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Abstract

Facial landmarks are a set of salient points, usually located on the corners, tips or mid points of the facial

components. Reliable facial landmarks and their associated detection and tracking algorithms can be widely used

for representing the important visual features for face registration and expression recognition. In this paper we

propose an efficient and robust method for facial landmark detection and tracking from video sequences. We select

26 landmark points on the facial region to facilitate the analysis of human facial expressions. They are detected in

the first input frame by the scale invariant feature based detectors. Multiple Differential Evolution-Markov Chain

(DE-MC) particle filters are applied for tracking these points through the video sequences. A kernel correlation

analysis approach is proposed to find the detection likelihood by maximizing a similarity criterion between the

target points and the candidate points. The detection likelihood is then integrated into the tracker’s observation

likelihood. Sampling efficiency is improved and minimal amount of computation is achieved by using the

intermediate results obtained in particle allocations. Three public databases are used for experiments and the

results demonstrate the effectiveness of our method.
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1. Introduction

As computers have become an integral part of our life,

the need has arisen for a more natural communication

interface between humans and machines. To make

human-computer interaction (HCI) more natural and

friendly, it would be beneficial to give computers the

ability to recognize states of mind of humans the same

way a human does. Analyzing facial expression in real

time without human intervention will help to understand

people’s behavior, and thus plays an important role in

efficient HCI systems. Automatic facial component

localization, such as the eyes, a mouth or nose, is a critical

step for expression understanding and emotion recognition

[1]. To capture the full range of emotional facial expres-

sions from video sequences, accurate and reliable feature

detection and tracking methods are required.

Many researchers have tried to analyze facial expressions

by using the distribution of facial features as input of a

classification system in order to recognize expressions.

However, automatically analyzing facial expressions in

video sequences is a challenging task due to the fact that

current techniques for the detection and tracking of facial

expressions are sensitive to head pose, occlusion, pose, and

variations in lighting conditions [2]. In this work, a method

based on automatic facial landmark detection and tracking

for human expression analysis is proposed. The 26

landmark points shown in Figure 1 display the largest

displacements and deformations of the facial components

during dynamic changes of the expressions. These points

are detected in the facial region by scale invariant feature

based detectors, and then tracked through the video

sequences using multiple Differential Evolution-Markov

Chain (DE-MC) particle filters with kernel correlation

techniques. The processing diagram of the proposed

method is illustrated in Figure 2.

The rest of this paper is organized as follows. Section

2 presents automatic facial landmark detection. In

Section 3, we describe multiple points tracking method

with DE-MC particle filters and the kernel correlation

technique. The experimental setup and results are

presented in Section 4. Finally, Section 5 discuss the

results and draw conclusions.* Correspondence: ytie@ee.ryerson.ca
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2. Facial landmark detection

Automatic landmark detection in still image is useful in

many computer vision tasks where object recognition or

pose determination is needed with high reliability. It aims

to facilitate locating point correspondence between images

or between images and a known model where natural

features, such as the texture shape or location information,

are not present in sufficient quantity and uniqueness. Some

previous works used shape information for facial feature

localization such as template matching [3], graph matching

[4], and snakes [5]. These works can detect facial feature

well in neutral faces but fail to show good performance

in handling large variations such as non-uniform illu-

minations, change of pose, facial expressions, etc.

Due to the inherent difficulty of detecting the landmark

points using a single image, temporal information cap-

tured from subsequent frames of a video sequence has

been utilized. Detecting and tracking landmark points in

video sequences enables computers to recognize affective

states of humans, as well as the abilities to interpret and

respond appropriately to users’ affective feedback [6,7].

We can categorize the landmark detection algorithms in

the literature into two groups based on the type of features

and anthropometrical information they used, the geomet-

ric feature-based methods [8-10] and appearance-based

methods [11-13]. The geometric feature-based methods

utilize prior knowledge about the face position, and

constrain the landmark search by heuristic rules that

involve angles, distances, and areas. A number of the

existing methods did have success in detecting facial fea-

tures. For example, [6] used a multi-feature based fusion

scheme for facial fiducial point detection and an average

of 75% detection rate was achieved, and [8] used Gabor

feature based boosted classifier for 20 facial feature point

detection, which achieved average recognition rate of 86%.

In general, they perform quite well when localizing a small

number of facial feature points such as the corners of the

eyes and the mouth, however, none of them detects and

tracks all the 26 facial landmarks.

The appearance-based methods, on the other hand,

using image filters such as Gabor wavelets, generate the

facial features for either the whole face or specific regions

in a face image. The Active Shape Models (ASM) [14] and

Active Appearance Models (AAM) [15] are two popular

appearance-based methods with statistical face models to

prevent locating inappropriate feature points. Cristinacce

and Cootes [16] expanded AAM with constrained local

models with a set of local feature templates. Milborrow

and Nicolls [17] introduced modifications to the ASM

with more sophisticated methods. However, these meth-

ods were mainly applied to a full face shape model.

When the object is small in appearance, cluttered back-

ground and occlusion lead to severe ambiguity.

In this section we introduce the scale invariant feature

based method for the landmark detection, which includes

three steps: preprocessing, candidate selection and feature

vectors extraction.

2.1 Preprocessing

Since the faces are non-rigid and have a high degree of vari-

ability in location, color and pose, it is difficult to detect face

automatically in a complex environment. Occlusion and il-

lumination artifacts can also change the overall appearance

of a face. We, therefore, propose detecting facial regions in

the input video sequence using a face detector with local il-

lumination compensation for normalization and optimal

adaptive correlation [18]. Specifically, each frame of the

input video sequence is extracted and regularized using an

illumination compensation process, including gamma inten-

sity correction (GIC), difference of Gaussian (DoG), local

histogram matching (LHM) and local normal distribution

(LND). Face candidate regions are then located by the OAC

technique with kernel canonical correlation analysis

(KCCA). Compare to Viola and Johns’ algorithm [19], the

local normalization based method is adaptive to the normal-

ized input image and designed to complete the segmen-

tation in a single iteration. With the local normalization

based method, the proposed method tends be more

robust under different illumination conditions.

Before the raw data sequences can be used for automatic

landmark point detection and tracking, it is necessary to

normalize the size of the sequence such that they were in

the format required by the system. Since the displacement

of landmark point in each frame depends on each indi-

vidual, we use the Inter-ocular Distance (IOD) for size

normalization. The distance between left and right eye

Figure 1 Illustration of the 26 landmark points selected on

facial region.

Figure 2 The processing diagram of proposed method.
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pupils is determined in the first input frame. We also

manually marked the landmarks for the selected

sequences to create the ground truth data.

After the facial region being detected, we propose to use

the scale space extrema method to find the locations of

candidate points in Section 2.2. The scale invariant feature

for each candidate point is extracted and the 26 landmark

detectors are constructed as described in Section 2.3.

2.2 Candidates selection

We propose using a scale space extrema method intro-

duced in [20] to detect the locations of interest candidate

points in the facial region. The scale space extrema can be

detected using the Gaussian kernel function convolved with

the input image. The description function L (x, y) of input

image in different scale space is expressed as:

L x; y; σð Þ ¼ G x; y; σð Þ � s x; yð Þ ð1Þ
Where L(x,y,σ) is the spatial scale image, s(x, y) indicates

input image of facial region, and G(x,y,σ) is the Gaussian

convolution kernel function defined as:

G x; y; σð Þ ¼ 1

2πσ2
exp � x2 þ y2

� �

=2σ2
� �

ð2Þ
with σ being the scale factor. The image smoothness varies

with σ, and a series of scale images is obtained with differ-

ent σ values. The scale space extrema are computed using

the difference of Gaussian (DoG) function of the input

image, which calculates the difference of two nearby scales

separated by a constant multiplicative factor k, that:

D x; y; σð Þ ¼ G x; y; kσð Þ � G x; y; σð Þ½ � � s x; yð Þ
¼ L x; y; kσð Þ � L x; y; σð Þ ð3Þ

where D(x,y,σ) is the DoG function of the input image. In

this work, we set the interval number n to 3 to form n+ 2

DoG images, and k to 21/3. Each pixel in a DoG image is

compared to its eight neighbors on the same scale and each

of its nine neighbors one scale up and down. If this value is

the minimum or maximum among the pixels compared, it is

an extremum. These pixels are chosen as interest candidate

points, including the adjacent scale, the position and scale of

the local extreme point. Since the success of landmark detec-

tion depends on the quantity of the selected candidates, we

used a larger number of scale samples. (Those points are

generally the feature points of the image, located on con-

tours, corners and edges.) DoG extrema are repeatedly

assigned in the scale space. They are stable features across all

possible scales and are invariant to scale and rotation. These

points are highly distinctive and are located on contours,

corners and edges in a facial region. Since there are 5 DoG

images in our work, all the interest candidates are examined

to determine location and scale. The landmarks are detected

based on the measurements from these local decisions.

2.3 Feature vectors extraction

After the positions of the interest candidate points are

determined from the input image, we choose σ = 1.6 for

the scale, a reasonable compromise between stable extrema

detection and computational cost. This value is used

throughout this work. A gradient orientation histogram is

calculated for the direction of each interest point in its

neighborhood. The gradient magnitude m (x, y) and orien-

tation θ(x, y) are computed using pixel differences, that:

m x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L xþ 1; yð Þ � L x� 1; yð Þ½ �2

þ L x; yþ 1ð Þ � L x; y� 1ð Þ½ �2

s

ð4Þ

θ x; yð Þ ¼ arctan
L xþ 1; yð Þ � L x� 1; yð Þ
L x; yþ 1ð Þ � L x; y� 1ð Þ

� �

ð5Þ

where L is the image at scale σ. We choose a neighborhood

F centered at the interest point. By calculating the direc-

tions of points in F, we obtain the histogram of gradient

directions. The orientation has a range of 360 degrees

calculated by Eqs. (4) and (5). However, it is complex and

computationally expensive to use the original orientation

histogram with 360 bins. To reduce the computing cost,

we equally divide the histogram into 36 phases each

covering a range of 10 degrees of the orientations. As a

result, the orientation histogram has 36 bins. The direction

of the interest candidate point is the maximal component

of the 36 phases in the histogram.

To detect the landmarks from the interest candidate

points, a set of landmark detectors with the feature

description from the gradient orientation histogram of the

input images are constructed. The descriptor is cons-

tructed from a vector containing the values of all the orien-

tation histogram entries. At the center of each landmark, a

neighborhood window is selected and divided into 16 sub-

regions of 4 × 4. Using (4) and (5), the directions and

amplitudes of all pixels in the subregions are obtained, and

then accumulated into orientation histograms sum-

marizing the contents over the 4 × 4 subregions. Using

the orientation histogram, we can calculate the eight

direction distributions in the ranges of (0,π/4,π/2,3π/

4,π,5π/4,3π/2,7π/4) with the length corresponding to the

sum of the gradient magnitudes near that direction within

the region. The amplitude and Gaussian function are also

applied on the eight direction distributions to create the

direction histogram of subregions. The feature descrip-

tion of each landmark point is obtained by connecting

the direction descriptions of all subregions. The total

number of the direction descriptions is 16 since we have

4 × 4 subregions of the landmark descriptor. So the length

of a landmark point detector is 128 = 16 × 8, and should

be normalized in order to ensure illumination invariance.

3. Multiple points tracker

Most tracking algorithms impose constraints on the

motion and appearance of objects such as the prior know-

ledge of motion model, the number and size or the shape

of objects. Various approaches have been proposed so far

Tie and Guan EURASIP Journal on Image and Video Processing 2013, 2013:8 Page 3 of 15

http://jivp.eurasipjournals.com/content/2013/1/8



including the mean-shift, the Kalman filtering and particle

filter. The mean-shift based tracker iteratively shifts a data

point to the average of data points in its neighborhood,

which minimizes the distance between a model histogram

representing the target and candidate histograms com-

puted on the current frame. However, it ignores the motion

information and is difficult to recover from temporary

tracking failures. The Kalman filter is the minimum-

variance state estimator for linear dynamic systems with

Gaussian noise [21]. For the visual object which moves rap-

idly, it is hard, in general, to implement the optimal state

estimator in closed form [22]. Various modifications of the

Kalman filter can be used to estimate the state. These mod-

ifications include the extended Kalman filter [23], and the

unscented Kalman filter [24]. A multi-step tracking frame-

work was also introduced in [25] to track facial landmarks

points under head rotations and facial expressions. The

Kalman filter was used to predict the locations of land-

marks and a better performance was achieved. However,

there are some shortcomings for Kalman filter to track the

landmarks of facial expressions, such as the nonlinearity

of the head motions, the unimodality of the Kalman, the

inherent tracking delay, etc.

Over the last few years, there has been immense

attention on particle filters for image tracking because of

their simplicity, flexibility, and systematic treatment of

nonlinearity and non-Gaussianity. Particle filters provide

a convenient Bayesian filtering framework of integrating

the detector into the tracker. Based on point mass

representations of probability densities, particle filters

operate by propagating the particle estimation and can

be applied to any state-space model [26-29]. However the

sampling results from the proposal density are assigned

with low weights and a large number of the particles are

wasted in areas with small likelihood. To track the state of

a temporal event with a set of noisy observations, the main

idea is to maintain a set of solutions that are an efficient

representation of the conditional probability. However a

large amount of particles that result from sampling from

the proposal density might be wasted because they are

propagated into areas with small likelihood. Some of the

existing works ignore the fact that, while a particle might

have low likelihood, parts of it might be close to the correct

solution. The estimation of the particle weights does not

take into account the interdependences between the

different parts of the state of a temporal event.

Particle filter can use multi-modal likelihood functions

and propagate multi-modal posterior distributions [30,31].

There are two basic schemes: sending the output of the

detector into the measurement likelihood [32,33], or

applying a mixture proposal distribution by combining the

dynamic model with the output of the detector [34].

However, directly applying particle filter on multiple

objects tracking is not feasible because the standard

particle filter does not define a way to identify individual

modes or hypotheses. Some researchers used sequential

state estimation techniques to track multiple objects [35].

Patras and Pantic applied auxiliary particle filtering with

factorized likelihoods for tracking of facial points [27].

Zhao et al. [36] introduced a method for tracking of facial

points with multi cue particle filter. They have incorporated

information from both color and edge of facial features and

proposed the point distribution model for constraint track-

ing results and avoid tracking fails during occlusion. The

standard particle filter has a common problem that it turns

out to be inadequate when the dynamic system has a very

low process noise, or if the observation noise has very small

variance [34]. The reason is due to its defective sampling

strategy with large dimensionality of the state space. After a

few iterations, the particle set will collapse to one single

point [31]. Therefore, the resampling method is applied to

eliminate particles that have small weights and to concen-

trate on particles with large weights. It has been realized

that improving the resampling or global optimization

strategy is more decisive to the success of the tracking [30].

In this paper, we use multiple DE-MC particle filters

to track the facial landmarks through the video sequence

depending on the locations of the current appearance of

the spatially sampled features.

3.1 DE-MC particle filter

The particle filter provides a robust Bayesian framework

for the visual tracking problem. It maintains a particle

based representation of the a posteriori probability

p(Xk|Y1 : k) of the state Xk given all the observations

Y1 : k = {Y1,Y2, . . .,Yk} up to and including the current

time, k, instance, according to:

pðXk Y1:kj Þ ¼ λkpðYk Xkj Þ
Z

p Xk Xk�1j Þp Xk�1 Y1:k�1j ÞdXk�1ðð

ð6Þ

In (6), the state Xk is a 2 M-component vector that

represents the location of landmarks, the observation Y1:k is

the set of image frames up to the current time instant. The

normalization constant λk is independent of Xk. The motion

model p(Xk|Xk− 1) is conditioned directly on the immediate

preceding state and independent of the earlier history if the

motion dynamics are assumed to form a temporal Markov

chain. The distribution is represented by discrete samples

N through particle filtering. The N samples (particles) are

drawn from a proposed distribution p X
ið Þ
k

	







X
i−1ð Þ
k ;Yk

�

,

i = 1,2,. . .,N and assigned with weights w X
ið Þ
k

	 �

.

Suppose that at a previous time instance k – 1, we have a

particle based representation of the density, that is, we have

a collection of N particles and their corresponding weights

X
ið Þ
k−1;w X

ið Þ
k−1

	 �n oN

i¼1
. At time step k, select a new set of
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samples
⌢

X
ið Þ
k

n oN

i¼1
from X

ið Þ
k−1

n oN

i¼1
with the probability

proportional to w X
ið Þ
k−1

	 �

. The samples with a larger weight

should be selected with a higher probability. Then, applying

a constant velocity dynamical model to the samples yields:

X
ið Þ�
k ¼ X̂k

ðiÞ þ Vk�1 ð7Þ

where X̂k
(i) is a new set of samples selected at time k, and

Vk-1 is the velocity vector computed in time step k-1.

The particle set X
ið Þ−
k

n oN

i¼1
acts as the initial N popula-

tion for a T-iteration DE-MC processing. For any one land-

mark in the T-iteration processing, two different inte

gers, r1r2 that r1 ≠ r2 ≠ k, are randomly chosen from the

population of previous iteration. A new member X
� ið Þ
k

n o

that X
� ið Þ
k

n o

¼ X
ið Þ
k�1

n o

þ λ X
r1ð Þ
k�1

n o

� X
r2ð Þ
k�1

n o	 �

þ g is

created, where λ is a scalar whose value is found to be

optimal when λ ¼ 2:38=
ffiffiffiffiffiffiffi

2N
p

, g is drawn from a symmet-

ric distribution with small variance compared to that of

X
ið Þ
k

n oN

i¼1
. A target function is given based on the ratio

between the populations of current and previous step until

a convergence or a preset end point is reached. Then the

weights of particles are subject to update by the DE-

MC. At the end of this step, we take the output

population as the particle set of current time step

X
ið Þ
k ;w X

ið Þ
k

	 �n oN

i¼1
.

We estimate the state at time step k as:

Xk ¼ argmax
X

ið Þ
k
;i¼1;...;N

w X
ið Þ
k

	 �

ð8Þ

and update the velocity vector of current time step

Vk = Xk − Xk − 1. The step size of random jumping for

current DE-MC iteration is reduced if the survival rate of

the last DE-MC iteration is high or inflated otherwise [37].

The update scheme for the maximum likelihood decision

on the weights w can be summarized as follows:

Starting from the set of particles which are the filtering

result of time step k – 1: X
ið Þ
k−1;w X

ið Þ
k−1

	 �n oN

i¼1
.

1. Selection: select a set of samples
⌢

X
ið Þ
k

n oN

i¼1 from

X
ið Þ
k−1

n oN

i¼1
with the probability proportional to

w X
ið Þ
k−1

	 �

.

2. Prediction and Measurement: Apply a constant

velocity dynamical model to the samples using Eq. (7).

At the end of this step, we take the output population

as the particle set of current .time step that

X
ið Þ
k
;w X

ið Þ
k

	 �n oN

i¼1
.

3. Representation and Velocity Updating: Estimate the

state at time step k by Eq. (8) and update the velocity

vector of current time step.

While the tracker updates and tracks the Xk vector that

represents the coordinates of the 26 landmark points, the

samples are already drawn. The DE-MC particle filter is

able to make a more reasonable sampling and keeps them

from running off into implausible shapes even if they are

placed in the positions far away from the solution point or

are trapped in the local cost basin of the state space. The

observation model can help the sample points for positions

close to the solution in regard to their starting points. The

measurement module provides necessary feedback to the

sampling module, according to which, the hypothesis

moves to the regions where it is more likely for the global

maximum of the measurement function to be found.

3.2 Kernel correlation-based observation likelihood

The kernel correlation based on Hue Saturation Value

(HSV) color histograms is used to estimate the observa-

tion likelihood and measure the correctness of particles,

since HSV decouples the intensity (value) from color

(hue and saturation) and corresponds more naturally to

human perception [38]. We set each feature point at the

centre of a window as the observation model. The kernel

density estimate (KDE) K(Xk) for the color distribution

of the object Xk at time step k is given as:

K Xk ; rð Þ ¼ 1

ζ

X

N

i¼1

c X
ið Þ
k

	 �

� c rð Þ
	 �

dix
ð9Þ

where the c(.) function is a three dimensional vector of

HSV and c X
ið Þ
k

	 �

can be generated from the candidate

region within a search region R centered at Xk at time

step k. It should be sufficiently large to reach the

maximum facial point movement without overlapping

with any neighboring windows. c(r) can be generated

from the target region, which is r position translation in

the search region R. The normalizing constant ζ ensures K

(Xk;r) to be a probability distribution,
XN

k¼1
K Xk ; rð Þ ¼ 1.

The kernel width dix is used to scale the KDE K(Xk;r), and

the optimal solution for kernel width dix that minimizes

the Mean Integrated Square Error (MISE) [39] is given by:

dopt ¼
4

ix þ 2ð ÞN

� 1
ixþ4ð Þ=

ð10Þ

where ix is the number of particles in the set at time k and

dopt denotes the optimal solution for dix . If we denote K*

(Xk;r) as the reference region model and K(Xk;r) as a candi-

date region model, we can measure the data likelihood to

track the facial point movements by considering the

maximum value of the correlation coefficient between

the color histograms in this region and in a target region.

The correlation coefficient ρ(Xk) is calculated as:
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where E(K(Xk;r)) is the means of the vectors K(Xk;r) and

K*(Xk;r), and E(K*(Xk;r)) is the average intensities of the

color model. Finally, we define the observation likelihood

of the color measurement distribution using the

correlation coefficient ρ(Xk) that:

p

�

Yk jX ið Þ
k



¼ e
ρ2 X

ið Þ
kð Þ

τi ð12Þ

where τi is a scaling parameter, which helps the result

evaluated by (12) be more reasonably distributed in the

range of (0,1).

3.3 Landmark point tracking

In this section, we present using multiple DE-MC filters

for facial landmarks tracking over time. Once the obser-

vation model is defined we need to model the transition

density and to specify the scheme for reweighting the

particles. The single particle filters weight particles based

on a likelihood score and then propagate these weighted

particles according to a motion model. Simply running

particle filters for multiple landmarks tracking needs a

complex motion model for the identity between targets.

Such an approach suffers from exponential complexity

in the number of tracked targets [40]. In contrast to

traditional methods, our approach addresses the multi-

target tracking problem using the M-component non-

parametric mixture model, where each component

(every landmark point) is modeled with an individual

particle filter that forms part of the mixture. The land-

mark states have multi-modal distribution functions

and the filters in the mixture interact only through the

computation of the importance weights. In particular,

we combined color based kernel correlation technique

for the observation likelihood with DE-MC particle

filtering distribution. A set of weighted particles are

used to approximate a density function corresponding

to the probability of the location of the target given

observations.

To avoid sampling from a complicated distribution,

the M-component model is adopted for the posterior

distribution over the state Xk of all targets M according to:

pðXk Y1:kj Þ ¼
X

M

j¼1

Pij;kpj Xk Y1:kj Þð ð13Þ

where M = 26, pj(Xk|Y1 : k) is the posteriori probability of the

facial landmarks with the M-component non-parametric

mixture model, and Pi is the mixture weights satisfy
XM

m¼1
Pim;k ¼ 1 . We utilize training data to learn the

interdependencies between the positions of the facial

landmarks for the reweighting scheme. It is clear that

the performance can be improved if we consider the

motion models of the landmark points. The motion

model p(Xk|Xk − 1) predicts the state Xk given the previous

state Xk-1. Using the filtering distribution computed from

(13), the predictive distribution becomes:

pðXk Y1:k�1j Þ ¼
X

M

j¼1

Pij;k�1pj Xk Y1:k�1j Þð ð14Þ

where pm(Xk|Y1 : k − 1) =
R

p(Xk|Xk − 1)pm(Xk − 1|Y1 : k − 1)

dXk − 1. The likelihood p(Yk|Xk) is the measurement

model and expresses the probability of observation Yk . We

approximate the posterior from an appropriate proposal

distribution to maintain a particle based representation for

the a posteriori probability of the state. It provides a

consistent way to resolve the ambiguities that arise in

associating multiple objects with measurements of the

similarity criterion between the target points and the

candidate points. The updated posterior mixture takes

the form that:

pðXk Y1:kj Þ ¼
X

M

j¼1

Pij;kpjðXk Y1:kj Þ ¼ λk
X

M

j¼1

Pij;kpjðYk Xkj Þ
Z

pj Xk Xk�1j Þpj Xk�1 Y1:k�1j ÞdXk�1ð
�

ð15Þ
The new weights can be approximated with a prior on

the relative positions of the facial features as:

Pij;k ¼
Pij;k�1

Z

pjðYk Xkj ÞpjðXk Y0:k�1j ÞdXk

XM

l¼1
Pil;k�1

Z

pl Yk Xkj Þpl Xk Y0:k�1j ÞdXkðð

ð16Þ
The particles are sampled from the training data to

obtain the appropriate distribution in the M-mixture

model. The prediction step and the measurement step

are integrated together instead of functioning separately.

The use of the priors provides sufficient constrains for

reliable tracking at the presence of appearance changes due

to facial expressions. The measurement function evaluates

the resemblance between image features generated by

hypothesis and those generated by ground truth positions,

as the criterion for judging the correctness of hypothesis.

ρ Xkð Þ ¼
XN

i¼1

X

r∈R
K� Xk ; rð Þ � E K� Xk ; rð Þð Þj j K Xk ; rð Þ � E K Xk ; rð Þð Þj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i¼1

X

r∈R
K � Xk ; rð Þ � E K � Xk ; rð Þð Þj j2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i¼1

X

r∈R
K Xk ; rð Þ � E K Xk ; rð Þð Þj j2

q











































ð11Þ
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When tracking the multiple modalities, multiple track-

ers start with mode-seeking procedure, the posterior

modes are subsequently detected through the HSV color

histograms based kernel correlation analysis. Using a

trained color-based observation model allows us to track

different landmark points. Here, we have M different

likelihood distributions. At time k we sample candidate

particles from an appropriate proposal distribution
⌢

X
ið Þ
k�1

n oN

i¼1
from X

ið Þ
k−1

n oN

i¼1
and weight these particles

according to the probability proportional:

w
ið Þ
k ¼ w

ið Þ
k�1

p

�

Yk j
⌢

X
ið Þ
k



p

�

⌢

X
ið Þ
k jX ið Þ

k�1



p
⌢

X
ið Þ
k X

ið Þ
0:k�1;Y1:k










�	
ð17Þ

In our work, scaling is normalized by person-related

scaling factors that are estimated from the positions of the

facial features at the first frame, such as the dimensions of

the mouth. This scheme simply processes with the prior

knowledge by sampling from the transition priors and

updating the particles using importance weights derived

from (17).

4. Experiments and results
To evaluate the system performance of the proposed

detection and tracking method for facial expression,

we construct an experimental dataset from three

publicly available databases: RML Emotion database [9],

Cohn-Kanade (CK) database [41] and Mind Reading (MR)

database [42]. The RML Emotion database was originally

recorded for language and context independent emotional

recognition with the six fundamental emotional states:

happiness, sadness, anger, disgust, fear and surprise. It

includes eight subjects in nearly frontal view (2 Italian, 2

Chinese, 2 Pakistani, 1 Persian, and 1 Canadian) and 520

video sequences in total. Each video pictures a single emo-

tional expression and ends at the apex of that expression

while the first frame of every video sequence shows a

neutral face. Video sequences from neutral to target

display are digitized into 320 × 340 pixel arrays with 24-bit

color values. The CK database consists of approximately

2000 image sequences in nearly frontal view from over

200 subjects. Each video pictures a single facial expression

and ends at the apex of that expression while the first

frame of every video sequence shows a neutral face. The

MR database is an interactive computer-based resource

for face emotional expressions, developed by Cohen and

his psychologist team. It consists of 2472 faces, 2472 voices

and 2472 stories. Each video pictures the frontal face with a

single facial expression of one actor (30 actors in total) of

varying age ranges and ethnic origins.

We select 320 videos of eight subjects from the RML

Emotion database, 360 image sequences of 90 subjects

from CK database and 360 videos of 30 subjects from

MR database for the experiments. As a result, the

experimental dataset includes 1040 image sequences of

128 subjects in total. The experiments are implemented

on a Quad CPU 2.4 GHz PC with 3.25 GB memory,

under the Windows XP operating system.

We compare the automatically located facial landmarks

with the ground truth points to evaluate the performance

of the detection and tracking method. In general, the

detecting and tracking methods are usually regarded as a

SUCCESS if the bias of the automatic labeling result to

the manual labeling result is less than 30% of the true

inter-ocular distance [43]. However, this is unacceptable

in the case of facial expression analysis. To follow the

subtle changes in the facial feature appearance, we define

a SUCCESS case if the bias of a detected point to the true

facial point is less than 10% of inter-ocular distance in the

test image. The one-against-all (OAA) and leave-one-sub-

ject-out (LOSO) cross validation strategies are utilized to

perform the experiments. The OAA strategy works as

follows: for each time, one sample is held out as the

testing data, while the rest of the data in the entire dataset

is used as the training data. This procedure continues

until all the individual samples in the entire dataset have

been held out once. In the LOSO strategy, the samples

belonging to one subject are used as the testing data and

the remainders as the training data. This is also repeated

for all of the possible trials until all the subjects are used

as the testing data. There is no overlap between the training

and testing subjects. The experimental results are averaged

as the final accuracy.

4.1 Facial landmark detection

In this section, we present the experimental results using

the proposed facial landmarks detection method. Adaboost

algorithm is applied for training the 26 facial landmark

detectors. We use ten frames from each training sequence

with the manually labeled ground truth points. The

surrounding eight positions of the true point are also

selected as the positive examples in a training image.

Another five arbitrary points in the same frame are chosen

as the set of negative examples. The prototypical 128-

dimensional feature vector is used for each sample point.

In the testing images, candidate points are first extracted

from facial region using scale invariant feature. For a cer-

tain facial landmark, Adaboost classifier outputs a response

depicting the similarity between the representations of the

candidate points compared to the learned training model.

After checking the entire facial region, the position with

the highest response reveals the landmark point.

Boost algorithm has been proposed to reduce the

redundancies of the high dimensional feature space and

computational cost. The Adaboost algorithm by Viola

and Jones [19] for face detection is a typically successful
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example as it has a very low false positive rate and can

detect faces in real time. It can be trained for different

levels of computational complexity, speed and detection

rate which are suitable for specific applications. The

performances of RealAdaboost [44], GentleAdaboost

[45] and ModestAdaboost [46] for fiducail point detectors

are compared in our work using GML AdaBoost Matlab

Toolbox [47] and shown in Figure 3. GentleAdaboost

returns the best detection rates from the results. In

contrast to other Adaboost algorithms, GentleAdaboost

uses real valued features and converges faster. It gives less

emphasis to misclassified examples since the increase in

the weight of the example is quadratic in the negative

margin, rather than exponential. Thus, GentleAdaboost is

selected as the classification algorithm in our system.

The overall detection rates for each point are shown in

Figure 4, and the proposed method achieves 91% average

detection rate of the facial landmarks. We illustrate some

representative cases in Figure 5. The proposed method is

applied on each frame of the input video sequences, and

the 26 facial landmarks are automatically detected.

4.2 Tracking results

In this section, we present the experimental results using

the proposed multiple DE-MC filters. The positions of the

facial landmarks in the first frame of an input sequence

are automatically found using the detection method. The

positions in all subsequent frames are then determined by

the multiple particle filters with the color based observa-

tion likelihood. The observation model is built from the

training data of manually labeled sequences using a finite

set of particles within the feature point centered window.

We approximate the posterior p(Xk|Y1 : k) from an appro-

priate proposal distribution to maintain a particle based

representation for the a posteriori probability of the state.

Since the calculation of the weights of the particles is a

critical step of multiple points tracking, in the proposed

M-mixture model, we sample the particles from the

training data to obtain the appropriate proposal distri-

bution. The proposed method simply proceeds by sam-

pling from the transition priors and updating the

particles using importance weights derived from Eq. (17).

In the DE-MC iterations, the measurement module pro-

vides necessary feedbacks to the sampling module.

According to them the sampling moves to regions in the

state space where it is more possible to find the global

maximum of the measurement function. Since we are

interested in the global optimal state, we place denser

sampling grids in the region of interest. This approach

yields a result reasonably close to that obtained by sam-

pling strictly according to the ground truth posterior

distribution.

We present some representative cases using the

proposed method, exploring various practical aspects for

the facial landmark detection and tracking. Figures 6

and 7 summarize the experimental results for two different

emotional expressions. The facial landmarks are first

detected by the point detectors in the first frame and then

tracked by the kernel correlation based multiple DE-MC

filters. For all figures, the white dots represent the positions

of facial landmarks to be detected and tracked, which are

all labeled with the associate numbers. In Figure 6, the

subject exhibits a set of sadness expressions from a

neutral face at the beginning and ends at the apex of that

expression. Figure 7 shows the anger expression with

talking at the same time. As expected, all the points are

tracked reliably for the whole sequence. Since the motions

of the faces are not intensive and the facial appearances

are not heavily changed, the features extracted from

consecutive frames are highly correlated and the results

achieve a very impressive tracking rate.

We apply the proposed method to the zoomed case, as

shown in Figure 8. When the camera zooms, the factors

assigned with the color based kernel correlation keep

changing and are going to descend, as a result of (9) and

(10) which can be seen from frame 320. However, the

facial landmark can still be tracked with the updating

weights using (16), as we keep track of the points from

the previous frame. It shows that the use of the priors

for the multiple filters provides constraints that are suffi-

cient for the reliable tracking of the points at the pres-

ence of the facial appearances.

While performing the experiments, we also consider the

cases with head in rotation or point occlusion, as shown

in Figure 9. In this case we can see the points 3, 7, 15, 20

and 23 are lost after frame 78 when a frontal face is rotat-

ing to a profile view. So far, the multiple detectors and

trackers are based on different configurations of color in-

tensity regions. If both detectors and particle trackers fail

Figure 3 Test rates from Adaboost algorithms with 200

boosting iterations.
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for several consecutive frames, the proposed approach will

eventually lose the landmark points.

To solve this problem, we execute a conservative way to

update the trackers temporally with the response distribu-

tion [48] for the next n frames when the missing points

first occurred. This step length n can be changed by the

user and should not be crucial to the system. If the track-

ers respond correctly after a few frames, the trackers are

able to recover due to the accumulation of probabilities.

However, when the step length n continues to grow, due

to incorrect responses of the detector, the color correl-

ation of the observation likelihood drops and the trackers

will begin to lose points. After that, “point lost” will be

declared. We then stop estimating its motion Vk and dis-

card the motion likelihood term. The trackers will be reini-

tialized by the point detectors in the following frames. All

the 26 points can be detected with a new set of parameters

if the facial region appears again in the scene. The improved

Figure 4 The final facial landmark detection rate.

Figure 5 Sample sequences from the test videos for facial point detection.

Tie and Guan EURASIP Journal on Image and Video Processing 2013, 2013:8 Page 9 of 15

http://jivp.eurasipjournals.com/content/2013/1/8



result is shown in Figure 10 that reinitialization executes

and all facial landmarks are found again after frame 183.

4.3 Performance evaluate

To evaluate the performance of the detection and tracking

method for emotional expressions, we use recall and preci-

sion as the performance measures. The missing rates and

false alarms are conducted by comparison between the

output and the SUCCESS point, which is defined as:

recall ¼ NSUCCESS

NSUCCESS þ Nmiss
� 100%

precision ¼ NSUCCESS

NSUCCESS þ Nfalse
� 100%

ð18Þ

where NSUCCESS stands for the number of SUCCESS point

from the detection and tracking, Nmiss stands for the num-

ber of missed points, and Nfalse stands for the number of

Figure 6 Sample sequences for sadness facial expression. The frame numbers are marked below.

Figure 7 Sample sequences for anger facial expression with talking simultaneously. The frame numbers are marked below or sadness

facial expression. The frame numbers are marked below.
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false alarms. The sum NSUCCESS + Nmiss is the total num-

ber of manually labeled facial landmarks in the entire

video sequence.

The overall performance of the system in term of false

alarm rate using the aforementioned datasets is illustrated

in Figure 11. From this figure, we can see that the precision

is decreasing and recall is increasing with the increment

of false alarms. Note, in the graph, a system performance

of recall 94.15% and precision 92.86% is achieved

simultaneously.

We also checked the displacement accuracy for the

proposed methods. The Euclidean distances between each

individual landmark point are used for the measurement.

Since we use the scale normalization for the variation

in size of each individual face, therefore the distance

measurement is invariant for the experimental datasets.

We calculate the average accuracy for the displacement of

the proposed automatic method compared to the

manually labeled ground truth. The distributions of the

displacement accuracy are shown in Figure 12. From the

figure we can see that given a 10% normalized distance,

the proposed method achieves a 93% average accuracy

from the ground truth.

4.4 Comparison with state-of-the-art

To distinguish person-independent affective states,

subtle changes of facial expressions should be extracted

for feature construction. Automatic facial landmark

Figure 8 Sample sequences for the zoomed case. The frame numbers are marked below.

Figure 9 Sample sequences for the head’s rotation case. The frame numbers are marked below.

Tie and Guan EURASIP Journal on Image and Video Processing 2013, 2013:8 Page 11 of 15

http://jivp.eurasipjournals.com/content/2013/1/8



detection and tracking are crucial for analyzing the current

facial appearance since it will facilitate the examination of

the fine structural changes inherent in the spontaneous

expressions. A key motivation for developing landmark

point techniques is that they lay the foundation for develop-

ing 3D models and associated dynamic feature extraction

and recognition techniques which are highly likely superior

to 2D-based and static 3D-based techniques. We therefore

first compare with the result reported in [9] which also

used the RML Emotion database, but with static visual

features extracted by 2D Gobar filters. The comparison

shows that working on the same database, facial landmark

based 3D dynamic features [49] (90% recognition rate)

substantially outperforms the recognition rate by the 2D

Gabor features (approximately 50%), and also the bimodal

features (approximately 82%).

In general, some existing methods perform quite well

when localizing a small number of facial feature points

such as the corners of the eyes and the mouth, however,

none of them detects and tracks all the 26 facial landmarks

illustrated in Table 1. To present a straightforward

comparison with state-of-the-art, we conduct extensive

experiments using two publicly available face databases,

BIOID database [50] and BUHMAP database [11],

with manually marked ground truth positions. Table 1

summarizes the comparative experimental results along

with that from some state-of-the-art methods on the same

test sets. The results from other methods are taken from

expanded AAM [14], factorized PF [29], SIR PF [51] and

Gabor feature PF [52].

As is evident from these results, our method achieves

the best overall performance of 90.8% average rate. In

Figure 10 The improved sample sequence for the head’s rotation case. The frame numbers are marked below.

Figure 11 Recall and precision against false alarm rate for the

test databases.

Figure 12 Displacement accuracy based on the

normalized distance.

Tie and Guan EURASIP Journal on Image and Video Processing 2013, 2013:8 Page 12 of 15

http://jivp.eurasipjournals.com/content/2013/1/8



contrast with other approaches, the most evident im-

provement of the proposed method is that the prediction

step and the measurement step are integrated together

instead of functioning separately. The use of the priors

provides sufficient constrains for reliable tracking at the

presence of appearance changes due to facial expressions.

The measurement function evaluates the resemblance

between image features generated by hypothesis and

those generated by ground truth positions, as the criterion

for judging the correctness of hypothesis.

The proposed method has demonstrated its ability to

handle pose variations problems and can be used for

both image and video based facial expression recognition.

Computationally, the proposed method has the advantages

of automatic initialization by using the scale invariant

features extraction over the other methods that examine

pixels one by one. Note that the method proposed in

[27] achieved a better overall detection rate. However,

this method is only tested on perfect manually aligned

image sequences and no experiments in fully automatic

conditions were reported. In addition, only 13 sequences

were experimented on in [27]. Therefore, the result is far

from conclusive.

5. Discussions and conclusions

Automatic facial landmark detecting and tracking is a

challenging task in facial expression analysis. In this

paper, we proposed an automatic approach to detect and

track facial landmarks for varying facial expressions. We

first construct a set of facial landmark detectors with scale

invariant feature. Locating feature points automatically on

a single frame makes it possible to eliminate the manual

initiation step for the tracking algorithm.

We also adopt the multiple DE-MC filters for facial

landmarks tracking. Compared with the existing multi-

target tracking methods, such as the joint probabilistic

data association filter (JPDAF) [53], moving horizon esti-

mation [54], various modifications of the Kalman filter

[55], or the interior point approaches [56], the DE-MC

particle filter leads to a more reasonable approximation to

Table 1 Comparisons based on different public databases

Fiducial points Proposed Expanded AAM [14] Factorized PF [29] SIR PF [51] Gabor PF [52]

BIOID BUHM AP BIOID BUHM AP BIOID BUHM AP BIOID BUHM AP BIOID BUHM AP

P1 92.89 91.97 85.45 86.13 83.66 83.27 81.35 79.19 87.42 89.73

P 2 94.68 93.06 87.15 88.56 84.81 82.99 79.64 80.61 86.25 86.44

P 3 93.33 89.56 84.21 83.68 79.40 76.72 74.39 75.65 82.91 80.19

P 4 90.94 91.76 84.48 81.95 78.38 78.49 76.34 73.71 82.03 84.97

P 5 95.31 94.28 90.33 89.95 82.67 82.01 79.08 80.14 89.50 90.32

P 6 88.86 89.59 80.94 81.38 77.78 74.91 75.12 72.92 79.74 80.63

P 7 94.99 93.47 88.34 87.45 82.40 82.74 82.94 81.68 80.42 81.06

P 8 89.33 88.45 83.47 81.97 79.61 74.96 76.27 75.54 79.24 78.62

P 9 96.01 94.73 91.04 90.15 81.92 82.59 79.35 76.54 81.48 79.20

P 10 86.31 87.14 79.69 80.41 74.02 79.14 76.05 79.13 79369 79.06

P 11 89.03 90.02 86.63 87.37 82.33 81.86 85.02 82.46 85.24 83.15

P 12 85.12 86.24 80.31 81.06 75.21 75.83 73.66 76.98 79.45 79.13

P 13 91.92 93.10 86.69 87.81 82.70 83.51 81.12 83.06 81.28 83.67

P 14 84.97 83.15 79.62 78.38 78.26 77.44 78.45 77.96 79.66 81.71

P 15 91.24 92.45 84.71 84.55 82.83 81.34 76.52 75.43 86.01 86.93

P 16 89.56 88.74 85.35 86.16 78.25 79.59 78.05 79.29 86.36 82.98

P 17 82.49 86.35 79.22 81.74 76.17 78.79 74.62 73.64 81.31 84.52

P 18 89.45 90.12 86.08 85.15 81.93 83.58 80.23 80.71 85.51 85.78

P 19 88.94 90.84 87.11 87.84 80.81 82.14 76.03 75.34 84.18 86.19

P 20 91.03 93.21 82.21 81.16 79.85 79.62 76.82 78.02 84.45 85.56

P 21 89.62 88.82 81.74 81.06 81.48 84.44 82.82 79.12 79.82 80.43

P 22 93.87 92.53 83.94 80.09 85.30 86.52 79.99 79.21 85.28 86.58

P 23 96.40 94.77 86.37 85.52 86.23 85.17 84.80 82.95 86.34 84.42

P 24 90.85 91.06 85.81 81.03 79.41 78.30 79.27 78.13 84.73 83.96

P 25 94.97 95.43 89.24 86.11 83.22 83.80 80.59 80.62 88.27 86.48

P 26 91.67 90.28 83.67 84.84 76.53 79.43 76.27 78.74 77.75 78.58

Ave. 90.86% 84.51% 80.66% 78.58% 83.35%
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the proposal distribution. It incorporates the advantage of

the Differential Evolution algorithm in global optimization

and the ability of the Monte Carlo Markov Chain in

reasonably sampling a high-dimensional state space. It

evidently boosts the performance of the traditional

tracking method in terms of more accurate motion vector

prediction. Based on the fact that the posterior depends

on both the previous state and the current observation in

a visual tracking application, the DE-MC particle filter can

also considerably improve the accuracy for tracking by

building a path connecting a sampling with measurement.

Taking the advantage of the DE-MC algorithm’s ability,

we can obtain reasonably distributed samples that are

concentrated on important regions of the state space. A

novel Kernel correlation with robust color histograms is

proposed for the observation likelihood to deal with

changes in the facial appearance of different expressions.

Furthermore, the facial landmarks are tracked by utilizing

prior knowledge on the facial feature configurations. It

provides a consistent way to resolve the ambiguities that

arise in associating multiple objects with measurements of

the similarity criterion between the target points and the

candidate points. Instead of simply applying the single

DE-MC filter for multiple point tracking, we utilize the

M-component non-parametric mixture model for the

multiple DE-MC filters' posterior distribution over the

states of all target points. This approach yields a result

reasonably close to that obtained by sampling strictly

according to the ground truth posterior distribution.

For future work, we plan to improve the detection and

tracking performance and extend our real-time algorithm

to cope with both self and other forms of occlusions.
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