions at the center of the lower brick corresponding to junction 13, 14, 15, 18, 19, and

20 in Figure 5.18(a), were determined by the CCRP loop. In the second example, Figure

90

5.20, one backtracking appears for the T-junction on the upper-right comer of the

drawing.

Figure 5.19 - Labeled Line-drawing With No Backtracking

Figure 5.20 - Labeled Line-Drawing with One Backtracking

The above experiments were programmed in C++ language on a 4X6-PC. The

dra wi ng shown in Fi!2l1l\' :).20 take s J.7) seconds for pre-process! ng and (J.O) seconds (();-

CCRP. The s\..'c\lnd drJ\\ i l l ~ . Fi!2lJre).20. spends most of the pwccssing time 0/; iii\..·

<)1

single CRP because there is only one unknown junction type after pre-processing. Many

other test cases have been simulated and shown the robustness and effectiveness of this

cascaded planning model in solving the drawing labeling problem successfully. The

efficiency of this approach is demonstrated by the small number of backtracking (none in

most cases) in all tested cases, thereby supporting the complexity estimate of near-linearity

with respect to the number of junctions and lines. The first experiment has been done on

12 line-drawings of modeled objects. The performance of these 12 test line-drawings is

shown in Figure 5.21. Since the numbers of edges plus junctions of these drawings arc

not distributed evenly, the linear-time complexity of this algorithm is not obviously seen

from this figure. These 12 drawings are listed in Figure B-1 of Appendix B. The number

of backtracking (#B) of each drawing is also listed in Figure B-1.

1.4

1.2

~ 0.8
::
g
"-' 0.6

Performance of Labeling Algorithm

(of 12 modeled objects)

0.4

0.2

605040302010

O+-+--l>-+-+--+--+--+-+-~-+-+--+--+-+-+--If-t-+--+--+--+-+--I~-+-+--+--+-f

o

Number of Junctions + Number of Edges

Figure 5.21 - Performance of Lableing Algorithm for 12 Modeled Line-drawings

92

Figure 5.22 shows the performance of another experiment with a set of designed

line-drawings where the numbers of edges plus junctions are ranged from 10 to 126 as

uniformly as possible. This experiment can clearly prove a linear-time performance (with

respect to the number of lines and juncitons) of the CRP-based labeling algorithm.

Performance of Labeling Algorithm

3.5

3

25

~ 2
c

§
en 15

05

14012010080604020

0+-i1-+--+-+-+-+-+--i1-+--f-t-+-+-+-t-+--+-t-+-+-+-t-+--+-t-+-+--t--4-i--+-1-+-+-i

o
Number of Junctions + Number of Edges

Figure 5.22 - Performance of Labeling Algorithm for Differenct Problem Sizes

5.6 SUMMARY

Junction and line labels are two of the most important types of information

embedded in a given line drawing. However, due to precision errors of numerical

computation and noisy data, one will not be able to guarantee correctly or consistently

derive labels of the given line-drawings obtained after edge and comer detection and line

following on theoriginal image. A novel Cascaded CRP-based labeling approach has been

proposed in this paper to efficiently assign consistant labels for both junctions and lines. It

93

IS shown that junction and line labeling works altematingly and cooperatively by

propagating constraints (solutions) to each other until a consistent labeling is achieved for

the whole drawing. The computational complexity of CRP has been determined to be

linear with respect to the number of tasks (here, the number of lines plus the number of

junctions), provided no backtracking steps are needed. The experimental results of this

new Cascaded CRP approach have shown to validate this near-linear performance due to a

predominantly high number of test cases resulting in no backtracking at all. Since the

junction and line labels are invariant to 2D transformation (translation, scaling and

rotation), the resulting (labeled) line-drawing has been shown to be useful and }mportant

for both 3D object modeling and marching process in chapter 6.

94

CHAPTER 6

3D OBJECT MODELING AND RECOGNITION

6.1 INTRODUCTION

This chapter presents a valid-view modeling and multi-view indexing approach for

solving the 3D object recognition problem. Based on labels of 2D projections (views)

from 3D objects, the way in which this approach achieves less storage space and faster

recognition is shown in this chapter. In addition, the multi-view indexing strategy has

been demonstrated to provide a more natural and reliable perception process than the

traditional single-view approach.

Most of the 3D object recognition systems are model-based, where features extracted

from 2D drawings are matched with stored 3D object models. Presently, viewer-centered,

or multi-view object representation is among one of the most popular 3D object modeling

approaches. Rosenfeld has made the following conjecture in 1987 [Rose87]:

CONJECTURE 1 - "For purposes of rapid recognition, humans represent a 3D object

by a set of characteristic views or aspects, i.e. by a set of commonly occurring 2D

projections."

Viewer-centered object representation of 3D objects was developed to construct the

object models with all possible views based on the above conjecture. However, most of

the previous approaches [KorD87][WanF90] define an aspect as a view where it is

topologically different from its neighboring views. They do not refer to the "commonly

occurring" concept from the above conjecture. Therefore, these approaches often suffer
95

from three crucial drawbacks, preventing widespread practical usage: 1) large amount of

storage space is required; 2) the matching process is extremely time-consuming; and 3) a

unique object match is not guaranteed.

In the conventional viewer-centered approach, a 3D object is represented by many

(often a large number such as 71 for a simple L-shaped block in [WanF90]) 2D views.

Each view is usually represented by either a contour or face graph. Any view of the object

can then be matched directly with the views stored in the model by any graph-matching

method. As a result, this method of model storage and matching frequently suffers from

-
the excessive storage and computational requirements. Due to its high computing and

searching cost, the traditional way of looking for an unknown input object from a

collection of modeled 3D objects is to match only one of the 2D input views with the

stored 2D views in the model base. However, from a recognition point of view, the

following new conjecture may be created for 3D object recognition [CheY94].

CONJECTURE 2 -"For the purpose of reliable recognition, humans perceive a 3D

object usually by looking for a set of different but informative views from different

viewpoints."

To achieve reliable and fast recognition, reducing the size of object models and

speeding up the matching process are two primary approaches that can bring a new multi­

view 3D object recognition strategy into a reality. A fact is found in this research that not

all the views are equally significant Since it is observed that many views are less

informative and often redundant in 3D object recognition, a method to eliminate them

from the model base is proposed. All remaining views are labeled and represented by a set

of 8-tlIple feature vectors, which include the number of visible faces and the numbers of

different types of edge labels and junction labels. Each feature vector is converted into a
96

computable and uniquely identifiable signature of the corresponding view, and use it as a

much more simplified representation. Searching for an object or one of its views in the

model base, then, becomes merely a textual matching process (rather than geometric or

graphic matching). As a result, the computation cost for a single view is reduced

tremendously.

It is noted that the individual model view of an object may not be unique, however, an

object can be uniquely determined by a set of model views, which is called a canonical

view list. It is obvious that two different objects may have the same views, especially for

those occurring in a large model base, but, there must also exist a different view since they

are distinct from one another. For example, two different objects in Figure 6.1(a) and

6.1(b) have the same views from a number of viewpoints. However, Figure 6.1(a) will

never have a view as shown in 6.1(b).

(a) (b)

Figure 6.1 - Two Similar Objects

The rest of this chapter is organized as follows. The problem definitions and related

work will be reviewed in section 6.2. In section 6.3, some terms of for the new object

representation will be defined. A detailed approach of constructing 3D object model is

given in section 6.4. A canonical representation of a 3D object is proposed to aid in

constructing a minimum set of representative as well as unique views. Based on this new

object modeling technique, in section 6.5, a multi-view textual matching approach using

the hashing technique is presented. A new weighted confidence computation model is

presented. It combines the significance of individual views and the sequences of input
97

views for the hypothesis generation in the multi-view recognition approach. Lastly, the

major achievements and future directions of this research will be discussed,

6.2 PROBLEM DEFINITION AND RELATED WORK

Object-centered and viewer-centered are two major approaches for 3D model-based

object representation [BesJ85][ChiD86][BowD90]. In object-centered (or CAD-based)

representation, the model is constructed in 3D space by using CAD tools

[BhaH87][Flyn91]. The input view of a 3D model is first found via a corresponding 3D to

2D transformation which searched for the most similar projection to the input view.

Usually, object-centered approach uses less storage space than viewer-centered approach

but requires a much higher computation cost for recognition.

In contrast to the object-eentered approach, the viewer-centered (or multiview)

approach stores all the features of necessary projections. The features of the input view

are then matched with all of the projections in the model to find the best match. This

approach only requires a simpler matching process but a larger space is needed to store

the projections. In other words, as the computation cost shifts from recognition to model

construction, it is anticipated that real-time object recognition applications will become

more and more feasible in the future. Hence, presently the viewer-centered object

modeling approach is more popular and attactive .

Conventional methods of constructing viewer-centered object models can be

categorized into two main streams: uniform tessellation and aspect graph. The uniform

tessellation approach [KorD87] partitions the viewing space into small and regular

regions, such as the one in Figure 6.2. Each region represents a view of the 3D object.

Region growing algorithm groups adjacent views if they are topologically equivalent, into

bigger regions. The size of the initially partitioned region is very important in this
98

approach. A large partition may miss some important views; however, on the other hand,

a too small partition may need too much computation. The advantage of this approach is

that the partition algorithm is simple and is also applicable to all kinds of objects. In the

second approach, viewing space is partitioned by sampling the continuous view sphere

surrounding an object at discrete viewpoints.

Figure 6.2 - 3D Viewing Space with an Example of L-shaped Object

The aspect graph is one of the most popular viewer-centered representations and often

considered to have great potential in computer vision application. The aspect graph of an

object is a graph structure in which:

• each node represents a general view of the object as seen from some maximal,

connected cell of viewpoint space;

• each arc represents an visual event (topologically different views or new features)

occuring on the boundary between two cells of the general viewpoint;

• there is a node for each possible general view of the object, and

• there is an arc for each possible visual event [Faug92].

99

In the last few years, algorithms have been developed to automatically compute the

aspect graphs of polyhedrons [GigM90J[SteB90][SteB88], general curved objects

[EggB90] and even objects with articulated connections between pans [SaSB90).

However, much of the work in this area has a somewhat theoretical flavor and it is unclear

that wether aspect graph representation, at least at its present stage, will find pratical

application. There are three important reasons that this approach has not been heavily

used so far in the computer vision community: 1) it requires a large amount of storage

space; 2) the matching proces~ is extremely time-consuming because it needs not only

search an object model (aspect graph) but also find an isomorphic view (aspect) of the

model; and 3) an unique object match is not guaranteed.

A weighted aspect graph approach based on the observable probabilities of features

has been proposed [Bena90]. The probability of a feature is defined as the ration between

its viewing region to the total observable area of the viewing sphere. This probability

model organizes the conventional aspect graph for the purpose of easier searching but

does not reduce the size of the model base. The recognition process still relies on graph-

matching techniques. A symmetricity (redundancy) detection and saliency (rarity)

computational approach has been proposed [Flynn] for reducing the size of object-

centered model base. This is an unnecessary process since the number of objects in a

model base is usually not too large (although they will usually have a large amount of 2D

views for viewer-centered object model).

In conventional viewer-centered approach, a 3D object is represented by many 2D

projections (views). This is because, regardless of the significance and global redundancy,

they usually store a view that is topologically different from its neighboring views. Any

view of the object can then be matched directly with the views stored in the model base by

any graph-matching method. It takes O(mn) amount of computation cost for two graph to

match, where m and n are the number of nodes of the model and input graphs
100

resepectively. As a result, this method of model storage and matching suffers from

excessive storage and computational requirements. In addition, only a few of the 2D

views in the traditional viewer-eentered object model are informative and hence useful in

the matching process. Given a view of an unknown object, the cost of searching for the

corresponding object in a large model base becomes exceedingly high, even for fairly

simple objects.

6.3 PRELIMINARIES

As many terminologies used in previous work have not been unified, in this section,

some definitions of terminologies that may be useful throughout this chapter is presented

as follows.

<Definition 6.1> A viewl is a 2D projection of a 3D object, i.e. a 2D picture of the 3D

object from a particular viewpoint. •

<Definition 6.2 > An extreme view- is a 2D projection of a 3D object when either a

surface degenerates precisely into a line or an edge degenerates

precisely into a point. In other words, the viewpoint lies directly on

one of the object's planes (containing a face) or lines (containing an

edge). A few examples of extreme views are given in Figure 6.3. A

view which is not extreme is called non-extreme view. -

I Il is also called a projection or an aspect in other articles.

2 It is also called a degenerate view in [KenF87}.

101

(a) (b) (c) (d)

Figure 6.3 - Some Extreme Views of the Object in Figure 6.1(a)

Some neighboring extreme views may form a stable extreme viewing region where no

new faces, edges or junctions will appear unless the viewpoint shifts slightly across its

boundary (sometimes called a visual event). These views are extreme because much

information is occluded by the front (visible) faces. Since they are less informative views,

many redundant views may often exist among objects and result in an overly large object

model. For example the two different objects in Figure 6.1, have exactly the same

extreme views seen from many different viewpoints. From a labeling point of view, these

extreme views do not always have a unique labeling result. For example, the central

horizontal lines shown in Figure 6.3(b) and 6.3(d) can be labeled as "+", "_II or ">",

because both ends are T-junctions.

>

(a)

>

(b) (c)

Figure 6.4 - (a) Labelable View (bl-Ic) Accidental (Non-labelable) Views

<Definition 6.3> A labelable view is a non-extreme view in which all lines have valid or

consistent Huffman-Clowes labels.•

102

Figure 6.4(a) shows a labelable view. A detail definition of Huffman-Clowes labeling

scheme can be found in Chapter 5 of this dissertation.

<Definition 6.4> An accidental view [BowD90] is a view where 1) a vertex of an object

and some points on an edge of the object project onto the same

junction in a view, as in Figure 6.4(b); or 2) points on three different

edges of the object project to the same junction in a view, as in Figure

6.4(c). Accidental views are not labelable.•

6.4 VALID- VIEW OBJECT MODELING BY LABELING

It is assumed that each scene may only consist of a single trihedral object in 3D space.

A trihedral object is a closed, bounded and regular subset ofR3 whose boundaries are a set

of plane surfaces. In the trihedral object world, each vertex of the object is the

intersection of exactly three surfaces and each edge is the intersection of two surfaces.

The objects defined in this trihedral object model are also restricted to have solid and

opaque surfaces. Besides, the projection used in this model must be orthographic with

viewpoint at infinity. However, it could be extended to cover perspective views without

any modification. In order to obtain a line-drawing, lines and junctions are first extracted

from a 2D intensity image by the edge detector and line tracer. Since many satisfactory

approaches have been proposed to produce near-perfect line-drawings [GuHu87]

[LieC90] [Huan93], one may assume that all of inputs are perfect line-drawings.

103

6.4.1 Object Modeling Process

In order to eliminate those extreme and accidental views from the 3D object model

base, a method has been developed to distinguish those views from the normal or non­

extreme views.

6.4.1.1 How to Remove Accidental Views

The line-drawing labeling process detects the accidental views very straightforwardly

because the resulting junctions or lines are beyond the Huffman-Clowes labeling domain.

In other words, accidental views are non-extreme but unlabelable views. Therefore, the

new object model base will exclude those accidental views during the labeling process. A

new robust and near-linear-time performance line-drawing labeling approach using the

Cascaded Constrained Resource E.lanning (CCRP) model has been proposed in

[CheY94a] and presented in chapter 5 of this dissertation. The robustness (labeling lines

and junctions simultaneously) and computational efficiency (near-linear-time performance)

of this pre-processing step underlies the proposed valid-view 3D object modeling and

multi-view matching approach, which uses labeling extensively.

Another essential power of the labeling process is discovered that it can also aid in the

detection of imperfect line drawings, such as missing lines or junctions. For example,

since one of the lines is missing in the line-drawing shown in Figure 6.5, no consistent

labeling will exist. Refering to Figure 5.3, there is no L-junctions with two "+" labels or

one "+" and one "-" labels. Therefore, the labeling process will report "no solution" for

this line-drawing.

104

>

Figure 6.5 - An Imperfect Line-Drawing

6.4.1.2 How to Remove Extreme Views

From the definition, an extreme view appears only when a Y-or W-juncrion becomes a

T-or L-one after a movement. If the objects are right-angle trihedrons, an extreme view is

one does not contain any Y-or W-junction. In other words, for right-angle trihedrons, the

extreme view is composed only of T-and L-junctions only. In addition, for any arbitrary

trihedron, the extreme view is the view without any Y-W junction pair. Hence, for any

one of above cases, if a view has an Y-W junction pair, it must be a non-extreme view.

The following lemma shows that a Y-junction and W-junction always appear together in a

single-object scene.

Lemma 6.1: For any Y-junction in a single-object scene, there is at least one w­

neighboring junction. In multiple-object scenes, a W-junctiofl will

become a Tvjunction due to occlusion.•

Proof"

For a single-object scene, a Y-junction is formed by the intersection of either two or

three faces in the real 3D trihedral object world, as shown in the first two figures of Figure

6.5. If it has been proven that there is at least one W-neighboring junction required for Y­

junction with two faces then it can also be proven that there exists at least one W­

neighboring junction for three-faces Y-junction. It is noted that ">" represents an arrow

105

pointing towards the junction and "<It represents an arrow pointing ways from the

junction. The visible face is always located at the right-hand side of the arrow. The proof

is as follows:

(2) CD
b

+,- >+.-

a

® +,- @ @
<

(a) (b)

a

(c)

<
®

<

b

>

>

a

<

(d)

®

b

+

Figure 6.6 - A V-junction Has At Least One W-Neighboring Junction

The two visible faces of a Y-junction intersecting at an edge <a, b> with a It_It label,

are bounded and not co-plannar. The edge <a, b> should not be connected to a L-junction

because there are two visible faces. It can only be connected to aT-or W-junction. If <a,

b> is connected to a T-junction, there will be three visible faces for a T-jucntion with a "_It

stem-branch. In other words, there must exist multiple objects in the scene. This is not

allowed in our assumption. Therefore, for a Y-junction with two visible faces only one

possible type of neighboring junction can be connected to edges with the It_It label - the W­

junction. Their connection is shown in Figure 6.5(d).

Since there is only one possible connection to a Y-junction with two faces, it can be

concluded that there exists at least one W-neighboring junction for a Y-junction in the

trihedral object model.

106

Q.E.D.

6.4.1.3 Size of Model Base

The maximal number of labelable VIews for general trihedral objects in the

orthographic viewing space can be estimated as follows. Let the number of faces, edges,

and vertices of a general trihedral objects be O(j), Ore) and O(v) respectively. From

Euler's formula: v - e + f =2, which is true for any spherical polyhedron where v is the

number of vertices, e the number of edges andf the number of faces. It is obvious that e is

always greater than v or f; and v is always greater than or equal to f (where.j> 4, e ~ 6, v

~ 4. The equalities hold only for the most simple tetrahedron). However, they are linearly

dependent on each other, i.e. f =: e =: v. The following are approximations of the number

of extreme, non-extreme, and accidental views for general trihedral objects.

1. The approximate number of accidental views is O(ve) + O(e3) .

• O(ev) is the number of views in which a vertex of an object projects on to an edge

of the object.

• O(e3) is the number of views in which three different edges project onto the same

vertex.

(In real cases, the numer of accidental views is much less than this number. As a

matter of fact, the number of accidental views will usually approach zero.)

2. The approximate number of extreme views is Otf) + 0(/2).

• 0(/) is the upper bound on the number of views with viewing directions

perpendicular to the object face.

• 0(12) is the upper bound on the number of views with viewing directions co­

planar to (i.e. lying on) the faces of the object. (Since an edge is the intersection

of any two faces, 0(/2) approaches Ore) in real cases.)

3. The approximate number of non-extreme views is 0(/3)

107

• 0(/3) is the upper bound on the number of views in which the three faces of

every vertex are visible (Y-W junction pair). (Since a vertex is the intersection of

any three faces, 0(/3) approaches to O(v) in real cases.)

Therefore, the ratio of remaining views, i.e. no-extreme views (note: redundant views

have not yet been removed) to the number of views stored in the traditional aspect graph

approach in the new model is:

o(v) 1
-------"'-
(O«()+O(ehO(v» 3

For example, in Figure 6.6(a) there are 6 faces, 8 vertices and 12 edges for a cube.

Thus, the estimated ratio is: 8/26=0.307, which is equal to the actual ratio. For the

tetrahedron, in Figure 6.6(b), there are 4 faces, 4 vertices and 6 edges. In this case, the

number of non-extreme views is 4 and the total number of views in the traditional aspect

graph approach is 14. There is no accidental views for a tetrahedron. Therefore, the

estimated ratio: 4/14, is also exactly equal to the actual ratio. The estimate and actual

ratio for the drawing in Figure 6.8(a) are 0.316 and 0.27 respectively. Similarly, they are

0.318 and 0.26 for the drawing shown in Figure 6.8(b). Obviously, the valid-view model

saves at least approximately 2/3 amount of storage space than the traditional viewer-

centered object model. Another large amount of space will be further reduced by

eliminating all redundant views during the model building process. However, the number

of redundant views cannot be estimated precisely because it is highly dependent on the

object geometry. In other words, an object will have more redundant views if it has more

symmetrical views.

lOS

(a) (b)

Figure 6.7 - (a)f= 6, v =8, e =12 (Cube); (b)f= 4, v =4, e =6 (Tetrahedron)

(a) (b)

Figure 6.8 - (a) f =8, v =12, e =18 (L-shaped); (b) f =9, v =14, e =21

6.4.1.4 How to Remove Redundant Views

Before adding labelable views into a model base, their feature vectors and textual

representation must be defined. In order to reduce the object model size, the redundant

views must be detected and removed during the model building process, especially when

the objects are highly symmetrical.

<Definition 6.5> A labelable view can be represented as an 8-tuple feature vector, <P,

P, M, A, Y, W, T, L>, where:

F is the number of visible faces;

P is the number of Plus labels;

M is the number of Minus labels;

A is the number of Arrow labels;

Y is the number of Y-junctions;

109

W is the number of W-junctions;

T is the number of T-junctions; and

L is the number of L-junctions.•

The number of visible faces is obtained by the linear-time surface extraction algorithm

mentioned in chapter 4. After pre-processing and labeling, it is very easy to obtain other

features. These eight features are invariant to translations, scalings and rotations. Using

hashing mechanism, these eight features are encoded into a number, which is called the

signature of the input view.

<Definition 6.6> Let <II' f 2, f3' ..., f 8> be the feature vector of a labelable view i, the

corresponding signature, Si' is defined as: S, = jt fj .2
8-

j ••

Although this signature representation is designed for hashing, it is not unique (but

could have been made unique) and has a property that higher dimensional feature

contributes more significantly to the value of S, On the other hand, a view is said to be

more informative if S, possesses a larger value. The choice of 2 as the basis is just for sake

of programming simplicity. To have a more distinguishable value of the signature, the

basis can be set as: maxif) + 1 for each view.

<Definition 6.7> A valid view of an object to be stored in our object model is a view that

satisfies the following three conditions: 1) it is a non-extreme view; 2)

it is a labelable view; and 3) it has a distinct signature with respect to

the object. The model-building process is shown in Figure 6.9.

As a matter of fact, it is often difficult to estimate the savings in storage of this new

modeling method because the third reduction totally depends on how symmetrical the

110

model object is. The object model only stores the views with different signatures for each

individual object. Views with equal signatures but from different objects will be hashed

into the same address and chained along the same list Since extreme views have been

eliminated, the length of each chain will not grow too much to affect the matching

efficiency.

To Model Database

Figure 6.9 - Valid-View Object Modeling Process

III

6.4.1.5 An Upper Bound on the Number of Valid Views for Right-Angle Trlhedrons

In this section some proofs of the upper bound on the number of valid and extreme

views for right-angle trihedrons with either convex or concave shapes will be shown.

<Definition 6.8> An equivalent-face pair has two sets of faces that occlude each other

in the opposite viewing directions. In other words, we can only see all

faces of one set of the pair at a time.•

The maximum number of visible faces mvf, of an object can be obtained from the

following two steps: 1) find all eqivalent-face pairs, ef, 2) mof'« I max (# faces) for all
ef;

equivalent-face pairs, eli, of the object. For example:

g

h =(a+e), g =(b+d), e =f

(a)
h

i = (a+d), g = (e+f), h = (b-e)

(b)

h

i = (b-sf), g = (d+e), h = (a+c)

(c)

b =d, i =f, j =(a-se-se), g =h

(d)

Figure 6.10 - Right-angle Trihedrons

112

In the above figure, Figure 6.1O(a) has 5 at most visible faces and Figures 6.1O(b), (c)

and (d) all have 6 visible faces from the given viewing angles. So, the maximum number

of visible faces for each object equals to the sum of the number of faces on the right hand

side which is the maximum number of faces of the eqivalent-face pair. Then, the following

lemma and corollary are resulted:

Lemma 6.2: For an object the upper bound on the number of valid views equals to

-
#v + # all possible combination of efi, where #V is the number of

vertices and the number of visible faces of all possible combinations

ranges from 3 to mvf •

For non-extreme views, #V represents the upper bound of the number of views that

have three visible faces. Some of the combinations of eli do not exist in reality. For

example, (i, g, a, e) in Figure 6.1O(c) will not be a possible combination because face e is

not connected to the other three faces. In addition, since symmetricity is not checked at

this moment, redundent views might be included, if any. Therefore, in reality, the number

of valid views will be less than this bound. As this is the only bound which can be

estimated systematically, one can claim that it is the only upper bound on the number of

valid views so far. Q.E.D.

Corollary 6.1: The upper bound on the number ofextreme views ofan object is equal to

#F + #E, where #F is the number of surfaces and #E is the number of

edges ofthe given 3D object. -

113

By definition, faces and edges in extreme views are degenerated to edges and vertices

respectively. Therefore, the viewing sphere has at most #F + #E extreme views because

some of the faces will be degnerated to edges with respect to that view. Similarily, some

of the edges will be degerated to vertices. For example, the number of extreme views for

a cube is 18. Q.E.D

Figure 6.1O(a) shows an example with mvf S, the upper bound of the number of valid

views are enumerated by the following procedures:

Case 1: (The number of visible faces is 5) there are two possible combinations:

(a,c,b,d,e) and (a,c,b,d,t);

Case 2: (The number of visible faces is 4) there are four possible combinations: (a,c,g,e),

(a.c.g.f), (h.b.d,e) and (h,b,d,f);

Case 3: (The number of visible faces is 3) it is equal to the number of vertices, #V=12.

Thus, the upper bound on the number of valid views is 18 (12+2+4) and the upper

bound on the number of extreme views is 26 (8+ 18). So, the upper bound on all possible

views then becomes 44 (18 + 26). However, in [EdOS83], the upper bound is C(j,3) +

C(j,2) +C(j,l) = if 3 + 5/)16 = 92 and, in [Watts88], the upper bound is 4 + 2C(j,2) - 2 =

/2 -/+ 2 =58.

Besides, the upper bound computation is only applicable for convex polyhedrons in

both [EdOs83] and [Watts88]. In proposed actual implementations, the number of views

stored for the L-shaped object are: 71 views in [WanF90] and 57 views in [ChaH92]

respectively.

Knowing the upper bound of the number of valid views can help us to determine the

size of model base ahead of time. Our upper bound estimation model is only applicable
/14

for so-called right-angle trihedrons in which object surfaces are either parallel or

perpendicular to each other. Another assumption have been made in this model is that

only orthographic views are considered with viewpoints at infinity and perspecive viewing

cases are excluded.

6.4.2 Canonical View List

Two objects are topologically different if they have different singularity configuration

in 3D space. On the other hand, if two objects are distinct, they must be topologically

different. Hence if two objects are topologically different, they must have one "special

view" to distinguish the corresponding objects. This view must be one which is labelable

and non-extreme. However, two objects having the same topological (3D) structure do

not necessary have the same set of views. The following lemmas and proposition are

useful in supporting the concept of canonical views for 3D objects..

Lemma 6.3: Any two topologically equivalent 2D projections (views) of a 3D object

must have the same signature. However, the converse is not true .•

Proof"

Any two 2D projections of a 3D object is said to be topologically eqivalent if and only

if:

(I) they have same number of visible faces, edges and vertices; and

(2) their topological representations (graphs) are isomorphic; i.e. their edge function and

vertex function are one-to-one and onto.

Let the feature vectors of the corresponding signatures of the 2D projections be <Ii,

h,h,/4,/S,/6'h'/s> and <f/,h',h',fiJs''/6',h',fs'>, respectively. From (1) one can

confinn thath =//,h+h+f4 =h'+f;'+f4" andfs+/6+h+fs =fS'+/6'+h'+.t..f?'· And from

lIS

(2) one can further confmn that their feature vectors are equivalent. Hence they produce

the same signature individually.

Conversely, the following example, shown in Figure 6.11, can be used to prove it. It

IS obvious that the following two projections have different topologies but the same

signature.

>
>

+ +
+ >

>
> >

+ >

> >

>

Q.E.D.

Feature Vector = <4, 4,0, 10, 1,4, 1,5>

Signature =959

Figure 6.11 - Two Topologically Different Views With Equivalent Signature

Corollary 6.2: Two neighboring projections within an open neighborhood of viewpoints

(of any general viewpoint, i.e. an aspect), in the viewing space are

topologically equivalent ifand only if they have the same signature.•

(All projections of an aspect may have different metric properties but

equivalent graph structures and topologies.)

Proof

From the definition of an aspect, since all VIews in the aspect are topologically

equivalent, they must have the same signature. Furthermore, because no visual event will

happen when the viewpoint moves from one position to another within the aspect, the

number of faces will not change, neither will each edge and junction type. The only

differences are the length of the edges and the size of the angles between two edges of the

116

junctions. Therefore, for all views in an aspect, they are topologically equivalent if and

only if they have same signature. Q.E.D.

In addition, the larger the signature value of an object view, the more information

(features) it can cany and the higher canonicality it is capable of representing. Although

the signature representation may not be unique for individual views, a set of valid views

must be unique in the model; otherwise, the object will be rejected from the model base

because it does not have distinguishable features. The canonical view list of an object

model can then be obtained gradually from the following procedure:

Initially, let the canonical view, CVj of an object i be one of the valid view-s with the

largest signature value, i.e. CVj=max(Signature(Vj)) , j=l,ik, where ik is the number of

valid views of object i. If CV j is not unique among the model objects (i.e., there is another

object with the same view), append the view with the second largest signature value to the

canonical view list Repeat this procedure during the model building process until the

view list is unique to the mode1. Hence, the canonical view list may contain more than one

view and the list should be unique to the model according to the above building process.

Therefore, we have the following proposition.

Proposition 6.1: A canonical view list is the most compact unique representation for a

3D object.•

PrnQr-

According to the definition of an object model base, all stored objects should have

distinct features. As a 3D object model base in a multi-view representation is composed

of non-redundant (distinct) valid views and the uniqueness has already been verified during

the construction of the canonical view list, this list is then unique in the model base.

Instead of using all valid views as canonical view list, the list only contains the smallest

117

number of valid views that can be uniquely identified. Therefore, this canonical view list is

most compact unique representation of a 3D object.

6.5 MULTI-VIEW OBJECT MATCHING BY INDEXING

Q.E.D.

6.5.1 Approach Description

Model indexing approach [CleJ91] is defined as follow: From a given set of features of

an unknown object view, rapidly extract a list of objects containing a representative view.

Since the new model base is developed by hashing all the signatures of valid views into a

chained hash table, the matching process consists of computing the address of the

unknown object view to determine its existence in the hash table. Usually, it can be done

in constant time. However, for a single input view, the system may not be able to find an

exactly-matched object from the model base if the view is not unique. Therefore, for the

purpose of reliable recognition, humans perceive a 3D object usually by looking for a set

of different but informative views from different viewpoints. The algorithm is shown

below.

1. Capture a new view;

2. Extract features:

2.1 Surface extraction;

2.2 Line/Junction labeling;

2.3 y -W paring;

2.4 Signature Generation;

3. Indexing to model base;

4. IF no match THEN stop and exit;
ll8

ELSE IF an unique view has been found THEN report the matched object ill and exit;

ELSE IF enough confidence THEN report the matched object ill and exit;

ELSE IF need more views THEN go to step 1;

ELSE report a list of object ID and exit;

As a result, the matching process stops only when 1) there is a unique input view

(only one object contains such view); 2) there is a unique sequence of input views (only

one object has such a sequence of input views); or 3) there is no match at' all. The

confidence or uniqueness of the candidate object increases with more captured views.

6.5.2 A New Confidence Computation Model

In this section, a new confidence computation model for the multi-view indexing

object recognition system will be presented. Since the significance of each input view is

different (the significance is meausured by the value of the signature, computed from the

8-tuple feature vector), the confidence of an object is accumulated or calculated by the

weights (signatures) from the input views. Views possessing higher signature values will

contribute more confidence to the objects containing them. In addition, the sequence of

input views will also affect the final confidence of this new model. The earlier in the

process which a view with a large object signature is captured, the higher the obtained

confidence value will be.

For example, Figure 6.12, a model base has 10 objects, where Db}1 has a view list

(1231,959,942,729, ...), obj, has views (942, 729, ...), ob}6has valid views (959, ...) and

ob}1O has (729,...) views, respectively.

119

Index

Table

1231

959

942

729

Object

ID

Figure 6.12 - Example of a Model Base

6.5.2.1 Rules of Confidence Combination

Since the signature value carries the canonicality (significance) information of each

input view, the larger the signature value, the bigger contribution it will make to the final

confidence value. Therefore, a weighted confidence computation model has been

developed to cope with the signature value for computing the confidence of any object k,

and S = (Sj +So)
com 2 (6.2)

where, S, and Sa are the signature values for input and accumulated view respectively.

The signature of the accumulated view is the combined signature from among all

previously captured views, calculated according to equation (6.2). The result of the

weighted confidence computation model for the model base shown in Figure 6.12 is:

120

Table 6.1 - The Accumulated Confidence Table

obi, obi, obi, obi, obi, obit; obi, objR obj; obj.;

view 729 0.33 0 0.33 0 0 0 0 0 0 0.33

view 942 0.63 0 0.63 0 0 0 0 0 0 0.33

view 959 0.77 0 0.63 0 0 0.5 0 0 0 0.33

* The input view sequence is (729, 942, 959).

6.5.2.2 Advantages of the Model

1. The resulting confidence value is always between 0 and 1.

2. The confidence-combining rule includes the significance value of each input view,

since each view has different significance.

3. The [mal confidence value will become 1 when a canonical view is captured.

4. The earlier in the process in which an important view has been captured, the higher the

obtained confidence value will be.

The following two lemmas prove advantages 1 and 3 above.

Lemma 6.4: The combined confidence is always less than one in the weighted

confidence model.

Let Sj= max (So' S), then the comined Ccomequals:

= c. +~c -~c. *C
· s; a s; · a

121

Since Sj>Sa and Ci and Ca are all positive real numbers, the combined Ccom will be

lesser or equal to 1. The proof is the same for Sa=max (Sa' SJ Q.E.D.

Lemma 6.5: When a canonical view of an object is obtained, its corresponding

confidence value will be 1.

Since a canonical view is defmed as an unique view with the largest signature value, S,

= max (Sj'sa) and C,= I. The combined confidence Ccom is:

Q.E.D.

6.5.2.3 Influence of Input Sequence

The following four examples show how the sequence of input views affect the final

confidence value.

Table 6.2 - The Accumulated Confidence Table for Different Viewing Sequences

I Sequence I obiz I obh I obh I obj4 I obj5 ~ objz I obj8 I objQ I obj70 I

(729,942,959) 0.77 0 0.63 0 0 0.5 0 0 0 0.33

(729,959,942) 0.78 0 0.62 0 0 0.5 0 0 0 0.33

(959,942,729) 0.81 0 0.63 0 0 0.5 0 0 0 0.33

(729,1231) 1.0 0 0.33 0 0 0 0 0 0 0.33

It is assumed that Sa and Ca are the signature and confidence values of the

accumulated view and S, and C, are the signature and confidence values of the new input

122

view. Then the following lemma is to support this confidence-computation model to raise

practical interest and importance.

Lemma 6.6: The combined confidence value of the weighted confidence model is

always monotonically increasing when the accumulated view has a larger

or equivalent signature (importancei.than the input view. On the other

hand, for a larger signature (less important) input view, the combined

confidence will increase only when the confidence of input view (C) and

the confidence of the accumulated view (CaY satisfies the following

relation:

where Sj and Sa are the signatures of the input and accumulated views

respectively.

(1) If Sa =max(Si' Sa)' the combined confidence, Ccom' is always monotonically increasing.

s·
=>-'*C . *(1- C) > 0

S ' a
a

Since S;I Sa' Cjand l-Ca are all greater than 0, Ccom is always greater than Ca-

(2) If S,=Sa' the confidence value is definitely monotonically increasing.

(3) On the other hand, if S, =max (Sj' S), Ccom is monotonically increasing only if:

123

(1- ~ a ic;

C i > S'
l-_aC

S. a
•

Q.E.D.

The above lemma shows that the earlier the more important view is captured for an

object, the higher the obtained confidence and the faster the convergence will be.

6.6 EXPERIMENTAL RESULTS

A simulation system called 3DOMMS (3D Object Modeling and Matching System)

has been built to prove the efficiency of this new labeing-based valid-view modeling and

multi-view matching approach. The detail functions of this system and a walk-through

example can be found in Appendix A The canonical views and valid views of tested model

objects and their corresponding statistical information are given in Appendix B. It is

obvious that this modeling approach requires few valid views since other uninformative

views have already been rejected during the model building process. For instance, obj I

only has 4 valid views (Figure 6.13) and obj2 requires 13 valid views. However, in

[WanF90J, objl and obj2 need 71 and 122 views respectively.

Those model objects are created by a 3D graphic tool called SHOWCASE in graphic

supercomputer ONYX system. The all tested views are captured and drawn by

3DOMMS one-by-one for modeling.

This simulation system is implemented in C++ language on a 486-PC. Users can

construct drawings on the screen directly or import line-drawings via an input file.

Imported drawings were created by either the graphical drawing subsystem or an image

processor. A browser function is provided to users for examining objects already stored in

124

the object model base. An object number will be displayed on the message window

indicating the total number of objects that have been modeled. The user should input a

new object number corresponding to each input line-drawing during the modeling process.

For a low confidence (less important) view, the system will ask for input more views.

(1231,959,942,729)

1231

(5,6,1 ,8,3,5,0,3)

959

(4,4,0,1 0,1 ,4,1,5)

>

~
+ >

+ >
> >

>
+ >

> >

@+ >
> > > >

> + +

>
>

942

(4,4,0,9,1 ,4,1 ,4)

>

~
»

> >

+ + >

> >

729

(3,3,0,8,1,3,0,5)

~
> -

> + >
>

+
+ >

>
>

Figure 6.13 - Valid Views of L-shaped Object

The performance of the simulated 3D object recognition system is shown in Figure

6.14. It is noted that the x-axis the labeled by the summation of #E (number of edges), #J

(number of junctions), and #5 (number of surfaces), since threse are the basis for signature

generation. After the signature is generated, the matching is accomplished in a constant

time.

125

Performance of 3DOMMS

5

4.5

3.5

'" 3
"0
C

§ 2.5
CfJ

2

1.5

0.5

16014012010080604020

0+-4-+-+-+-+-+--+-+-t-+-+-;1-+-+-i-+-+-+-+-+-+-+-1-+--+-;-+-+-+-+-+--+-+-t-+-+-1-+-+-i

o
of Surfaces + # of Junctions + # of Edges

Figure 6.14 - Performance of the Simulated 3D Object Recognition System

6.7 SUMMARY

Using as little storage space as possible and achieving fast and reliable object matching

are two crucial goals for the realization of a real-time 3D model-based object recognition

system. A novel 3D object modeling and matching approach based on object labels of its

2D line-drawings has been developed and its ability to achieve these goals has been proven

in this chapter. With the effectiveness of our labeling process, the object's canonical view

list and automatic multi-view indexing mechanism are proposed and tested fully utilizing

labels of lines and junctions, This new approach provides not only faster but also a more

natural and reliable perception process over the traditional single-view approach. For

curved objects, one addition label is required to represent limbs where the surface curves

smoothly around to occlude itself [Mali8?]. The labels of C-junction, where the labels will

change from convex to occluded or concave along the same curve edge [Coop93]. A

126

complete labeling dictionary for curved line-drawings needs to be developed and using the

same CCRP-based labeling algorithm curved objects are expected to be included in future

research.

127

CHAPTER 7

CONCLUSIONS

In the previous chapters, a set of labeling, modeling and recognition algorithms,

models and systems for both 2D and 3D line-drawing interpretation were successfully

developed. The motivations and approach overviews of this research were discussed in

Chapter 1. In Part I, Chapter 2 and 3 presented three major components, i.e. labeling,

modeling and recognition, which were developed via a set of proposed approaches for

understanding 2D line-drawing images. Chapter 2 mainly described image abstraction and

blurring approaches for the segmenting symbols from electrical engineering drawings.

Chapter 3 presented a hierarchical neural network approach for successful recognition of

34 different types of logic gates. In Part II, Chapter 4, 5, and 6 presented a set of new

labeling, modeling and recognition approaches for the interpretation of 3D line-drawings.

In chapter 4, a new surface extraction algorithm was proposed which is capable of

extracting surfaces from a given projection of any trihedron in a linear time. In chapter S,

a robust and efficient line-drawing labeling algorithm that labels lines and junctions

altematingly was presented. Its near-linear time complexity, with respect to the number of

junctions and edges, motivated the extensive usage of the labeling process for 3D object

modeling and recognition. Chapter 6 has developed a labeling-based valid-view object

modeling and multi-view matching (recognition) approach which validated the advantages

of extensively use of symbolic features for the line-drawing interpretation applications. In

that chapter, some proofs and experimental results demonstrated the advantages of these

approaches over other traditional object modeling and matching methods. An

experimental software, 3DOMMS, has been implemented to simulate and prove that these

newly proposed approaches work well. This chapter summarizes the contributions of the

128

overall research work covered in this dissertation and lays out suggestions for future

enhancements.

7.1 CONTRIBUTIONS

The major contributions made in this dissertation are:

(1) Development and demonstration oj a general paradigm for solving the fine-drawing

interpretation problem:

Three common and major components for solving both 2D and 3D line-drawing

image interpretation problem were first porposed in this dissertation. They are

namely: labeling, modeling and recognition. The labeling process involves feature

extraction and grouping. The output of the labeling module is a set of features known

as symbolic labels of the corresponding objects. The modeling module automatically

encodes these object features into the model base. The input to the recognition

module is just the set of symbolic labels, however, the module performs recognition by

matching the input labels to the encoded object labels in the model base. These three

modules are applicable to understanding both 2D and 3D line-drawings for different

application domains.

(2) Symbol segmentation via image abstraction and blurring:

An automatic 2D object (symbol) segmentation (labeling) approach for the

electrical engineering drawing image has been developed. Utilizing image abstraction

and blurring this approach has been proven to be capable of identifying both open- and

close-loop symbols of various sizes in the experiments. This approach segments

symbols in a global and fuzzy way and hence is applicable to many different types of

129

drawings. Instead of thinning and vectorizing the given line-drawing images, symbols

can be segmented in 2D space. As there is no need for data interchange, data

parallelization can be performed to speed up at each processing step.

(3) Hierarchical neural network for symbol modeling and recognition:

A set of translation-, scaling- and rotation-invariant moment features were

designated for symbol modeling and recognition. A hierarchical neural network

approach for symbol modeling and recognition was proposed in this research to

achieve the goals of incremental extension and both minimal human involvement and

storage. Faster convergence and higher recognition rates have been clearly

demonstrated by the experiments.

(4) Linear-time surface extraction algorithm:

Unlike previous approaches, a polygon-division-based approach to iteratively

divide the object's exterior contour into a set of minimal regions, which correspond to

visible surfaces of the 3D objects in the scene, is proposed. The easy implementation

and lack of the need to perform angular computation, sorting and pseudo surface

generation are its advantages over others. In addition, this algorithm has an automatic

hole-detection capability, which is not available in any other algorithms.

(5) Line and junction labeling by a Cascaded Constrained Resource Planning model:

A robust and efficient 3D line-drawing labeling approach has been proposed and

implemented. Traditional line-drawing labeling approaches only label lines under the

assumption that junction types are known in advance, whereas this new approach

labels lines and junctions alternatively and is developed under a Cascaded Constrained

Resource Planning (CRP) framework. This heuristical algorithm has been

130

demonstrated to have near-linear-time performance (with respect to the number of

edges and junctions). No backtracking is needed for most of the test cases. Its

effectiveness proves to enable extensive usage of the labeling process for 3D object

modeling and recognition.

(6) Valid-view object modeling:

Based upon the labeled line-drawing images, a novel valid-view 3D object

modeling approach has been developed. This modeling approach requires less storage

and is able to achieve faster retrieval time as only informative valid views need to be

stored. More than two-third of the views of traditionally used by other methods can

be eliminated from the model base. An upper bound on the number of valid views for

right-angle trihedral objects has been proposed and proven. An 8-tuple symbolic

features and signature representation facilates simple-structured and lesser storage of

the object model base.

(7) Multi-view object recognition by symbolic indexing:

Instead of using the rime-consuming graph-marching approach, in this research, a

set of invariant features are extracted and the signature of each valid view is generated

for automatic object-matching via symbolic indexing. For reliable object recognition, a

multi-view matching strategy by looking for a set of different but infonnarive views at

different viewpoints has been developed. A new confidence computation model was

also proposed to compute the confidence of a sequence of input views based not only

on the significance of individual views but also on their input order. A 3D Object

Modeling and Matching System (3DOMMS), which demonstrates the feasibility and

merits of all of the proposed approaches, has been implemented for the recognition of

trihedrons.

131

7.2 DIRECTIONS FOR FUTURE RESEARCH

The problems of symbol segmentation, modeling and recognition have been

successfully solved in this dissertation. However, a complete ACID system not only has

to recognize symbols but also texts associated with the corresponding symbols.

Moreover, drawing reconstruction is required to produce a better and accurate output.

The directions for future research in 2D line-drawing interpretation are suggested as

follows:

(I) Integration with Optical Character Recognition (OCR) to obtain more knowledge

about the drawing:

It is possible to apply the proposed symbol segmentation and recognition approach

for text images. Challenges in this direction include 1) automatic separation of texts

and symbols; and 2) understanding the relationship between texts and symbols. Once

both type of information and their relationships are obtained, drawing reconstruction

will become a reality.

(2) Ability to handle hand-drawn line-drawings:

Presently, the symbols are limited to be drawn by template. As the market of pen­

based computer grows up rapidly, to segment and recognize symbols from free-hand­

drawn line-drawings is a great challange for this research. Since the proposed

segemntation approach does not look into detail structure of symbols, it may be

directly applicable for such drawing domain. How to train the symbols (as well as

characters) from different written-styles is an important and still unsolved problem.

However, it is the most challenging work.

132

For 3D line-drawings, the following extensions to the proposed approaches that

may be applied to many other applications are suggested:

(I) The ability to handle multi-object scenes and objects with holes:

The current system does not allow a line-drawing to have multiple objects, shown

as Figure 7. I. An object separating algorithm is required to partition multi-object line­

drawing into several single objects and then perform recognition individually. The

labeled line-drawing and T-type junction are useful clues for segmenting two objects

- that occlude each other. Since the occluded lines are labeled with arrows, the

algorithm could start tracing from a T-type junction, follow the arrow labels, and end

up at another T-type junction. More investigation is needed for real implementation.

2f-------(

5

7

18

Figure 7.1 - A Multi-object Scene

Another issue of line-drawing labeling requies to be solvea in the future is how

does system automatically detect holes of the 3D object in the given line-drawing.

For example, Figure 7.2 shows 3 different interpretations of the given line-drawing. It

can be interpreted as a hole, a floating tetrahedron, or a tetrahedron sitting on a block.

To solve this ambiguity, a special processing step which combines range data into line­

drawing (intensity data) interpretation is required [GiMA83], since the depth of this

isolated sub line-drawings can be derived from the range data. Fortunately, our

133

surface extraction algorithm can detect those isolated sub line-drawings automatically,

if they exist.

> > >

~ > ~ > at >

+ + +
> > >

> > >

Figure 7.2 - Three Different Interpretations of a Line-drawing

(2) Fault tolerance capability:

Since the segmented line-drawing from a multi-object scene is not complete (some

portions may be missing due to occlusion), a recognition technique based on partial

information can be developed. Moreover, this fault tolerance ability is also required

when the input line-drawing is not perfect. Decomposing the entire labeled line­

drawing into circuits [GuYH87] may be a potential solution to this problem.

Subgraph isomorphism has been proved to have the ability for finding a partial match

between a distorted input graph and a model graph [Wong92]. Given a smaller graph

(line-drawing), match to a bigger model graph (line-drawing) could be implemented by

first decomposing the model graph into a set of smaller subgraph having the same size

with the imput one and then applying the symbolic indexing approach (proposed in this

dissertation) to find the correspondence.

(3) Planning for next best view:

The processing order of non-extreme view is a crucial problem for multi-view

object matching strategy. A search for the optimal consecutive view will not only

minimize camera movement cost but also shorten the recognition process [MavB93].

134

Since a priori geometrical information about the object is not available, the labeled line

segments and junctions at the outermost borader of the given line-drawing may be

useful for the prediction of the next view for object recognition.

(4) The ability to recognize more objects:

Beyond the trihedral object world, the results of this research can be easily applied

to general polyhedral objects, which include P-junction (peak) K-junction and Cjunction

(crack) junctions. Some results of curved-objects labeling [Chak79] [Mali87] [Coop93]

may be applied to include a larger variety of realistic objects. Figure 7.3 shows some of

junction definitions that are beyond the trihedral objects. Label "»" is called the limb of a

curved surface, where it does not correspond to any tangent or curvature discontinuity in

the line-drawing. A complete analysis of legal line labelings for general polyhedrons and

curved objects is required. Once the dictionaries for general polyhedrons and curved

objects is developed, the CCRP-based labeling algorithm can be applied directly. The

proposed valid-view modeling and multi-view indexing are still applicable to those

extended object worlds, since the symbolic labeling technique remains. In addition, an

image pre-processing step is required to detect the curve segmenrs and the junction points,

such as curved L-junctions and curved W-junctions.

+

»

»

>

P-junction (Peak) K-junction C-junclion (Crack) Curved W-junction Curved L-junction

Figure 7.3 - Extended Junction Types for General Polyhedral and Curved Objects

1:'5

7.3 CONCLUSIONS

To achieve the goal of developing an automatic labeling, modeling and recognition

for line-drawing interpretation system, we have proposed a set of efficient approaches that

can automatically assign labels to objects. They require less storage for the model base

and give faster recognition rates. Image blurring could potentially playa vital role for

general object segmentation. Moment invariant features have been successfully used in

pattern recognition, however computing invariant moments is too expensive. Since many

fast moment computation algorithms or architectures have been proposed recently

(Li93](FuYC93], the moment invariant features may be applied to many practical

computer vision systems in the near future. To achieve a high recognition rate and

incremental model extension, the hierarchical neural network gives the most promising

direction. Symbolic labeling, representation and textual matching are no doubt the only

way to achieve faster recognition. The most significant contribution of this reseach is

developing a fast symbolic labeling approach which not only solves the bottleneck of

traidtional labeling problem (low speed) but also opens a door for the applications of

labeled line-drawings. Due to the demand for real-time computer vision systems in

industrial applications, discovering ways to reduce the size of the model base and speed up

the matching as well as searching process are the two main considerations to achieve such

a goal. The proposed solutions can realize a truely real-time and geometrically invariant

vision system for industry automation of mechanical parts manufacturing. Much work has

been done in this research and more extensions are proposed and needs to be solved in the

future. In conclusion, this dissertation has laid a new milestone for automatic labeling,

modeling and recognition in line-drawing interpretation. Future work in this direction will

make the paradigm more mature not only in theoretical research but also in practical

computer vision systems.

136

APPENDIX A

3DOMMS (3D OBJECT MODELING AND MATCHING SYSTEM)

This appendix is divided into four sections. Section A will go through the process

of installing 3DOMMS. Section B will show how 3DOMMS's interface works. Section C

will list the different commands and describe what each command does. Section D is a

walk-through that shows how to add an object into the CV database (canonical view

database), how to model an object, and how to match an object. Section E contains a list

of files and it shows how the program interacts with the files.

A. Settine up 3DOMMS

Put the diskette in the your disk drive.

Type a: or b: depending on which drive contains the diskette.

Type install [drive] where [drive] is the letter of your hard drive. (E.g., c:)

Type win to run Windows.

Click on the window where you want your 3DOMMS icon.

Now click on the File menu and click on New....

Click on OK.

Type 3DOMMS.

Press Tab, and type c:\3domms\ml.exe where c: is the drive letter of your hard disk.

Press Tab again, and type c:\3domms\ where c: is the drive letter of your hard disk.

Now click on Change Icon... and choose your icon for 3DOMMS.

Now click on 0 K.

Double-click on the 3DOMMS icon to run 3D Object Modeling/Matching System.

137

B, Interface

I. Screen Layout

The screen layout contains six windows as shown in Figure A,l below.

Title Window - This window always shows "3D OBJECT MODELING/MATCHING

SYSTEM," which is the title of this simulation environment.

Main Command Window - This window displays buttons that represent all the major

commands used in this system, which are listed and described in section B.

Drawing Window - This window contains a grid area that displays the current drawing.

Browse Window - This is where the canonical view of each object is displayed.

Sub Command Window - This window will show sub-commands when a main command

requires further options.

Message Window - This is where messages and user inputs occur.

Browse
Window

Sub
Command

Window

I Title Window

x

Drawing Window

D
,1/ I Message Window I
y

Main
Command

Window

Figure A,l - Screen Layout

138

II. Mouse

A mouse is required to run this program. All the commands in the Main

Command Window and the Sub Command Window are activated by a single mouse click.

A mouse is also used to input a drawing. The keyboard is only used to type in a filename

to save or to read and to confirm a decision.

To avoid confusion, the mouse is restricted to one of three windows at all time.

Only the commands inside the current restricted mouse area are needed at that particular

moment.

C. Commands

Read­

Save ­

Input -

Read drawings from existing DOS files.

Save drawings to a user-specified DOS file.

Allow the user to input a new drawing from scratch.

I. Click on the left mouse button to start a line.

2. A flashing (XOR-mode) line will be drawn on the screen according to

the mouse movement.

3. Click on the left mouse button again to replace the flashing line with a

permanent line.

4. If an endpoint of the current line is close to an endpoint of an already

drawn line, the program will snap the two endpoints together.

5. If an endpoint of the current line is close to a part of an already drawn

line, the program is break down the already drawn line and form a

T-junction with the new line.

139

Edit -

Face -

6. Click on the right mouse button to return to the Main Command

Window when the drawing is complete.

(Note: 3DOMMS cannot recognize a junction with more than 3 lines.)

Edit current drawing

Insert - Inserting lines

(See Input above)

Delete - Deleting lines

1. Click the left mouse button on a line to select a line to be deleted.

2. The selected line will change to a dark red color.

3. More lines can beselected in the same manner.

4. Click on the right mouse button to delete all the selected line and return

to the Edit Sub Command Window.

Pan - Pan object

1. Click the left mouse button on a node of the object to select that node.

2. To be position the selected node at a different point, click the left

mouse button at that point.

3. The selected node will be positioned at that point and the whole object

will be positioned at that area accordingly.

4. Click on the right mouse button to return to the Edit Sub Command

Window.

Return - Return

1. Returns to the Main Command Window

Extract faces for the current drawing

1. Faces will only be extracted if the drawing does not have any errors.

2. Errors in the drawing means that some of the lines are not connected.

3. These errors can be corrected using the Edit command.

140

Label - Label the drawing

1. The drawing will only be labeled if faces for the drawing have been

successfully extracted.

2. Inconsistency in labeling means that the drawing is not an accepted 3D

object.

Browse - Browse the available canonical views

PREVng - Previous Page

Go to the previous page of canonical views

NEXTpg - Next Page

Go to the next page of canonical views

Return - Return

Returns to the Main Command Window

Model - Add or delete the current view from model base

The Model command will only activate if the faces of the current drawing

have been successfully extracted and the drawing has been successfully

labeled. (See Go Mod)

Insert - Insert current view into model base

The program will ask the user for the object to which this view should be

added.

Delete - Delete current view from model base

The program will ask the user for the object from which this view should

be deleted.

Return - Return

Returns to the Main Command Window

Go Mod - Add or delete the current view from model base

141

The Go Mod command will activate whenever there is a drawing, but it

will not model the object if either Face or Label is unsuccessful.

Go Mod saves time by going through the whole process of Face, Label,

and Model in one step.

The Go Mod Sub Command Window contains the same options as the

Model Sub Command Window. (See Model above)

Match - Match to see if the current view is a view of an object in the CV database

The Match command will only activate if the faces of the current drawing

have been successfully extracted and the drawing has been successfully

labeled. (See Go Mat)

Go Mat - Match to see if the current view is a view of an object in the CV database

The Go Mat command will activate whenever there is a drawing, but it will

not match the object if either Face or Label is unsuccessful.

Go Mat saves time by going through the whole process of Face, Label,

and Match in one step.

The Go Mat Sub Command Window contains the same options as the

Match Sub Command Window. (See Match above)

C View - Add or delete canonical view of an object to or from the CV database

Insert - Insert current view into CV database

The program will ask the user for the object number of this canonical view.

Delete - Delete a canonical view from the CV database

The program will ask the user for the object number to be deleted.

Exit - Exits 3DOMMS

D. Walk·throll~h

142

I. Object Manipulation -

At the start of the program, there is no object on the screen. An object has to be

either read or created.

Reading an object

Use the left mouse button to click on the Read button. Now the program will ask

for the filename to be read. Type obj7.2 and press Enter. The program will now read the

file obj7.2. After finish reading obj7.2, the object saved in the flle obj7.2 will be printed on

the screen as shown in Figure A.2 below.

3D OBJECT MODELING/HATCHING SYSTEM

i
)(

I

.. il'~I·'~!
I ,....
~

l~V
1 ~

/,

? ! ./ 1 4t!k4.:td
I ~

/ 1 {§~:ttJ

I b s
-

!
~.

V1.

:2
: 22 \I
!

"2 ! i'" , - ~

f 19 ,"'''

~~;~~~~J! 24
i 9

0)./ IE
2.1;;

/'
23 ' 1 9 ~ ~ J A

./
I 3 '/ / (i9:"~c:11!

/' i l/ B ./ /' 2
'1~H#.FI

I I~ (i4i,'m'tl
,::. j 1f V •I

I
6 V

~ = I I J-

Figure A.2 - Reading obj7.2

Crearing an ohject

143

Reading an object is easy. Creating a new one is a little more complicated. First

you have to decide what to create. For this walk-through you want to create a

3-dimensional T shown below.

To do that, click on the Input button on top portion of the Input/Edit button.

Now, you will have to draw this 3-dimensional T in the Drawing Window. First, you have

to pick a point to start. Let us pick this point.

Click the left mouse button somewhere near the center of the Drawing Window.

Now, move the mouse and there will be a dotted line to show where the line would be if

you click on the left mouse button again. Now, position the mouse about an inch to the

right of the starting point, and click on the left mouse button to draw this line.

3DOMMS has a built-in function that will snap two end points to connect the line

if the two end points are close together. So click the left mouse button near the first

point, move the mouse down about a quarter of an inch, and click the left mouse button

again to create this drawing.

If the two endpoints are not close together, they will not snap together. If that

happens, you will have to redraw the whole thing or Edit it. (Explained later) To redraw

the drawing, click on the right mouse button to exit Input mode, click the left mouse

button on the Input button, and draw the two lines again.

144

Drawing the third line the same way you drew the second line except that you start

at the right end of the first line.

Now draw the line using the same method as before to create this.

Now, you should be able to finish drawing the T as shown below.

This is a T, but it is only 2-dimensional. Start at the upper left edge and draw a

slanted line like this.

You can notice that the three end points snapped together to form a three-line

intersection. This program will not allow a four-line intersection. A four-line will cause

an error when the program is trying to Face or Label it. (Explained later)

Now draw five more lines to make the drawing look like this.

The next line that you have to draw is a different kind. It is a line in which you

start at an endpoint and end in the middle of another line. If you start or end a line near

the middle of another line, the second line will be broken into two small segments, and a

T-junction will be formed were the second line is broken. Now try it by drawing the last

line. What you have drawn should look something like Figure A.3 on the next page.

145

3D OBJECT MODELING/MATCHING SYSTEM

I
)(

i:ill·1!
j

j:I·~llillI
I U~ti~4#1
! ?~ltn
I

iti.. 0

·:·:i,I::.:l,"", -J.

1', 1:3 ~rr: I-"l

:·I~I~~!li,

it!~I!jI :5 :;..l it

'-'I.?~~JI
~~::(;~n¢il;fl

ni;lH4fl
~9;:~",~1

!

~··!~.~II1

.0- - .- - !

:~~ll!~:~:i:·:1I
I

\

Figure A.3 - Inputing 3-dimensional T

The drawing is finished. As you can see each line is numbered and each edge is

numbered. Click on the right mouse button to exit the Input mode.

Saving an object

Now, you should save this object. Click on the Save button, and the you will be

asked for a filename to save this object as. Type t and press Enter. This 3-dimensional

object will be saved as the file t.

Editing an obiec:

Sometimes, the drawing may have errors, or maybe you just want to change the

drawing in some way. To do that you will have to Edit it. Click on the Edit button on

the bottom portion of the Inputtlidit button.

146

The Edit Sub Command Window will appear. This menu contains these four

options: Insert, Delete, Pan, and Return.

If you want to insert a line, click the left mouse button on the Insert button and

start inserting lines just as if you were in the Input mode. Insert a line so that the drawing

looks like this.

Click on the right mouse button to return to the Edit Sub Command Window. This

does not look right. It is not a valid 3-dimensional object. So delete that line you just

drew. Click the left mouse button on the Delete button. The Delete mode is different

from the Input mode. In the Delete mode, you have to click on the line to select a line to

be deleted. More than one line can be selected. Selected lines will have a dark red color.

So, click the left mouse button on that extra line and that line will turn dark red. Now,

click the right mouse button to delete that line and return to the Edit Sub Command

Window.

Sometimes when your drawing is too big, you might run out of space because the

program will not let you draw past the edges of the grid Drawing Window. You have to

pan the object away from the edge to finish drawing what you started. Click the left

mouse button on the Pan button. The Pan mode is different from both the Delete mode

and the Input mode. In the Pan mode, you have to click on a node (intersection) to pick

up the whole drawing. Then click somewhere else to place that node there, and the rest of

the drawing will be placed accordingly.

So now click the left mouse button on any node you want. Click the left mouse

button anyplace you want to move the whole object to. To leave the Pan mode, click on

the right mouse button.

147

II. Canonical View Database Management -

The 3DOMMS simulation comes with a set of 12 objects. The current canonical

view database contains the canonical views of these 12 objects. Each object has a

different number of valid views. The valid views of these 12 objects are stored in the

current model base. (See Section E on further details on managing these files.)

Browsing all the available canonical views

The Browse command is used to view all the canonical views that are currently in

the CV database. Click on the Browse button and the Browse Sub Command Menu will

appear. In the Browse Sub Command Menu, there are these three options: PREVpg,

NEXTpg, and Return. The canonical views of the flrst 6 objects are shown above the

Browse Window (as shown in Figure A.4 below).

3D OBJECT MODELING/MATCHING SYSTEM

[S
)(

I--

i l l l ~ ~ ~ j j

: i : ; I I ~ I ; : 1
--- - ---- -... -- - f-- - - -

~ ~ - _. -- - -- -" :ilnlmt:j
)§~tM"!

~
- ._-.-1-

:::111::::1:

::III;~:::1-

t\1!:1 t~I~1
--. -- fo-.

~
I ! i_·t-·· .. --- }t9!i@!"!"r: -1'-"

~:{~9.i:.lJ

I I_._- -- -- -- I ..- - ::11~f~¢.ti.J

~
'-'T--- --T-

AA:J:I,4.~1

I I

I

~::i·~:~:t~I ! !
o >J :

!PREUP9! t.i. 1 i
:iim:~~!:!::lj I j

It!~TP91 I
Itleturnj

Figure A.4 • Browse

148

Click on NEXTpg to see the next 6 objects. Since there are currently only 12

objects, there are only 2 pages to browse. Click on Return to return to the Main

Command Window.

To add more objects into the CV database, just Insert a new canonical view. To

delete an object from the CV database, just Delete a canonical view. Now you will learn

how to add the 3-dimensional T into the CV database.

Inserting a canonical view

If you do not have 3-dimensional T on the screen, then read the file t. Now, click

on the C View command in the Main Command Window. The C View Sub Command

Window should appear. This menu contains three options: Insert, Delete, and Return.

Click on the Insert button. The program will ask for the object number. Since there's

already object 1 through 12, 13 makes the most sense. Type 13 and press Enter.

Click on the Return button to return to the Main Command Window. Now, do

Browse again and you will see that now there is 13 objects in the CV database. The 13th

object is your 3-dimensional T as shown in Figure A.S on the next page.

Deleting a canonical view

Sometimes, you might want to delete an object from CV database. To do that,

click on C View button and then click on the Delete button. When the program asks for

the object number to be deleted, you can type whichever you want. (Note: If you

accidentally deleted one of the original 12 objects and you want it back, see Section E.)

Try deleting object 13 yourself. After deleting object 13, it will not appear in the Browse

Window. Remember to Insert object 13 again if you deleted it just now.

149

3D OBJECT MODELING/MATCHING SYSTEM
~

)C

W
I

]~II!~II
IoD.J ~ .

: ~ I I I ~ ~!
i
:)l~~"f.]
:
! f~~;t!iiJ

i- .- -- -
:ii:I'I;~1f

::B~II~:::J-
- f- -- i

f- -- -- - ---- ;

II~~II I

)19.#.i~JJ

Wftffi'l#1

:l~~l~!:tl

mtt~iim

~~ilj~l~{

!1~'&.'.iji3
:!~I~l~~j~1~~I.#m i

I~~~gt?l

Figure A.5 - Browsing T

III. Object Modeling -

Now that you have inserted your own object, it is time to tell the program the

different views that this object has. The first view should obviously be the T you just

drew. Now Read file t.

Extracting faces from the object

Now that you have the first view of the 3-dimensional T on the screen, you should

extract its faces. Click the left mouse button on the Face button. You should see

something like Figure A.6 on the next page.

150

30 OBJECT MODELING/MATCHING SYSTEM

)(

:::'111::1:1

:;:111':::1I
I

'lM4.~J
! t€#P:'?:1

II
,-

':.:1111::1~", ',' '. '. :. ;,'

-- - I •

.-f- -- . : ...
! · l l m ~ I : ! i!,

.._- _..-_.-- - - - - i--- ._.-.-
i[;I~ll: .

i,
~~~:M

i
i t~::::"fi#1,
! !11'!~¢.~1
i
i AA?tt.~tl
i,

F.'··:~:f,I~j,
i

!
··:!I.~lf!::::1- i

y

Figure A.6 - Extracting Faces of T

Labeling object

This view has four faces as you can see. Since there were no errors in this

drawing, you can proceed and label this drawing. Click the left mouse button on the

Label button. The screen should display something like Figure A.7 on the next page.

15I



3D OBJECT MODELING/MATCHING SYSTEM

I I
> )(

;:::1111! I
I I

::::fll:::iilI T
I

iI I li.#.W~J
i :

i i ::@X~:I

f- :..- ! I , i
":li~;!:::1I ::r: iI

!
~ "1 ~. I-- :

~tl~ilI
i !I

i ! I
~"I~t,1f ! I-<

~
:

i b~1 t ac s= j
I i r 0

"!t.=@~XI

I ! ! !9~~1.-.- -. - :

i i !: l.1~t¢hl
i I

1
f- >.-. I i 9c;>.~.~"~1

: : II I

! I I

.- - i
~ H--- - _.

i
! I i

! I I

!oJ
]W:~:f::::f:r;~¥:~fil~:::::~il;jW:::mg~mi~%#:i;f,\:t};:::::~~n~:f$::::::~::::::::j:::::::::::::::;:::::::::::::;::::::::::;;:;::;:;::::::::::;::::::::::::::1

Figure A.7 - Labeling T

Each junction is labeled with one of these three labels: L, Y, or W.

L ~ This junction is an L-junction formed by two lines. (It looks like an L.)

Y ~ This junction is a Y-junction formed by three lines. (It looks like a Y.)

W ~ This junction is a W-junction formed by three lines. (It looks like a W.)

T ~ This junction is aT-junction formed by an end point breaking up a line.

(It looks like aT.)

Each line is labeled with one of these three labels: +, -, or >.

+ ~ This line is a convex line. (It is pointing outwards like a mountain.)

~ This line is a concave line. (It is pointing inwards like a valley.)

> ~ This line is an occlude line. (One of the face of this edge is occluded.)

The number of backtracks is displayed next to the labeled drawing.

152



Modeling object

If you did not successfully do the Face and the Label command for the 3­

dimensional T you drew, then the drawing must have errors in it. Check your drawing and

Edit it. Now, you can Model this object. Modeling an object just means that you are

telling the program that this view is a valid view of an object in the CV database. Click

the left mouse button on the Model button on the top portion of the Model/Go Mod

button. The Model Sub Command Window will appear. This menu contains these three

options: Insert, Delete, and Return. You want to Insert this view as a valid view for

object 13 in the CV database. Click the left mouse button on the Insert button. The

program will inform you that the largest object number is 13. In another words, there is

no object number greater than 13. Since the view you have is a valid view for the obj13

(the 3-dimensional T ), type 13 and press Enter. The program will inform you that this

view has been added to model base.

Sometimes you might want to delete a view from a certain object. For example, if

you added a view, that is not a valid view of object 13, to object 13. You will want to

Delete that view. To Delete a view, just Read that file, Click on Delete in the Model Sub

Command Window, and type the object number in which you want to delete that view

from. (Note: Remember to Insert that view back into the model base so that 3DOMMS

still knows that view as a valid view for that object.)

Go directly to model

Sometimes you might want to skip the process of doing Face, doing Label, and

then doing Model. You can do all that in one step by clicking the left mouse button on the

Go Mod button on the bottom portion of the Model/Go Mod button. This will get you

directly to the Model Sub Command Window only if the drawing does not have any errors

and the drawing has consistent labels.

153



IV. Object Matching-

Object matching is very similar to object modeling, except for that this time you

tell the program to look for an object in the CV database that has the current view as a

valid view. For example, the computer knows that the drawing in the file obj9.2 is a valid

view for object 9, if you match that drawing, the program will tell you that it object 9 is

the only object in the CV database that contains obj9.2. Read file obj9.2 (Figure A.8).

3D OBJECT MODELING/MATCHING SYSTEM

.-t-
x

1'-- :::I~t~.:.1
!

":ffl~·:·jl+ 1- -
1

i :lM4:tl,
4

S

~
::::g~:nr:1,

j I
...

~ ~. I I~ ... 'GC
~

~ ::..@li::..:1i / 2 V ';) r 1.9
I'

,.. '\ /

fl ~ f ,( 9 1.6
""'1. iJ

-+ \ \. '!l \
.... .·I~I~:·I!

-i-- I~ ~.:!c \ V
- - -- --f-- .. .._-

~ ... 0

l:&~~~d

! - 19.~rt~\:tI

niii.tifil
; 9.9::~~~1

!

- --,.-f-- •-1-,
!

--
-r--
---'--

y

Figure A.8 - obj9.2

Extracting faces from the object

Extract the faces for this object as explained in Object Modeling.

Labeling object

Label this object as explained in Object Modeling

154



Matching object

Click the left mouse button on the Match button on the top portion of the

Match/Go Mat button. The program will Match this object and it will display the

canonical view of the object that contains this valid view as shown in Figure A.9.

3D OBJECT MODELING/MATCHING SYSTEM

)(

!
!

!
p.... ."..1

~#p4~1,- ........
; :--..... :;~9.AtJ

!/ ! '-...
~ -- - --, ,/ <,

",j ......
- .

l' / :--.....

1,lt~li~·1~ I
rl ~ .,;I --j.I

" ! !l Ir-,.
~9#~kl

! '<, / 9ff;)':~W:t1

r-, '/ ~ j
! <, I qR:ttflitl
!
!
I

---y

Figure A.9 - Canonical View for object 9

Go directlY to match

Go Mat is just like Go Mod, except that it does Face, Label, and Match in one

simple click.

Matching ohject that needs more than one view

155



Sometimes a drawing might match more than one object. The 3-dimensional T

you drew is an example. If you try to Match that, you will find that there are 5 objects in

the CV database that has the exact same signature as file t. This means that each of the 4

other objects in the CV database has each one view that has the exact number of faces, W­

junctions, Y-junctions, T-junctions, + lines, and - lines, > lines! !! That seems like a highly

unlikely thing, but it happens.

Read t. Click on the Go Mat button on the bottom portion of the Match/Go Mat

button. The program will ask if there are more views of this object. The program will

only ask this, if it is not sure that only one object in the CV database is the object that

contains all the view you've given. Since there is only one view for object 13, type n and

press Enter. The program now shows 5 objects from the CV database: object 9, 10, 11,

12, and 13. These 5 objects are all likely candidates. Until the program could eliminate

them to one object, it will keep on asking for more input.

To show how the program can be sure of one object from a list of 3, use the files

objl.l, objl.2 and objl.4. Objects 1 and 8 both contain a view that has the same

signature as objl.l. Objects 1,2, and 11 all contain a view that has the same signature as

obj1.2. Objects 1 and 2 both contain a view that has the same signature as obj1.4. In

order for the program to recognize the object as object 1, you will have to enter as many

of these views until the computer is fairly sure that it is object 1. If you only enter objl.l

and objl.2, the program will say that objects 1,2,8, and 11 are all likely candidates.

Now enter objl.1, objl.2, and obj1.4. Now, the program did not ask for another

view, because it is sure that the it is object 1, and it shows that canonical view of object 1.

156



E. The Pro2ram

I. Files

Main Files

ml.exe read.exe save.exe

input.exe edit.exe face.exe

label.exe browse.exe nreadpg.exe

preadpg.exe match.exe model.exe

cview.exe cate2.dat egavga.bgi

Data Files

cvl ." ev12

model.dat

Backup Data Files

cv_objl ... cv_obj12

mode1l2.dat

Drawing Files

objlJ ... objl.5 obj2.1 .., obj2.l6 obj3.1 ... obj3.6

obj4.1 obj5.1 obj6.1 ... obj6.4

obj7.1 ... obj7.5 obj8.1 .., obj8.27 obj9.1 ... obj9.25

objlO.l ... objlO.17 objll.l ... objll.34 obj12.1 '" obj12.6

II. Description

Main Files

These files are the skeleton of the program. All of these files are needed in order

for the program to run properly.

157



Data Files

These files contain the data for the current CV database and the current model

base. The file model.dat contains the data for the model base. The files cvl ... cv12

contain the data for the current 12 objects that are in the CV database.

Currently, these 13 files contain the CV database and the model base for the 12

original objects. (Note: The data for these 12 objects could be cleared by deleting these

13 files) All the valid views of the objects in the CV database are stored in model.dat.

When the user models a drawing, the changes are made to model.dat accordingly.

Each object in the CV database is stored individually the file cv#. (# is the object

number) When the user inserts a new object into the CV database, a new cv# file will be

created. When the user deletes an object from the CV database, a cv# will be deleted.

Backup Data Files

These 13 files contain the CV database and the model base for the 12 original

objects. These files are just a copy of the cv1 ... cv12 and model.dat files that came with

the program.

If a cv# file is deleted, there are two ways in which this data could be replaced.

The first way is to copy the file cv_obj# to file cv#. The second way is to Read the

drawing file that contains the canonical view of the object # and then Insert this drawing

as a canonical view into the CV database using the Insert option under the C View

command. Here are the canonical view drawing files for the 12 original objects:

ob)J.J

ob)S.l

ob)9.J7

obj2.l

obj6.1

objlO.8

158

obj3.I

obj7.4

objll.l

obj4.l

obj8.l

objJ2.3



If the model.dat file is accidentally deleted or corrupted, there are two ways to

replace that data. The first way is to Read all the drawings and Model all of them, which

will take a long time. The second and easier way is to just copy the file mode112.dat to

the file model.dat. (Note: mode1l2.dat only contains the model base for the 12 original

objects. Any other data that the user added will bedeleted if the file model.dat is replaced

by the file model12.dat. It is advised that backup copies of the file model. dar are

frequently made.)

Drawing Files

This program comes with 147 drawing files that contain different valid views of

the 12 original objects. The files are all named obj#.$ where # is the object number and $

is the placing of the drawing.

159



APPENDIX B

EXPERIMENTAL MODEL BASE

We have selected 12 model objects for the experiments. Some of them are

obtained from [Huan93]. They are all trihedral objects, but are not constrained to be

convex or right-angled trihedrons. The number of edges of the tested line-drawings are

ranged from 6 (obj4) to 30 (obj8). The drawings shown in Figure B.l are the canonical

views of the corresponding objects. The line labels are also drawn in the appropriate

positions. Some statistical information arc listed below each object. (Note: the first row

in vector form stands for the feature vector as defined in <Definition 6.5>; S is the

signature of the drawing and is defined in <Definition 6.6>; #E is the number of edges of

the drawing; #B is the number of backtracking during the labeling process; # of Valid

views is the number of valid views stored in the current model database for the specified

model object.)

<5,6,1,8,3,5,0,3>

S=1231, #E=15, #B=O

# of Valid Views=4

<3,3,0,3,1,3,0,0>

S=644, #E=6, #B=O

# of Valid Views=1

<6,6,2,10,4,6,0,3>

S=1435, #E=18, #B=O

# of Valid Views=12

<3,3,0,6,1,3,0,3>

. S=695, #E=9, #B=O

# of Valid Views= 1

160

<6,9,3,0,4,6,0,3>

S=1595, #E=12,#B=0

# of Valid Views=6

obj6

<5,6,1,10,3,5,0,5>

S=1265, #E=17,#B=()

# of Valid Views=3



<7,8,1,16,3,6,2,8>

S=1780, #E=25, #B=1

# of Valid Views=3

<10,12,6,12,8,10,0,3>

S=2539, #E=30 #B=O

# of VaIid Views=13

<9,13,4,12,6,9,1,5>

S=2395,#E=29,#B=1

# of VaIid Views=19

obj12

~ 6 , 7,2,10,4,6,0",4>

S=1500,#E=19,#B=0

# of Valid Views=6

<10,12,6,12,8,10,0,3>

S=2003, #E=30 #B=O

# of Valid Views=26

<8,12,2,12,4,8,2,5>

S=2121, #E=26, #B=O

# of Valid Views=ll

Figure B.l - Experimental Model Base

The rest of drawings included in this appendix are all valid views for these 12

model objects. Their corresponding signature values and file names are also shown along

with the drawings.

161



obj 1 - 4 valid views

View #1 (cv) Signature 1231 Fileobjl.l

View #2 Signature 959 Files obj 1.2 and obj 1.3

View #3 Signature 942 File obj1.4

View #4 Signature 729 File obj1.5

obj2 - 12 valid views

View #1 (cv) Signature 1435 File obj2.1

162



View #2

View #3

Signature 1026

Signature 1259

File obj2.2

Files obj2.3 and obj2.4

View #4 Signature 1242

CD-C??
File obj2.5

View #5 Signature 1206 Files obj2.6 and obj2.7

View #6 Signature 1189 File obj2.8

View #7 Signature 695 File obj2.9

163



View #8 Signature 763 File obj2.10

View #9

~
Signature 942 File obj2.11

~ture959 Files obj2.12 and obj2.13

View #11 Signature 1139 Files obj2.14 and obj2.15

obj3 - 6 valid views

View #1 (cv) Signature 1595

File obj2.16

Fileobj3.1

164



View #2

View #3

View #4

Signature 1211

Signature 1189

Signature 926

File obj3.2

File obj3.3

File obj3.4

View #5 Signature 729 Fileobj3.5

View #6 Signature 695 File obj3.6

obj4 - 1 valid view

~ 6 4 4
File obj4.1

165



objS - 1 valid view

View #1 (cv) Signature 695

obj6 - 3 valid views

View #1 (cv) Signature 1265

Fileobj5.1

File obj6.1

View #2

View #3

Signature 1223

Signature 1206

Files obj6.2 and obj6.3

File obj6.4

ob i7 - 3 Valid Views

View #1 (cv) Signature 1793

~
Files obj7.3 and obj7.4

166



~ Signature 1776 Files obj7.1 and obj7.2

View #3 Signature 1770 File obj7.5

objS - 13 valid views

~ S i g n a t u r e 2539 File obj8.1

View #2

View #3

View #4

Signature 797

Signature 1658

Signature 1223

Files obj8.2 and obj8.25

Files obj8.3, obj8.4, and obj8.9

Files obj8.5 and obj8.15

]67



View #5

View #6

View #7

Signature 1206

Signature 1189

Signature 1231

Files obj8.6, obj8.8, and obj8.16

Fileobj8.7

File obj8.10

View #8

View #9

View #10

Signature 1386

Signature 1403

Signature 1420

File obj8.ll

Files obj8.12, obj8.13, and obj8.17

Files obj8.14, obj8.l8, obj8.21, obj8.22, and obj8.23

168



View#ll Signature 2107 File obj8.24

File obj8.26

View #13 Signature 1094 File obj8.27

ob j9 - 19 valid views

View #1 (cv) Signature 2395 File obj9.17

View #2 Signature 1989 Files obj9.1 and obj9.13

169



View #3

View #4

View #5

Signature 2005

Signature 2003

Files obj9.2 and obj9.16

File obj9.3

File obj9.4

View #6 Signature 1986 File obj9.5

View #7

View #8

Signature 1207

Signature 1492

Files obj9.6 and obj9.9

File obj9.7

170



View #9 Signature 1470 File obj9.8

View #10 Signature 1010 Files obj9.10 and obj9.21

View #11

View #12

Signature 1027

Signature 1983

File obj9.11

Files obj9.12 and obj9.25

Vicw#13 Signature 1529 File obj9.14

View # 14 Signature 1726 File obj9.15

171



View #15

View #16

View #17

Signature 2389

Signature 2387

Signature 2370

File obj9.18

Fileobj9.19

File obj9.20

View #18 Signature 976
,.----"'-...,.

View #19 Signature 993
,..--~

objIO -11 valid views

View #1 (cv) Signature 2121

Files obj9.22 and obj9.23

Fileobj9.24

File obj10.8

172



View #2
,c:::::::.=====;:::::="",\

View #3 Signature 1773

View #4 . Signature 712

View #5 Signature 1010

View #6 Signature 1925

View #7 Signature 1512

File obj 10.1

Files obj 10.2 and obj 10.13

File obj 10.3

Files objlOA and objlO.15

File obj 10.5

Files obj 10.6 and obj 1O. 11

173



View #8 Signature 1277
...---------.

File obj 10.7

View #9 Signature 1506 Files objlO.9 and objlO.l0

View #10 Signature 993 Files obj10.12 and obj10.14

View #11 Signature 1260 Files objlO.16 and objlO.17

174



obi11 - 26 v31id views

View #1 (cv) Signature 2003 File obj 11. I

View #2 Signature 1827 Files obj 11.2 and obj 11.4

View #3 Signature 1560 File obj 11.3

View #4 Signature 1507 Files obj 11.5 and obj 11.11

View #5 Signature 1240 Files obj I 1.6 and obj 11.9

]75



View #6 Signature 1327 File obj11.7

View #7 Signature 1223 File obj 11.8

View #8 Signature 1490
c-----:~"""""___....

File obj 11.10

View #9

View #10

Signature 1276

Signature 1260

File objl1.12

Files obj 11.13 and objll.22

176



View #11 Signature 993 Files obj 11.14 and obj 11.18

View #12 Signature 976 Files obj 11.15 and obj 11.19

View #13 Signature 797 File obj 11.16

View #14 Signature 1064 File obj 11.17

View #15 Signature 959 File obj 11.20

177



View #16 Signature 1226

View #17 Signature 1243

View # 18 Signature 1176

View #19 Signature 1440

View #20 Signature 1423

View #21 Signature 1193

File obj 11.21

Files obj 11.23 and obj 11.35

File obj I 1.24

Files obj 11.25 and obj 11.29

Files obj 11.26 and obj 11.27

File obj 11.28

In



View #22 Signature 1156

View #23 Signature 979

View #24 Signature 712

View #25 Signature 1527

View #26 Signature 1525

File obj 11.30

File obj11.31

File obj 11.32

File objI1.33

File obj11.34

179



obi12 - 6 valid views

View #1 (cv) Signature 1500 File obj 12.3

View #2 Signature 1495 File obj 12.1

View #3 Signature 1489 File obj 12.2

View #4

View #5

Signature 1030

Signature 993

File obj 12.4

File obj 12.5

View #6 Signature 976 File obj 12.6

lRO



BIBLIOGRAPHY

[Bena90] J. Ben-arie, "Probabilistic models of observed features and aspects with

application to weighted aspect graph," Pattern Recognition, Vol.l l, pp.421­

427, 1990.

[Berg87] F. Bergholm, "Edge Focusing," IEEE Trans. on Pattern Analysis and

Machine Intellignece, Vol.PAMI-9, No.6, pp.726-741, 1987.

[Berz73] A. T. Berztiss, "A Backtrack Procedure for Isomorphism of Directed

Graphs," J. ofAssociation for Computing Machinery, Vol.20, No.3, pp.365­

377, 1973.

[BesJ85] P. J. Besl and R. C. Jain, "Three-Dimensional Object Recognition,"

Computing Surveys, VoU7, No.1, pp.75-145, 1985.

[BhaH87] B. Bhanu and C. C. Ho, "CAGD-Based 3D Object Representations for

Computer Vision," IEEE Computer, Vol.20, No.8, pp.l9-36, 1987.

[Bley84] H. Bley, "Segmentation and Preprocessing of Electrical Schematics Using

Picture Graph," Computer Vision, Graphics, and Image Processing, Vol.28,

pp.271-288, 1984.

[BowD90] K. W. Bowyer and C. R. Dyer, "Aspect Graphs: An Introduction and Survey

of Recent Results," International Journal of Imaging Systems and

Technology, vciz., pp.315-328 1990.

[Bunk82] H. Bunke, "Attributed Programmed Graph Grammars and Their Application

to Schematic Diagram Interpretation," IEEE Trans. on Pattern Analysis and

Machine Intelligence, Vol.PAMI-4, No.6, pp.574-582, 1982.

lSI



(Cann86] 1. Canny, "A Computational Approach to Edge Detection," IEEE Trans. on

Pattern Analysis and Machine Intelligence, VoI.PAMI-8, No.6, pp.679-698,

1986.

(CFMP84] U. Cugini, G. Ferri, P. Mussio, and M. Protti, "Pattern-directed Restoration

and Vectorization of Digitized Engineering Drawings," Comput. Graphics,

VaL8, pp.337-350, 1984.

(ChaH92] I. C. Chang and C. L. Huang, "Aspect Graph Generation for Non-Convex

Polyhedra from Perspective Projection View," Pattern Recognition, VoL25,

No. 10, pp.l 075-1096, 1992.

(Chak79] I. Chakravarty, "A Generalized Line and Junction Labeling Scheme with

Applications to Scene Analysis," IEEE Trans. on Pattern Analysis and

Machine Intelligence, VoU, pp.202-205, 1979.

[Chen91] T. Cheng, "Reasoning 3-D Relationships from 2-D Drawings by Planning,"

Proceeding ofIEEE OCEAN'91, pp.l088-1093, 1991.

[Chen92] T. Cheng, "Segmenting Symbols from Engineering Drawings by Image

Abstraction and Blurring," Proceeding of The First International

Conference on Automation, Robotics, and Computer Vision (ICARCV'92),

pp.cv-2.7.l-2.7.5,1992.

[CheY94a] T. Cheng and D. Y. Y. Yun, "Canonical Modeling and Multi-view Indexing

for 3-D Object Recognition," accepted for presentation at The Third

International Conference on Automation, Robotics, and Computer Vision

(lCARCV'94), Singapore, 1994.

(CheY94b] T. Cheng and D. Y. Y. Yun, "Drawing Labeling by a Cascaded Planning

Model - CCRP," accepted for presentation at The Second Singapore

International Conference on Intelligent Systems (SPICIS'94), Singapore.

1994.

182



(ChiD86] R. T. Chin and C. R. Dyer, "Model-Based Recognition in Robot Vision,"

Computing Surveys, Vol. 18, No.1, pp.67-108, 1986.

(ChKi92] S. B. Cho and 1. .H. IGm:. "A Two-Stage Classification Scheme with

Backpropagation Neural Network Classifiers," Pattern Recognition Letters,

13, pp.309-313, 1992.

(CKLY93] T. Cheng, 1. Khan, H. Liu, and D. Y. Y. Yun, "A Symbol Recognition

System," Proceeding ofThe Second International Conference on Document

Analysis and Recognition, pp.918-921, 1993.

[CleJ91] D. T. Clemens and D. W. Jacobs, "Model Group Indexing for Recognition,"

ICPR'91 , ppA-8, 1991.

[CIemS IJ T. P. Clement, "The Extraction of Line-structured Data from Engineering

Drawings," Pattern Recognition, VoI.14, pp.43-52, 1981.

[Clow71] M. B. Clowes, "On Seeing Things," Artificial Intelligence, Vol.2, No.1,

pp.79-116, 1971.

[Coop93] M. C. Cooper, "Interpretation of Line Drawing of Complex Objects," Image

and Vision Computing, VoUl, No.2, pp.82-90, 1993.

[CorG70] D. G. Comeil and C. C. Gotlieb, "An Efficient Algorithm for Graph

Isomorphism," J. 0/ Association/or Computing Machinery, VoL17, No.1,

pp.51-64, 1970.

[DiPR92] S. J. Dickinson, A. P. Pentland, and A. Rosenfeld, "3D Shape Recovery

Using Distributed Aspect Matching," IEEE Trans. on Pattern Analysis and

Machine Intelligence, Vol. PAMI-14, No.2, pp.174-198, 1992.

(DuBM77] B. A. Dudani, K. J. Breeding and R. B. McGhee, "Aircraft Identification by

Moment Invariants," IEEE Trans. on Computer, VoI.C-26, pp.39-46, 1977.

[EBDC92] D. W. Eggert, K. W. Bowyer, C. R. Dyer, H. 1. Christensen, D. B. Goldgof.

"The Scale Space Aspect Graph," ICV92, pp.335-340, 1992.

1~3



[EdOS83] H. Edelsbrunner, J. O'Rourke and R. Seidel, "Constructing Arrangements of

Lines and Hyperplanes with Applications," Proc. of 23rd Symp. on

Foundations ofComputer Science, 1983.

[EggB90] D. Eggert and K. Bowyer, "Computing the Orthographic Projection Aspect

Graph of Solids of Revolution," Pattern Recognition Letters, Vol.l l ,

pp.75l-763, 1990.

[FanC9l] K. C. Fan and C. Y. Chang, "Surface Extraction from Line Drawings of a

Polyhedron," Pattern Recognition Letters, 12, pp.627-633, 1991.

[Faug92] O. Faugeras, 1. Mundy, N. Ahuja, C. Dyer, A. Pentland, R. Jain, K._Ikeuchi,

K. Bowyer, "Panel theme: Why aspect graphs are not (yet) practical for

computer vision," CVGIP: Image Understanding, 55, pp.212-218, 1992.

[FlyJ91] P. 1. Flynn and A. K. Jain, "CAD-Based Computer Vision: From CAD

Models to Relational Graphs," IEEE Trans. on Pattern Analysis and

Machine Intelligence, Vol. PAMI-13, No.2, pp.114-132, 1991.

[Flyn92] P. 1. Flynn, "Saliencies and Symmetries: Toward 3D Object Recognition

from Large Model Databases," leV'9, pp.322-3272, 1992.

[FuKE84] M. Furuta, N. Kase and S. Emori, "Segmentation and Recognition of

Symbols for Handwritten Piping and Instrument Diagram," ICPR'84, pp.626­

629, 1984.

[Fukaxa] Y. Fukada, "A Primary Algorithm for the Understanding of Logic Circuit

Diagrams," Pattern Recognition, VoU7, pp.125- I34, 1984.

IFlIYC93j C. W. Fu, J. C. Yen and S Chang, "Calculation of Moment Invariants via

Hadamard Transform," Pattern Recognition, VoI.26, pp.287-294, 1993.

!Gig~'I80J Z. Gigus and J. Malik, "Computing the Aspect Graph for Line Drawings of

Polyhedral Objects," IEEE Int. Conf. on Robotics and Automation, pp.1560­

1506, 1983.

184



[GiMA83] B. Gil, A. Mitiche and 1. K. Aggarwal, "Experiments in Combining Intensity

and Range Edg Maps," Computer Vision, Graphics, and Image Processing,

VoI.21, pp.395-411, 1983.

[GrSS85] F. C. A. Groen, A. C. Sanderson and F. Schlag, "Symbol Recognition in

Electrical Diagrams Using Probabilistic Graph Matching," Pattern

Recognition Letters, Vol.3, pp.343-350, 1985.

[GuHu85] W. K. Gu and T. S. Huang, "Connected Line Drawing Extraction from a

Perspective View of a Polyhedron," IEEE Trans. on Pattern Analysis and

Machine Intelligence, vol.7, pp.422-430, 1985.

[GuYH87] W. K. Gu, J. Y. Yang and T. S. Huang, "Matching Perspective Views of

Polyhedron Using Circuits," IEEE Trans. on Pattern Analysis and Machine

Intelligence, VoL7, No.3, pp.320-326, 1987.

[Guzm68] A. Guzman, "Decomposition of a Visual Scene into Thee-dimensional

bodies," AFIPS Proc. FaliJointComp. Conf., 33, pp.291-304, 1968.

(HaII8S] H. Harada, Y. Itoh and M. Ishii, "Recognition of Freehand Drawings in

Chemical Plant Engineering," Proceedings of IEEE Workshop on Computer

Architecture for Pattern Recognition and Image Database Management,

pp.146-153, 1985.

(Hama93] A. H. Hamada, "A New System for the Analysis of Schematic Diagrams,"

Proceeding of the Second International Conference on Document Analysis

and Recognition, pp.369-372, 1993.

[HarS79] R. M. Haralick and L. G. Shapiro, "The Consistent Labeling Problem: Part

I," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. PAMI­

1, No.2, pp.173-184, 1979.

lI-IorS79 J E. Horowitz and S Sahni, Fundamental of Computer Algorithms, Pitman,

Lodon.

185



[Hu61]

(HoYH85] W. Ho, D. Y. Y. Yun, and Y. H. Hu, "Planning Strategies for Switchbox

Routing," Proceeding ofthe International Conference on Computer Design,

pp.463-467, 1985.

[Huan93] C. L. Huang, "Pictorial Drawing Generation for Polyhedral Object

Recognition Using Intensity Images," Pattern Recognition Letters, pp.121­

131, 1993.

M. K. Hu, "Pattern recognition by moments invariants," Proc. IRE, 49,

pp. 1428, 1961.

[Huff'Zl ] D. A. Huffman, "Impossible Objects as Nonsense Sentences," in B: Meltzer

and D. Nichie Eds. Machine Intelligence, VoI.6, Edinburgh Univ. Press,

pp.295-324, 1971.

[JiaB93] X. Y. Jiang and H. Bunke, "An Optimal Algorithm for Extractiong the

Regions of a Plane Graph," Pattern Recognition Letters, 14, pp.553-558,

1993.

[Jose89] S. H. Joseph, "Processing of Engineering Line Drawings for Automatic Input

to CAD," Pattern Recognition, Vo1.22, No.1, pp.l-ll, 1989.

[Kana80] T. Kanade, "A theory of Origami World," Artificial Intelligence, Vo1.13,

pp.279-311,1980.

[KBES90] R. Kasturi, S. T. Bow, W. El-Masri, 1. Shah, J. R. Gattiker and U. B.

Mokate, "A System for Interpretation of Line Drawings," IEEE Trans. on

Pattern Analysis and Machine Intelligence, VoI.PAMI-12, No.lO, pp.978­

992, 1990.

[KenF87] J. R. Kender and D. G. Freudenstein, "What is a Degenerate View,"

IJCAf'87, pp.801-804, 1987.

[KenYSv] N. Keng and D. Y. Y. Yun, "A Planning/Scheduling Methodology for the

Constrained Resource Problem," IJCAf'89, pp.20-25, 1989.

186



[Keng89] N. Keng, "A General Planning/Scheduling Paradigm for the Constrained

Resource Planning Problem," Ph.D dissertation, Computer Science

Department, Southern Methodist University, 1989.

[KeYR88] N. P. Keng, D. Y. Y. Yun, and M. Rossi, "Interactive-sensitive Planning

System for Job-shop Scheduling," Expert Systems and Intelligent

Manufacturing, M. Oliff (ed.), North-Holland, pp.57-69, 1988.

[KhLu88) A. Khotanzad and J. H. Lu, "Distortion Invariant Character Recognition by a

Multi-Layer Perceptron and Back-Propagation Learning," IJCNN'88, pp.I­

625-632, 1988.

[Kiro90] L. M. Kirousis, "Effectively Labeling Planar Projections of Polyhedra," IEEE

Trans. on Pattern Analysis and Machine Intelligence, vol. 12, pp.l23-130,

1990.

[KiSK93] S. H. Kim, 1. W. Suh and J. H. Kim, "Recognition of Logic Diagrams by

Indentifying Loops and Rectilinear Polylines, " Proceeding of the Second

International Conference on Document Analysis and Recognition, pp.349­

352, 1993

[KodM86] K. L. Kodanpani and E. 1. McGrath, "A Wirelist Compare Program for

Verifying VLSI Layouts," IEEE Design and Test of Computers, Vol.3,

pp.46-51, 1986.

IKolm63 J A. N. Kolmogorov, "On the Representation of Continuous Functions of

Many Variables by Superposition of Continuous Functions of One Variable

and Addition," Dokl. Akad. Nauk SSSR, 144, 676-681; Amer. Math. Soc.

Transl., 28, pp.55-59, 1963.

IKorDS7 j M. R. Korn abd C. H. Dyer, "3_D Multiview Object Representations for

Model-Based Object Recognition," Pattern Recognition, VoI.20, No.1,

pp.91-103,1<)87.

IS7



[LamB93] D. Lamb and A. Bandopadhay, "Shape from Line Drawings: Beyond

Huffman-Clowes Labeing," Pattern Recognition Letters, Vo1.14, pp.213­

219, 1993.

[Lee92] S. W. Lee, "Recognizing Hand-drawn Electrical Circuit Symbols with

Attributed Graph Matching," Structured Document Image Analysis, Eds. by

H. S. Baird, H. Bunke, and K. Yamamoto, Springer-Verlag, pp.340-358,

1992.

(Li93) B. C. Li, "A New Computation of Geometric Moments," Pattern

Recognition, Vol.26, pp.109-113, 1993.

[LieC90] W. N. Lie and Y. C. Chen, "Robust Line-Drawing Extraction for Polyhedra

Using Weighted Polarized Hough Transform," Pattern Recognition, Vol.23,

pp.261-274,1990.

(LiuS90] H. C. Liu and M. D. Srinath, "Conmer Detection from Chain-code," Pattern

Recognition, Vo1.23, No.II2, pp.51-68, 1990.

[LiYD88] H. H. Liu, T. Y. Young, and A. Das, "A Multilevel Parallel Processing

Approach to Scene Labeling Problems," IEEE Trans. on Pattern Analysis

and Machine Intelligence, VoLl 0, No.4, pp.586-590, 1988.

lLSMS85) X. Lin, S. Shimotsuji, M. Minoh and T. Sakai, "Efficient Diagram

Understanding with Characteristic Pattern Detection," Computer Vision,

Graphics, and Image Processing, Vo1.30, pp.84-106, 1985.

IMack731 A. K. Mackworth, "Interpreting Pictures of Polyhedral Scenes," Artificial

Intelligence, Vol.S, pp.121-137, 1973.

[Mali87] J. Malik, "Interpreting Line Drawings of Curved Objects," International

Journal of Computer Vision, VoLl, 1987, pp·.73-103.

188



[Pav186]

[MavB93] J. Maver abel R. Bajcsy, "Occlusions as a Guide for Planning the Next View,"

IEEE Trans. on Pattern Analysis and Machine Intelligence, VoI.15, No.5,

pp.417-433, 1993.

[Nalw88] V. S. Nalwa, "Line-Drawing Interpretation: Straight Lines and Conic

Sections," IEEE Trans. on Pattern Analysis and Machine Intelligence,

VoUO, No.4, pp.514-529, 1988.

[OKMT88] A. Okazaki, T. Kondo, K. Mori, S. Tsunekawa, and E. Kawamoto, "An

Automatic Circuit Diagram Reader with Loop-Structure-Based Symbol

Recognition," IEEE Trans. on Pattern Analysis and Machine Intelligence,

VoLlO, No.3, pp.331-341, 1988.

T. Pavlidis, "A Vectoriser and Feature Extractor for Document

Recognition," Comput. Vision Graphics Image Process. Vo1.35, pp.l11-127,

1986.

[Regi91] T. Regier, "Line Labeling and Junction Labeling: A Coupled System for

Image Interpretation," IJCAI'91 , pp.1305-131O, 1991.

[Rose87] A. Rosenfeld, "Recognizing Unexpected Objects: A Proposed Approach,"

Int. J. of Pattern Recognition and Artificial Intelligence, YoU, No.1,

pp.71-84, 1987.

[RuHW86] D. E. Rumelhart, G. E. Hilton and R. J. Willians, "Learning Representations

by Backpropagating Errors," Nature, VoL323, No.9, pp.533-536, 1986.

[RPAK88j A. P. Reeves, R. 1. Prokop, S. E. Andrews and F. P. Kuhl, "Three­

Dimensional Shape Analysis Using Moments and Fouier Descriptors," IEEE

Trans. Pattern Analysis Mach.lntel/., PAMI-lO, pp.937-943, 1988.

[Sal Yv l ] G. J. Salem and T. Y. Young, "A Neural Network Approach to the Labeling

of Line Drawings," IEEE Trans. Oil Computers, VoI.40, No.12, pp.1419­

1424,1991.

189



[Sham78] M. I. Shamos, "Computational Geometry," Ph.D. dissertation, Computer

Science Department, Yale University, New Haven, cr, 1978.

[ShLY89] Z. Shih, R. C. T. Lee and S. N. Yang, "A Systolic Algorithm for Extracting

Regions from a Planar Graph," Compo Vision Graphics Image Process. 47,

pp227-242, 1989.

[SaSB90] M. Sallam, J. Stewman and K. Bowyer, "Computing the Visual Potential of

an Articulated Assembly of Parts," ICV'90, pp.636-643, 1990.

[SteB88] 1. Stewman and K. Bowyer, "Creating the Perspective Projection Aspect

Graph of Polyhedral Objects," IC\I'88, pp.494-500, 1988.

[SteB90] J. H. Stewman and K. Bowyer, "Direct Construction of the Perspective

Projection Aspect Graph of Convex Polyhedra," Computer Vision, Graphics,

and Image Processing, Vol.51 , pp.20-37, 1990.

[Sugi86] K. Sugihara, Machine Interpretation of Line Drawing, The MIT Press,

Cambridge, Massachusetts, London, England, pp.12-39, 1986.

[ToHL84] J. T. Tou, C. L. Huang and W. H. Li, "Design of a Knowledge-Based

System for Understanding Electronic Circuit Diagrams," Proc. First Con! on

Artificial Intelligent Applications, Denvor, USA, pp.652-661, 1984.

[TsaL90] C. K. Tsao and W. C. Lin, "Cons trait Propagation Neural Networks for

Hufrnan-Clowes Scene Labeling," Proceeding of IEEE Second International

Conference on Tools for A.I., pp.262-268, 1990.

[UIlm76] J. R. Ullmann, "An Algorithm for Subgraph Isomorphism," J. ofAssociation

for Computing Machinery, Vol.23, No.1, pp.31-42, 1976.

1Umcy88] S. Umeyama, "An Eigendecomposition Approach to Weighted Graph

Matching Problems," IEEE Trans. on Pattern Analysis and Machine

Intelligence, Yol.I 0, No.5, pp.695-703, 1988.

190



[Walt72] D. Waltz, "Generating Semantic Descriptions from Drawings of Scenes with

Shadows," Technical ReportAI-TR-271, MIT, 1972.

[WanF90] R. Wang and H. Freeman, "The Use of Characteristic-View Classes for 3D

Object Recognition," in Machine Vision for Three-Dimensional Scenes,

Academic Press, Inc., pp.l09-161, 1990.

[Watt88] N. A. Watts, "Calculating the Principal Views of a Polyhedron," ICPR'88,

pp.316-322, 1988.

fWoKI91 J K. C. Wong, J. Kittler and J. Illingworth, "Heuristically Guided Polygon

Finding," British Machine Vision Conference, ppAOO-407, 1991.

[WonY85] A. K. C. Wong and M. You, "Entropy and Distance of Random Graphs with

Application to Structural Pattern Recognition," IEEE Trans. on Pattern

Analysis and Machine Intelligence, Vol. PAMI-7, No.5, pp.599-609, 1985.

[Wong92] Wong, E. K., "Model Matching in Robot Vision by Subgraph Isomorphism,"

Pattern Recognition, VoL25, No.3, pp.287-303, 1992.

[YouW84] M You and A. K. C. Wong, "An Algorithm for Graph Optimal

Isomorphism," ICPR'84, pp.316-319, 1984.

[YuQC92] D. Y. Y. Yun, B. G. Qiu and Z. L. Chen, "Solving Traveling Salesman

Problems by Planning," Proceeding of the International Conference on

Intelligent Information Processing and Systems, (invited paper), Beijing,

China, Oct. 1992.

191


