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Abstract
Language identification (“LI”) is the problem of determining the natural language that

a document or part thereof is written in. Automatic LI has been extensively researched for
over fifty years. Today, LI is a key part of many text processing pipelines, as text processing
techniques generally assume that the language of the input text is known. Research in this
area has recently been especially active. This article provides a brief history of LI research,
and an extensive survey of the features and methods used in the LI literature. We describe
the features and methods using a unified notation, to make the relationships between
methods clearer. We discuss evaluation methods, applications of LI, as well as off-the-shelf
LI systems that do not require training by the end user. Finally, we identify open issues,
survey the work to date on each issue, and propose future directions for research in LI.

1. Introduction

Language identification (“LI”) is the task of determining the natural language that a docu-
ment or part thereof is written in.1 Recognizing text in a specific language comes naturally
to a human reader familiar with the language. Table 1 presents excerpts from Wikipedia
articles in different languages on the topic of Natural Language Processing (“NLP”), labeled

1. This survey concentrates solely on the language identification of digital text, and all references to “lan-
guage identification” in this survey refer to text, unless otherwise explicitly stated. For a recent overview
of spoken language identification, see (Li, Ma, & Lee, 2013).
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English Natural language processing is a field of computer science, artificial in-
telligence, and linguistics concerned with the interactions between com-
puters and human (natural) languages.

Italian L’Elaborazione del linguaggio naturale è il processo di trattamento au-
tomatico mediante un calcolatore elettronico delle informazioni scritte o
parlate nel linguaggio umano o naturale.

Chinese 自然語言處理是人工智慧和語言學領域的分支學科。

Japanese 自然言語処理は、人間が日常的に使っている自然言語をコンピュータ
に処理させる一連の技術であり、人工知能と言語学の一分野である。

Table 1: Excerpts from Wikipedia articles on NLP in different languages.

according to the language they are written in. Without referring to the labels, readers of
this article will certainly have recognized at least one language in Table 1, and many are
likely to be able to identify all the languages therein.

Research into LI aims to mimic this human ability to recognize specific languages. Over
the years, a number of computational approaches have been developed that, through the
use of specially-designed algorithms and indexing structures, are able to infer the language
being used without the need for human intervention. The capability of such systems could
be described as super-human: an average person may be able to identify a handful of
languages, and a trained linguist or translator may be familiar with many dozens, but most
of us will have, at some point, encountered written texts in languages they cannot place.
However, LI research aims to develop systems that are able to identify any human language,
a set which numbers in the thousands (Simons & Fennig, 2017).

In a broad sense, LI applies to any modality of language, including speech, sign language,
and handwritten text, and is relevant for all means of information storage that involve
language, digital or otherwise. However, in this survey we limit the scope of our discussion
to LI of written text stored in a digitally-encoded form.

Research to date on LI has traditionally focused on monolingual documents (Hughes,
Baldwin, Bird, Nicholson, & MacKinlay, 2006) (we discuss LI for multilingual documents
in Section 10.6). In monolingual LI, the task is to assign each document a unique language
label. Some work has reported near-perfect accuracy for LI of large documents in a small
number of languages, prompting some researchers to label it a “solved task” (McNamee,
2005). However, in order to attain such accuracy, simplifying assumptions have to be made,
such as the aforementioned monolinguality of each document, as well as assumptions about
the type and quantity of data, and the number of languages considered.

The ability to accurately detect the language that a document is written in is an enabling
technology that increases accessibility of data and has a wide variety of applications. For
example, presenting information in a user’s native language has been found to be a critical
factor in attracting website visitors (Kralisch & Mandl, 2006). Text processing techniques
developed in natural language processing and Information Retrieval (“IR”) generally pre-
suppose that the language of the input text is known, and many techniques assume that
all documents are in the same language. In order to apply text processing techniques to
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real-world data, automatic LI is used to ensure that only documents in relevant languages
are subjected to further processing. In information storage and retrieval, it is common to
index documents in a multilingual collection by the language they are written in, and LI
is necessary for document collections where the languages of documents are not known a-
priori, such as for data crawled from the World Wide Web. Another application of LI that
predates computational methods is the detection of the language of a document for routing
to a suitable translator. This application has become even more prominent due to the ad-
vent of Machine Translation (“MT”) methods: in order for MT to be applied to translate a
document to a target language, it is generally necessary to determine the source language
of the document, and this is the task of LI. LI also plays a part in providing support for the
documentation and use of low-resource languages. One area where LI is frequently used in
this regard is in linguistic corpus creation, where LI is used to process targeted web crawls
to collect text resources for low-resource languages.

A large part of the motivation for this article is the observation that LI lacks a “home
discipline”, and as such, the literature is fragmented across a number of fields, including
NLP, IR, machine learning, data mining, social media analysis, computer science education,
and systems science. This has hampered the field, in that there have been many instances
of research being carried out with only partial knowledge of other work on the topic, and
the myriad of published systems and datasets.

Finally, it should be noted that this survey does not make a distinction between lan-
guages, language varieties, and dialects. Whatever demarcation is made between languages,
varieties and dialects, a LI system is trained to identify the associated document classes.
Of course, the more similar two classes are, the more challenging it is for a LI system to
discriminate between them. Training a system to discriminate between similar languages
such as Croatian and Serbian (Ljubešić & Kranjcić, 2014), language varieties like Brazilian
and European Portuguese (Zampieri & Gebre, 2012), or a set of Arabic dialects (Zampieri,
Tan, Ljubešić, Tiedemann, & Nakov, 2015) is more challenging than training systems to
discriminate between, for example, Japanese and Finnish. Even so, as evidenced in this
article, from a computational perspective, the algorithms and features used to discriminate
between languages, language varieties, and dialects are identical.

In this survey, we will examine the common themes and ideas that underpin research
in LI. We begin with a brief history of research that has led to modern LI (Section 3), and
then proceed to review the literature, first introducing the mathematical notation used in
the article (Section 4), and then providing synthesis and analysis of existing research, focus-
ing specifically on the representation of text (Section 5) and the learning algorithms used
(Section 6). We examine the methods for evaluating the quality of the systems (Section 7)
as well as the areas where LI has been applied (Section 8), and then provide an overview
of “off-the-shelf” LI systems (Section 9). We conclude the survey with a discussion of the
open issues in LI (Section 10), enumerating issues and existing efforts to address them, as
well as charting the main directions where further research in LI is required.
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2. LI as Text Categorization
LI is in some ways a special case of text categorization, and previous research has examined
applying standard text categorization methods to LI (Cavnar & Trenkle, 1994; Elworthy,
1998).

Sebastiani (2002, Section 2.1) provides a definition of text categorization, which can
be summarized as the task of mapping a document onto a pre-determined set of classes.
This is a very broad definition, and indeed one that is applicable to a wide variety of tasks,
amongst which falls modern-day LI. The archetypal text categorization task is perhaps
the classification of newswire articles according to the topics that they discuss, exemplified
by the Reuters-21578 dataset (Debole & Sebastiani, 2005). However, LI has particular
characteristics that make it different from typical text categorization tasks:

1. Text categorization tends to use statistics about the frequency of words to model
documents, but for LI purposes there is no universal notion of a word: LI must cater
for languages where whitespace is not used to denote word boundaries. Furthermore,
the determination of the appropriate word tokenization strategy for a given document
presupposes knowledge of the language the document is written in, which is exactly
what we assume we don’t have access to in LI.

2. In text categorization tasks, the set of labels usually only applies to a particular
dataset. For example, it is not meaningful to ask which of the Reuters-21578 labels
is applicable to the abstract of a biomedical journal article. However, in LI there is a
clear notion of language that is independent of domain: it is possible to recognize that
a text is in English regardless of whether it is from a biomedical journal, a microblog
post, or a newspaper article.

3. In LI, classes can be somewhat multi-modal, in that text in the same language can
sometimes be written with different orthographies and stored in different encodings,
but correspond to the same class.

4. In LI, labels are non-overlapping and mutually exclusive, meaning that a text can
only be written in one language. This does not preclude the existence of multilingual
documents which contain text in more than one language, but when this is the case,
the document can always be uniquely divided into monolingual segments. This is in
contrast to text categorization involving multi-labeled documents, where it is generally
not possible to associate specific segments of the document with specific labels.

These distinguishing characteristics present unique challenges and offer particular oppor-
tunities, so much so that research in LI has generally proceeded independently of text
categorization research.

2.1 An Archetypal Language Identifier

The design of a supervised language identifier can generally be deconstructed into four key
steps:

1. A document representation is selected;
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2. A language model of each of a pre-defined set of training languages is derived from a
training corpus of labelled documents;

3. A function is defined that determines how well a given document fits the language
model of each of the training languages;

4. The language of the document is predicted based on the best-fitting language model.

2.2 Previous Surveys

Although there are some dedicated survey articles, these tend to be relatively short; there
have not been any comprehensive surveys of research in automated LI of text to date. The
largest survey so far can be found in the literature review of Marco Lui’s PhD thesis (Lui,
2014a), which served as an early draft and starting point for the current article. Zampieri
(2016) provides a historical overview of language identification focusing on the use of n-
gram language models. Qafmolla (2017) gives a brief overview of some of the methods used
for LI, and Garg, Gupta, and Jindal (2014) provide a review of some of the techniques
and applications used previously. Shashirekha (2014) gives a short overview of some of the
challenges, algorithms and available tools for LI. Juola (2006) provides a brief summary
of LI, how it relates to other research areas, and some outstanding challenges, but only
does so in general terms and does not go into any detail about existing work in the area.
Another brief article about LI is Muthusamy and Spitz (1997), which covers LI both of
spoken language as well as of written documents, and also discusses LI of documents stored
as images rather than digitally-encoded text.

3. A Brief History of LI

LI as a task predates computational methods – the earliest interest in the area was motivated
by the needs of translators, and simple manual methods were developed to quickly identify
documents in specific languages.

The earliest known work to describe a functional LI program for text is by Mustonen
(1965), a statistician, who used multiple discriminant analysis to teach a computer how to
distinguish, at the word level, between English, Swedish and Finnish. Mustonen compiled a
list of linguistically-motivated character-based features, and trained his language identifier
on 300 words for each of the three target languages. The training procedure created two
discriminant functions, which were tested with 100 words for each language. The exper-
iment resulted in 76% of the words being correctly classified; even by current standards
this percentage would be seen as acceptable given the small amount of training material,
although the composition of training and test data is not clear, making the experiment
unreproducible.

Gold (1967) sought to investigate language learnability from the perspective of formal
language theory, and thus formalized LI as a closed-class classification problem and inves-
tigated theoretical limitations on the ability to separate languages from different classes.
In practice, the definition of language of Gold (1967) is only tangentially related to natural
language, but the results of his research are much more general: the key result is that given
sufficient labeled data in multiple languages (language as in language theory rather than
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natural language), it is possible to construct an algorithm that will correctly distinguish
context-free languages. The proof given is a proof of existence; it does not actually suggest
how to construct such an algorithm. In short, the results of Gold (1967) prove that (as-
suming documents are generated using a context-free grammar), there exists an algorithm
to perform supervised text categorization that will converge to the correct answer in a fi-
nite number of steps. This may be a significant theoretical result, but it is a result that
is generally taken for granted in any sort of supervised machine learning applied to text
classification.

In the early 1970s, Nakamura (1971) considered the problem of automatic LI. According
to Rau (1974) and the available abstract of Nakamura’s article,2 his language identifier was
able to distinguish between 25 languages written with the Latin alphabet. As features,
the method used the occurrence rates of characters and words in each language. From the
abstract it seems that, in addition to the frequencies, he used some binary presence/absence
features of particular characters or words, based on manual LI.

Rau (1974) wrote his master’s thesis “Language Identification by Statistical Analysis”
for the Naval Postgraduate School at Monterey, California. The continued interest and the
need to use LI of text in military intelligence settings is evidenced by the recent articles of,
for example, Rafidha Rehiman, Keerthy, Lakshmi, and Sreekumar (2013), Rowe, Schwamm,
and Garfinkel (2013), Tratz (2014), and Voss, Tratz, Laoudi, and Briesch (2014). As features
for LI, Rau (1974) used, e.g., the relative frequencies of characters and character bigrams.
With a majority vote classifier ensemble of seven classifiers using Kolmogor-Smirnov’s Test
of Goodness of Fit and Yule’s characteristic (K), he managed to achieve 89% accuracy
over 53 characters when distinguishing between English and Spanish. His thesis actually
includes the identifier program code (for the IBM System/360 Model 67 mainframe), and
even the language models in printed form.

Much of the earliest work on automatic LI was focused on identification of spoken lan-
guage, or did not make a distinction between written and spoken language. For example,
the work of House and Neuburg (1977) is primarily focused on LI of spoken utterances,
but makes a broader contribution in demonstrating the feasibility of LI on the basis of a
statistical model of broad phonetic information. However, their experiments do not use ac-
tual speech data, but rather “synthetic” data in the form of phonetic transcriptions derived
from written text.

Another subfield of speech technology, speech synthesis, has also generated a consider-
able amount of research in the LI of text, starting from the 1980s. In speech synthesis, the
need to know the source language of individual words is crucial in determining how they
should be pronounced. Church (1985) uses the relative frequencies of character trigrams
as probabilities and determines the language of words using a Bayesian model. Church
explains the method – that has since been widely used in LI – as a small part of an ar-
ticle concentrating on many aspects of letter stress assignment in speech synthesis, which
is probably why Beesley (1988) is usually attributed to being the one to have introduced
the aforementioned method to LI of text. As Beesley’s article concentrated solely on the
problem of LI, this single focus probably enabled his research to have greater visibility.
The role of the program implementing his method was to route documents to MT systems,

2. We were unable to obtain the original article, so our account of the paper is based on the abstract and
reports in later published articles.
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and Beesley’s paper more clearly describes what has later come to be known as a character
n-gram model. The fact that the distribution of characters is relatively consistent for a
given language was already well known (Zipf, 1932).

The highest-cited early work on automatic LI is Cavnar and Trenkle (1994). Cavnar
and Trenkle’s method (which we describe in detail in Section 6.6) builds up per-document
and per-language profiles, and classifies a document according to which language profile it
is most similar to, using a rank-order similarity metric. They evaluate their system on 3478
documents in eight languages obtained from USENET newsgroups, reporting a best overall
LI accuracy of 99.8%. Gertjan van Noord produced an implementation of the method of
Cavnar and Trenkle named TextCat, which has become eponymous with the method itself
(van Noord, 1997). TextCat is packaged with pre-trained models for a number of languages,
and so it is likely that the strong results reported by Cavnar and Trenkle, combined with
the ready availability of an “off-the-shelf” implementation, has resulted in the exceptional
popularity of this particular method. Cavnar and Trenkle (1994) can be considered a
milestone in automatic LI, as it popularized the use of automatic methods on character n-
gram models for LI, and to date the method is still considered a benchmark for automatic
LI.

4. On Notation

This section introduces the notation used throughout this article to describe LI methods.
We have translated the notation in the original papers to our notation, to make it easier
to see the similarities and differences between the LI methods presented in the literature.
The formulas presented could be used to implement language identifiers and re-evaluate the
studies they were originally presented in.

A corpus C consists of individual tokens u which may be bytes, characters or words.
C is comprised of a finite sequence of individual tokens, u1, ..., ulC . The total count of
individual tokens u in C is denoted by lC . In a corpus C with non-overlapping segments,
each segment is referred to as Cs, which may be a short document or a word or some other
way of segmenting the corpus. The number of segments is denoted as lS .

A feature f is some countable characteristic of the corpus C. When referring to the
set of all features F in a corpus C, we use CF , and the number of features is denoted by
lCF . A set of unique features in a corpus C is denoted by U(C). The number of unique
features is referred to as |U(C)|. The count of a feature f in the corpus C is referred to
as c(C, f). If a corpus is divided into segments, the count of a feature f in C is defined as
the sum of counts over the segments of the corpus, i.e. c(C, f) =

∑lS
s=1 c(Cs, f). Note that

the segmentation may affect the count of a feature in C as features do not cross segment
borders.

A frequently-used feature is an n-gram, which consists of a contiguous sequence of
n individual tokens. An n-gram starting at position i in a corpus segment is denoted
ui,...,i+n−1, where positions i+1, ..., i+n− 1 remain within the same segment of the corpus
as i. If n = 1, f is an individual token. When referring to all n-grams of length n in a
corpus C, we use Cn and the count of all such n-grams is denoted by lCn . The count of an
n-gram f in a corpus segment Cs is referred to as c(Cs, f) and is defined by Equation 1:
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c(Cs, f) =

lCs+1−n
∑

i=1

{

1 , if f = ui,...,i−1+n

0 , otherwise (1)

The set of languages is G, and lG denotes the number of languages. A corpus C in language
g is denoted by Cg. A language model O based on Cg is denoted by O(Cg). The features
given values by the model O(Cg) are the domain dom(O(Cg)) of the model. In a language
model, a value v for the feature f is denoted by vCg(f). For each potential language g of a
corpus C in an unknown language, a resulting score R(g, C) is calculated. A corpus in an
unknown language is also referred to as a test document.

5. Features
In this section, we present an extensive list of features used in LI, some of which are not
self-evident. The equations written in the unified notation defined earlier show how the
values v used in the language models are calculated from the tokens u. For each feature
type, we generally introduce the first published article that used that feature type, as well
as more recent articles where the feature type has been considered.

5.1 Bytes and Encodings

In LI, text is typically modeled as a stream of characters. However, there is a slight mismatch
between this view and how text is actually stored: documents are digitized using a particular
encoding, which is a mapping from characters (e.g. a character in an alphabet), onto the
actual sequence of bytes that is stored and transmitted by computers. Encodings vary in
how many bytes they use to represent each character. Some encodings use a fixed number
of bytes for each character (e.g. ASCII), whereas others use a variable-length encoding (e.g.
UTF-8). Some encodings are specific to a given language (e.g. GuoBiao 18030 or Big5 for
Chinese), whereas others are specifically designed to represent as many languages as possible
(e.g. the Unicode family of encodings). Languages can often be represented in a number of
different encodings (e.g. UTF-8 and Shift-JIS for Japanese), and sometimes encodings are
specifically designed to share certain codepoints (e.g. all single-byte UTF-8 codepoints are
exactly the same as ASCII). Most troubling for LI, isomorphic encodings can be used to
encode different languages, meaning that the determination of the encoding often doesn’t
help in honing in on the language. Infamous examples of this are the ISO-8859 and EUC
encoding families. Encodings pose unique challenges for practical LI applications: a given
language can often be encoded in different forms, and a given encoding can often map onto
multiple languages.

Some LI research has included an explicit encoding detection step to resolve bytes to
the characters they represent (Kikui, 1996), effectively transcoding the document into a
standardized encoding before attempting to identify the language. However, transcoding is
computationally expensive, and other research suggests that it may be possible to ignore
encoding and build a single per-language model covering multiple encodings simultaneously
(Kruengkrai, Srichaivattana, Sornlertlamvanich, & Isahara, 2005; Baldwin & Lui, 2010a).
Another solution is to treat each language-encoding pair as a separate category (Cowie,
Ludovik, & Zacharski, 1999; Suzuki, Mikami, Ohsato, & Chubachi, 2002; Singh & Gorla,
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2007; Brown, 2012). The disadvantage of this is that it increases the computational cost by
modeling a larger number of classes. Most of the research has avoided issues of encoding
entirely by assuming that all documents use the same encoding (Mandl, Shramko, Tar-
takovski, & Womser-Hacker, 2006). This may be a reasonable assumption in some settings,
such as when processing data from a single source (e.g. all data from Twitter and Wikipedia
is UTF-8 encoded). In practice, a disadvantage of this approach may be that some encod-
ings are only applicable to certain languages (e.g. S-JIS for Japanese and Big5 for Chinese),
so knowing that a document is in a particular encoding can provide information that would
be lost if the document is transcoded to a universal encoding such as UTF-8. Li and Momoi
(2001) used a parallel state machine to detect which encoding scheme a file could potentially
have been encoded with. The knowledge of the encoding, if detected, is then used to narrow
down the possible languages.

Most features and methods do not make a distinction between bytes or characters, and
because of this we will present feature and method descriptions in terms of characters, even
if byte tokenization was actually used in the original research.

5.2 Characters
In this section, we review how individual character tokens have been used as features in LI.

Non-alphabetic or non-ideographic characters Ranaivo-Malançon and Ng (2005)
used the formatting of numbers when distinguishing between Malay and Indonesian. King
and Abney (2013) used the presence of non-alphabetic characters between the current word
and the words before and after as features. Elfardy and Diab (2013) used emoticons (or
emojis) in Arabic dialect identification with Naive Bayes (“NB”; see Section 6.5). Simaki,
Simakis, Paradis, and Kerren (2017) used the frequencies of punctuation and certain special
symbols as features when distinguishing between English variants. They used the Relief
feature selection algorithm (Kira & Rendell, 1992) to rank the features, and found the
symbol and punctuation characters to rank 5th and 9th, respectively, out of the 31 ranked
features.

Alphabets Henrich (1989) used knowledge of alphabets to exclude languages where a
language-unique character in a test document did not appear. Giguet (1995) used alphabets
collected from dictionaries to check if a word might belong to a language. Hanif, Latif, and
Khiyal (2007) used the Unicode database to get the possible languages of individual Unicode
characters. Lately, the knowledge of relevant alphabets has been used for LI also by Samih
(2017) and Hasimu and Silamu (2017). Hasimu and Silamu (2017) used the knowledge
of alphabets as the first part of a staged LI scheme, determining the possible language
groups based on the alphabet used as well as removing possible content in other scripts
from sentences including code-switching.3 Then they proceeded to identify the language
group and the exact language in later stages.

Capitalization Capitalization is mostly preserved when calculating character n-gram
frequencies, but in contexts where it is possible to identify the orthography of a given
document and where capitalization exists in the orthography, lowercasing can be used to

3. See the recent survey by Sitaram, Chandu, Rallabandi, and Black (2019) for information on computa-
tional approaches to code-switching.
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reduce sparseness. In recent LI work, capitalization was used as a special feature by Basile
et al. (2017), Bestgen (2017), and Simaki et al. (2017).

The number of characters in words and word combinations Langer (2001) was
the first to use the length of words in LI. Nobesawa and Tahara (2005) used the length
of full person names comprising several words. Lately, the number of characters in words
has been used for LI by Dongen (2017), van der Lee and Bosch (2017), Samih (2017), and
Simaki et al. (2017). Dongen (2017) also used the length of the two preceding words.

The frequency or probability of each character Kerwin (2006) used character fre-
quencies as feature vectors. In a feature vector, each feature f has its own integer value.
The raw frequency – also called term frequency (TF) – is calculated for each language g as:

vCg(f) = c(Cg, f) (2)

Rau (1974) was the first to use the probability of characters. He calculated the probabilities
as relative frequencies, by dividing the frequency of a feature found in the corpus by the
total count of features of the same type in the corpus. When the relative frequency of a
feature f is used as a value, it is calculated for each language g as:

vCg(f) =
c(Cg, f)

lCF
g

(3)

Tran and Sharma (2005) calculated the relative frequencies of one-character prefixes, and
Windisch and Csink (2005) did the same for one-character suffixes.

Ng and Selamat (2009) calculated character frequency document frequency (“LFDF”)
values. Takçı and Güngör (2012) compared their own Inverse Class Frequency (“ICF”)
method with the Arithmetic Average Centroid (“AAC”) and the Class Feature Centroid
(“CFC”) feature vector updating methods. They performed experiments on nine languages
using the ECI/MC1 corpus (Armstrong-Warwick, Thompson, McKelvie, & Petitpierre,
1994), and found ICF to clearly outperform both the AAC and CFC updating methods.4 In
ICF a character appearing frequently only in some language gets more positive weight for
that language. The values differ from Inverse Document Frequency (“IDF”, Equation 8),
as they are calculated using also the frequencies of characters in other languages. Their
ICF-based vectors generally performed better than those based on AAC or CFC. Takçı and
Ekinci (2012) explored using the relative frequencies of characters with similar discriminat-
ing weights. Takçı and Güngör (2012) also used Mutual Information (“MI”) and chi-square
weighting schemes with characters.

Baldwin and Lui (2010a) compared the identification results of single characters with
the use of character bigrams and trigrams when classifying over 67 languages. Both bigrams
and trigrams generally performed better than unigrams. Jauhiainen (2010) also found that
the identification results from identifiers using just characters are generally worse than those
using character sequences.

4. For 100 character test documents ICF achieved an average F-score of 0.973, while AAC got 0.889, and
CFC 0.672.
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5.3 Character Combinations
In this section we consider the different combinations of characters used in the literature.
Character n-grams mostly consist of all possible characters in a given encoding, but can
also consist of only alphabetic or ideographic characters.

Co-occurrences Windisch and Csink (2005) calculated the co-occurrence ratios of any
two characters, as well as the ratio of consonant clusters of different sizes to the total number
of consonants. Sterneberg (2012) used the combination of every bigram and their counts
in words. van der Lee and Bosch (2017) used the proportions of question and exclamation
marks to the total number of the end of sentence punctuation as features with several
machine learning algorithms.

Franco-Salvador, Plotnikova, Pawar, and Benajiba (2017b) used FastText to generate
character n-gram embeddings (Joulin, Grave, Bojanowski, & Mikolov, 2017). Neural net-
work generated embeddings are explained in Section 5.6.

Vowel–consonant relationship Rau (1974) used the relative frequencies of vowels fol-
lowing vowels, consonants following vowels, vowels following consonants and consonants
following consonants. Dongen (2017) used vowel–consonant ratios as one of the 30 features
with Support Vector Machines (“SVMs”, Section 6.8), Decision Trees (“DTs”, Section 6.2),
and Conditional Random Fields (“CRFs”, Section 10.7). The vowel–consonant ratio ranked
14th in her analysis of the predictive strength of the features she used.

Character repetition Elfardy and Diab (2013) used the existence of word lengthening
effects and repeated punctuation as features. Banerjee et al. (2014) used the presence of
characters repeating more than twice in a row as a feature with simple scoring (Equa-
tion 17). Barman, Das, Wagner, and Foster (2014a) used more complicated repetitions
identified by regular expressions. Sikdar and Gambäck (2016) used letter and character
bigram repetition with a CRF. Martinc, Škrjanec, Zupan, and Pollak (2017) used the count
of character sequences with three or more identical characters (“character flood counts”)
as part of their feature selection with several machine learning algorithms. In the “PAN”
(Plagiarism Analysis, Authorship Identification, and Near-Duplicate Detection workshop)
2017 language variety identification shared task, they attained 3rd position out of 22 par-
ticipating teams (Rangel, Rosso, Potthast, & Stein, 2017b). They used FeatureUnion in
scikit-learn (Pedregosa et al., 2011) to determine the weights for different types of features,
and found character flood counts to rank higher than POS or punctuation trigrams and
word bigrams.

n-grams of characters of the same size Character n-grams are continuous sequences
of characters of length n. They can be either consecutive or overlapping. Consecutive
character bigrams created from the four character sequence door are do and or, whereas
the overlapping bigrams are do, oo, and or. Overlapping n-grams are most often used in the
literature. Overlapping produces a greater number and variety of n-grams from the same
amount of text.

Rau (1974) was the first to use combinations of any two characters. He calculated the
relative frequency of each bigram. Table 2 lists more recent articles where relative frequen-
cies of n-grams of characters have been used. The table shows how different lengths of
n-grams fared if they were compared with each other. The only conclusions that can be
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Article 1 2 3 4 5 6 7

Bošnjak, Rodrigues, and Sarmento (2013) ***
Zampieri, Gebre, and Diwersy (2013) * ** *** *
Das and Gambäck (2014) * * ** ** * * *
Indhuja, Indu, Sreejith, and Reghu Raj (2014) ***
Ljubešić and Kranjcić (2014) * *
Minocha and Tyers (2014) * * *** * *
Pethö and Mózes (2014) * * ** ***
Sadat, Kazemi, and Farzindar (2014a, 2014b) * *** *
Tan, Zampieri, Ljubešić, and Tiedemann (2014) * * * *** **
Zaidan and Callison-Burch (2014) * ** ***
Zampieri and Gebre (2014) ***
Franco-Salvador, Rangel, Rosso, Taulé, and Martít
(2015a)

***

Jauhiainen, Jauhiainen, and Lindén (2015a) * * * * * *** **...
King, Kübler, and Hooper (2015) ***
Panich (2015) * * * * * *
Zampieri, Gebre, Costa, and Genabith (2015) ***
Abainia, Ouamour, and Sayoud (2016) * * *
Castro, Souza, and de Oliveira (2016), Castro, Souza,
Vitório, Santos, and Oliveira (2017)

* * * * *** **

Giwa (2016) * * ** *** * * *
Hanani, Qaroush, and Taylor (2016) ***
Duvenhage, Ntini, and Ramonyai (2017) ***
Jourlin (2017) ***

Table 2: List of articles (2013–2017) where relative frequencies of character n-grams have
been used as features. The columns indicate the length of the n-grams used. “***”
indicates the empirically best n-gram length in that paper, and “**” the second-
best n-gram length. “*” indicates less effective n-gram lengths. “...” indicates that
even higher n-grams were used.

drawn from the results is that if character n-grams longer than one were used they usu-
ally performed better than unigrams, and character 7-grams performed worse than shorter
lengths. The relative performance of different n-gram lengths is hugely dependent on the
overall setting in which the evaluation was done.

Rau (1974) also used the relative frequencies of two character combinations which had
one unknown character between them, also known as gapped bigrams. As an example,
gapped bigrams from the word known would be ko, nw, and on. Seifart and Mundry (2015)
used a modified relative frequency of character unigrams and bigrams.

Character trigram frequencies relative to the word count were used by Vega and Bressan
(2001a), who calculated the values vC(f) as in Equation 4. Let T be the word-tokenized
segmentation of the corpus C of character tokens, then:

vC(f) =
c(C, f)

lT
(4)
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Article 2 3 4 5 6 7 8

Ramisch (2008) ** ** ** ***
You, Chen, Chu, Soong, and Wang (2008) ** *** ** * *
Stupar, Jurić, and Ljubešić (2011), Tiedemann and Ljubešić
(2012)

***

Goldszmidt, Najork, and Paparizos (2013) ***
Bar and Dershowitz (2014) ***
Brown (2014b) ***
Gamallo, Garcia, and Sotelo (2014) ***
Hurtado, Pla, Giménez, and Sanchis (2014) ***
Indhuja et al. (2014) * *
Leidig (2014) ***
Mendizabal, Carandell, and Horowitz (2014) * * ** *** ** ** **
Pethö and Mózes (2014) * * ** ***
Sadat et al. (2014a, 2014b) *** **
Ullman (2014) ***
Cianflone and Kosseim (2016) * * * * * ** ***
Martadinata, Trisedya, Manurung, and Adriani (2016) * ** ***
Samih and Maier (2016), Samih (2017) ***

Table 3: List of recent articles where Markovian character n-grams have been used as fea-
tures. The columns indicate the length of the n-grams used. “***” indicates the
best and “**” the second-best n-gram length as reported in the article in question.
“*” indicates less effective n-gram lengths.

where c(C, f) is the count of character trigrams f in C, and lT is the total word count in the
corpus. Later n-gram frequencies relative to the word count were used by Hamzah (2010)
for character bigrams and trigrams.

House and Neuburg (1977) divided characters into five phonetic groups and used a
Markovian method to calculate the probability of each bigram consisting of these phonetic
groups. In Markovian methods, the probability of a given character ui is calculated relative
to a fixed-size character context ui−n+1, ..., ui−1 in corpus C, as follows:

P (ui|ui−n+1,...,i−1) =
c(C, ui−n+1,...,i)

c(C, ui−n+1,...,i−1)
(5)

where ui−n+1,...,i−1 is an n-gram prefix of ui−n+1,...,i of length n − 1 . In this case, the
probability P (ui|ui−n+1,...,i−1) is the value vC(f), where f = ui−n+1,...,i, in the model O(C).
Ludovik and Zacharski (1999) used 4-grams with recognition weights which were derived
fromMarkovian probabilities. Table 3 lists some of the more recent articles where Markovian
character n-grams have been used. Markovian character 4- and 5-grams seem to perform
well in comparison to other lengths, except in the evaluations of Cianflone and Kosseim
(2016) where 8-grams fared the best.

Vitale (1991) was the first author to propose a full-fledged probabilistic language iden-
tifier. He defines the probability of a trigram f being written in the language g to be:

P (g|f) =
P (f |g)P (g)

∑

h∈G P (f |h)P (h)
(6)
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He considers the prior probabilities of each language P (g) to be equal, which leads to:

P (g|f) =
P (f |g)

∑

h∈G P (f |h)
(7)

Vitale (1991) used the probabilities P (g|f) as the values vCg(f) in the language models.
MacNamara, Cunningham, and Byrne (1998) used a list of the most frequent bigrams

and trigrams with logarithmic weighting. Chanda, Das, and Mazumdar (2016b) used a
sorted dictionary composed of the 400 most common character 4-grams with the out-of-place
method (Section 6.6) in word level language identification of English–Bengali code-mixed
text. Plaza Cagigós (2017) used a dictionary of character 3-grams.

Prager (1999) was the first to use direct frequencies of character n-grams as feature
vectors. He compared the use of character n-grams from 2 to 5 with the use of words.
Using words resulted in better identification results than using character bigrams (test
document sizes of 20, 50, 100 or 200 characters), but always worse than character 3-, 4- or
5-grams. However, the combined use of words and character 4-grams gave the best results of
all tested combinations, obtaining 95.6% accuracy for 50 character sequences when choosing
between 13 languages.

Vinosh Babu and Baskaran (2005) used Principal Component Analysis (“PCA”) to
map the bigrams in feature vectors representing languages onto a lower-dimensional space,
thus up-weighting the most discriminant features. Murthy and Kumar (2006) used the
most frequent and discriminating byte unigrams, bigrams, and trigrams among their fea-
ture functions. They define the most discriminating features as those which have the most
differing relative frequencies between the models of the different languages. Gottron and
Lipka (2010) tested n-grams from two to five using frequencies as feature vectors, frequency
ordered lists, relative frequencies, and Markovian probabilities. Adouane (2016) evaluated
different length character n-gram features with SVMs in Arabic variety identification. She
found that 5-grams were best with 88.74% accuracy, with 6-grams not far behind at 88.61%.
The combined use of 5- and 6-grams, however, fared even better gaining 89.02% accuracy.
Table 4 lists the more recent articles where the frequency of character n-grams have been
used as features. In the method column, “RF” refers to Random Forest (cf. Section 6.2),
“LR” to Logistic Regression (Section 6.7), “KRR” to Kernel Ridge Regression (Section 6.6),
“KDA” to Kernel Discriminant Analysis (Section 6.6), and “NN” to Neural Networks (Sec-
tion 6.9). Malmasi and Dras (2017) compare the performance of SVM classifiers using
character n-grams of size one to six, as well as words, and found that character 6-grams
perform the best on the dataset of the Discriminating between Similar Languages (“DSL”)
2016 shared task (Malmasi et al., 2016).

Giguet (1995) used the last two and three characters of open class words. Suzuki et al.
(2002) used an unordered list of distinct trigrams with the simple scoring method (Sec-
tion 6.3). Hayati (2004) used Fisher’s discriminant function to choose the 1000 most dis-
criminating trigrams. Bilcu and Astola (2006) used unique 4-grams of characters with
positive Decision Rules (Section 6.1). Ozbek, Rosenn, and Yeh (2006) used the frequencies
of uni-, bi- and trigrams of characters in words unique to a language in a NB baseline
language identifier. A NB classifier using morpheme and morphotactic features achieved a
slight improvement over the baseline.
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Article 1 2 3 4 5 6+ Method

Adouane (2016) * * * * * * SVM (cf. §6.8)
Al-Badrashiny and Diab (2016) * * * * * CRF (cf. §10.7)
Alshutayri et al. (2016) * * * SVM, DT (cf. §6.2)
Barbaresi (2016) * * * * * NB (cf. §6.5), XGBoost (cf.

§6.10), RF (cf. §6.2)
Ciobanu and Dinu (2016) * * * * LR (cf. §6.7)
Giwa (2016) * * * * SVM
Goutte and Léger (2016) * SVM, NB
Ionescu and Popescu (2016) * * * * * KRR (cf. §6.6), KDA (cf. §6.6)
Lamabam and Chakma (2016) * CRF
Criscuolo and Aluísio (2017) * NB
Malmasi and Dras (2017) * * * * * * SVM
Malmasi (2017) * SVM
Mathur, Misra, and Budur (2017) * * * * * * NB, LR
Oliveira and Neto (2017) * * * * SVM
Plaza Cagigós (2017) * NB, SVM, DT, NN (cf. §6.9)
Rangel, Franco-Salvador, and Rosso
(2017a)

* SVM, NB, NN, ...

Schaetti (2017) * NN

Table 4: Recent papers (2016–) where the frequency of character n-grams has been used
to generate feature vectors. The columns indicate the length of the n-grams used,
and the machine learning method(s) used. The relevant section numbers for the
methods are mentioned in parentheses. “...” indicates that even more methods
were used.

Li and Momoi (2001) divided possible character bigrams into those that are commonly
used in a language and to those that are not. They used the ratio of the commonly used
bigrams to all observed bigrams to give a confidence score for each language. Xafopoulos,
Kotropoulos, Almpanidis, and Pitas (2004) used the difference between the ISO Latin-1
code values of character bigrams as well as gapped character bigrams.

Artemenko and Shramko (2005) used the IDF and the transition probability of trigrams.
They calculated the IDF values vCg(f) of trigrams f for each language g, as in Equation 8,
where c(Cg, f) is the number of trigrams f in the corpus of the language g and df(CG, f)
is the number of languages in which the trigram f is found, where CG is the language-
segmented training corpus with each language as a single segment.

vCg(f) =
c(Cg, f)

df(CG, f)
(8)

df is defined as:

df(CG, f) =
∑

g∈G

{

1 , if c(Cg, f) > 0
0 , otherwise (9)
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Malmasi, Refaee, and Dras (2015) used n-grams from one to four, which were weighted with
“TF-IDF” (Term Frequency–Inverse Document Frequency). TF-IDF was calculated as:

vCg(f) = c(Cg, f) log
lG

df(CG, f)
(10)

TF-IDF weighting or close variants have been widely used for LI. Thomas and Verma (2007)
used “CF-IOF” (Class Frequency-Inverse Overall Frequency) weighted 3- and 4-grams.

Jhamtani, Bhogi, and Raychoudhury (2014) used the logarithm of the ratio of the counts
of character bigrams and trigrams in the English and Hindi dictionaries as one of the features
in word level language identification in code-switched texts. Zamora, Bruzón, and Bueno
(2014) used a feature weighting scheme based on mutual information (“MI”). They also
tried weighting schemes based on the “GSS” (Galavotti, Sebastiani, and Simi) and “NGL”
(Ng, Goh, and Low) coefficients, but using the MI-based weighting scheme proved the best
in their evaluations when they used the sum of values method (Equation 18). Martinc
et al. (2017) used punctuation trigrams as one of their features with logistic regression. In
punctuation trigrams, the first character has to be a punctuation mark (but not the other
two characters). Saharia (2017) used consonant bi- and trigrams which were generated from
words after the vowels had been removed in identifying the language of individual words in
English–Assamese mixed-language social network messages.

Character n-grams of differing sizes The language models mentioned earlier consisted
only of n-grams of the same size n. If n-grams from one to four were used, then there were
four separate language models. Cavnar and Trenkle (1994) created ordered lists of the
most frequent n-grams for each language and used them with the rank-order method (see
Section 6.6). Singh and Goyal (2014) used similar n-gram lists with symmetric cross-entropy
in a tweet language identification shared task (Zubiaga et al., 2014), but their results were
inferior to the best results of the other six participating teams.

Russell and Lapalme (2003) used a Markovian method to calculate the probability of
byte trigrams interpolated with byte unigrams. Their identifier reached a precision of 72%
for 10 character test texts when distinguishing between 27 languages. Vatanen, Väyrynen,
and Virpioja (2010) created a language identifier based on character n-grams of different
sizes over 281 languages, and obtained an identification accuracy of 62.8% for extremely
short samples (5–9 characters). Their language identifier was used or evaluated by Ro-
drigues (2012), Maier and Gómez-Rodríguez (2014), and Jauhiainen, Lindén, and Jauhi-
ainen (2017b). Rodrigues (2012) managed to improve the identification results by feeding
the raw language distance calculations into an SVM.

Kikui (1996) used up to the four last characters of words and calculated their relative
frequencies. Ahmed, Cha, and Tappert (2004) used frequencies of 2–7-grams, normalized
relative to the total number of n-grams in all the language models as well as the current lan-
guage model. Jauhiainen (2010) compared the use of different sizes of n-grams in differing
combinations, and found that combining n-grams of differing sizes resulted in better identi-
fication scores. Lui and Baldwin (2011, 2012, 2014) used mixed length domain-independent
language models of byte n-grams from one to three or four.

Mixed length language models were also generated by Brown (2012) and later by Brown
(2013, 2014b), who used the most frequent and discriminating n-grams longer than two
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bytes, up to a maximum of 12 bytes, based on their weighted relative frequencies. K of the
most frequent n-grams were extracted from training corpora for each language, and their
relative frequencies were calculated. In the tests reported in (Brown, 2013), K varied from
200 to 3,500 n-grams.

Stensby, Oommen, and Granmo (2010) used mixed-order n-gram frequencies relative to
the total number of n-grams in the language model. Sterneberg (2012) used frequencies of
n-grams from one to five and gapped 3- and 4-grams as features with an SVM. King et al.
(2014) used character n-grams as a backoff from Markovian word n-grams. Shrestha (2014)
used the frequencies of word initial n-grams ranging from 3 to the length of the word minus
1. Ács, Grad-Gyenge, Bruno, and Oliveira (2015) used the most relevant n-grams selected
using the absolute value of the Pearson correlation. Mandal, Banerjee, Naskar, Rosso, and
Bandyopadhyay (2015) used only the first 10 characters from a longer word to generate the
n-grams, while the rest were ignored. Qiao and Lévy (2015) used only those n-grams which
had the highest TF-IDF scores. Bestgen (2017) used character n-grams weighted by means
of the “BM25” (Best Match 25) weighting scheme.

Table 5 lists recent articles where character n-grams of differing sizes have been used.
“LR” in the methods column refers to Logistic Regression (Section 6.6), “LSTM RNN” to
Long Short-Term Memory Recurrent Neural Networks (Section 6.9), and “DAN” to Deep
Averaging Networks (Section 6.9). Hanani, Qaroush, and Taylor (2017) used byte n-grams
up to length 25. In the evaluations of Jauhiainen et al. (2017b), the method of Vatanen et al.
(2010) was the best method for texts of 20 characters or less when distinguishing between
285 languages in an out-of-domain setting. Malmasi and Zampieri (2017a) used a Random
Forest meta-classifier ensemble to combine the results of separate SVMs using character n-
grams from one to eight, words, and i-Vectors in Arabic Dialect Identification (ADI) shared
task at the VarDial Evaluation Campaign 2017 (Zampieri et al., 2017). Sanchez-Perez,
Markov, Gómez-Adorno, and Grigori (2017) evaluated different combinations of character
n-grams as well as their combinations with words in discriminating between Spanish variants
using the dataset from the 2016 edition of the DSL shared task (Malmasi et al., 2016). They
used Liblinear SVM in all of their experiments (Fan, Chang, Hsieh, Wang, & Lin, 2008).
Their evaluations indicate that higher order character n-grams perform better than lower
order n-grams. Their best results were achieved using character n-grams of length two to
eight, together with word unigrams and bigrams.

Consonant or vowel sequences Sterneberg (2012) used consonant sequences generated
from words as one of the features in a SVM classifier. He does not explain how important the
consonant sequences were when compared with the other features he used such as character
n-grams and words. Anand (2014) used the presence of vowel sequences as a feature with
a NB classifier (see Section 6.5) when distinguishing between English and transliterated
Indian languages.
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Article 1 2 3 4 5 6 7 8+ Method

Adouane, Semmar, and Johansson (2016a,
2016c)

* * * SVM (cf. §6.8)

Adouane, Semmar, and Johansson
(2016b), Adouane, Semmar, Johansson,
and Bobicev (2016d)

* * SVM

Balažević, Braun, and Müller (2016) * * * * Product (cf. §6.5),
SVM, LR (cf. §6.7),
Sum (cf. §6.4)

Çöltekin and Rama (2016) * * * * * * SVM
Eldesouki, Dalvi, Sajjad, and Darwish
(2016)

* * * * SVM, LR, NN (cf.
§6.9), NB (cf. §6.5)

He, Zhang, Zhao, Li, and Yan (2016) * * * * LR (cf. §6.6)
Jauhiainen, Lindén, and Jauhiainen (2016) * * * * * * * * HeLI (cf. §6.5)
Malmasi and Zampieri (2016, 2017b) * * * * * * SVM
Piergallini, Shirvani, Gautam, and
Chouikha (2016a)

* * * * LR

Piergallini, Shirvani, Gautam, and
Chouikha (2016b)

* * * LR

Radford and Gallé (2016) * * * * LR
Samih, Maharjan, Attia, Kallmeyer, and
Solorio (2016)

* * LSTM RNN (cf.
§6.9)

Xu, Wang, and Li (2016) * * * SVM
Alrifai, Rebdawi, and Ghneim (2017) * * * * * * SVM
Barbaresi (2017) * * * * * * NB
Bestgen (2017) * * * * * * * * SVM
Clematide and Makarov (2017) * * * * * * NB, CRF (cf. §10.7),

SVM
Espichán-Linares and Oncevay-Marcos
(2017)

* * SVM, NB, ...

Franco-Salvador et al. (2017b) * * * * DAN (cf. §6.9)
Gamallo, Pichel, and Alegria (2017) * * * Perplexity (cf. §6.6)
Gómez-Adorno, Markov, Baptista,
Sidorov, and Pinto (2017)

* * * NB, SVM

Hanani et al. (2017) * * * SVM, NB, LR, DT
(cf. §6.2)

Jauhiainen, Lindén, and Jauhiainen
(2017a)

* * * * * * * * HeLI

Jauhiainen et al. (2017b) * * * * * * HeLI
Malmasi and Dras (2017) * * * * * * SVM
Malmasi and Zampieri (2017a) * * * * * * * * SVM
Mathur et al. (2017) * * * * RNN
Miura, Taniguchi, Taniguchi, Misawa, and
Ohkuma (2017)

* * * * * * SVM

Sanchez-Perez et al. (2017) * * * * * * SVM
Tellez, Miranda-Jiménez, Graff, and
Moctezuma (2017)

* * * * * SVM

Espichán-Linares and Oncevay-Marcos
(2018)

* * * SVM, NB, ...

Table 5: List of articles (2016-) where character n-grams of differing sizes have been used as features.
The numbered columns indicate the length of the n-grams used. The method column
indicates the method used with the n-grams. The relevant section numbers are mentioned
in parentheses. “...” indicates that even more methods were used.
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Unique character combinations Henrich (1989) and Vitale (1991) used character com-
binations (of different sizes) that either existed in only one language or did not exist in one
or more languages. Vitale (1991) used them with Decision Rules (Section 6.1) in determin-
ing the etymological grouping of proper names. An additional trigram analysis phase was
necessary for those names not identified by Decision Rules.

5.4 Morphemes, Syllables and Chunks

Morphemes Giguet (1998) used the suffixes of lexical words derived from untagged cor-
pora. El-Shishiny et al. (2004) used prefixes and suffixes determined using linguistic knowl-
edge of the Arabic language. Marcadet, Fischer, and Waast-Richard (2005) used suffixes
and prefixes in rule-based LI. Ozbek et al. (2006) used morphemes and morpheme trigrams
(morphotactics) constructed by Creutz’s algorithm (Creutz, 2003). Hammarström (2007)
used prefixes and suffixes constructed by his own algorithm, which was later also used by
Ceylan and Kim (2009). Romsdorfer and Pfister (2007) used morpheme lexicons in LI.
Ceylan and Kim (2009) compared the use of morphological features with the use of variable
sized character n-grams. When choosing between ten European languages, the morpholog-
ical features obtained only 26.0% accuracy while the n-grams reached 82.7%. Yeong and
Tan (2010) lemmatized Malay words in order to get the base forms. Lu and Mohamed
(2011) used a morphological analyzer of Arabic. Zampieri et al. (2013) used morphological
information from a part-of-speech (POS) tagger. Anand (2014) and Banerjee et al. (2014)
used manually selected suffixes as features. Bekavac, Kocijan, and Tadić (2014) created
morphological grammars to distinguish between Croatian and Serbian. Darwish, Sajjad,
and Mubarak (2014) used morphemes created by Morfessor, but they also used manually
created morphological rules. Gamallo et al. (2014) used a suffix module containing the
most frequent suffixes. Dutta, Saha, Banerjee, and Naskar (2015) and Mandal et al. (2015)
used word suffixes as features with CRFs. Barbaresi (2016) used an unsupervised method
to learn morphological features from training data. The method collects candidate affixes
from a dictionary built using the training data. If the remaining part of a word is found
from the dictionary after removing a candidate affix, the candidate affix is considered to
be a morpheme. Barbaresi (2016) used 5% of the most frequent affixes in language identi-
fication. Gómez-Adorno et al. (2017) used character n-grams classified into different types,
which included prefixes and suffixes. Table 6 lists some of the more recent articles where
prefixes and suffixes collected from a training corpus has been used for LI.

Syllables and syllable n-grams Chen, You, Chu, Zhao, and Wang (2006) used trigrams
composed of syllables. Yeong and Tan (2010) used Markovian syllable bigrams for LI
between Malay and English. Later Yeong and Tan (2011) also experimented with syllable
uni- and trigrams. Murthy and Kumar (2006) used the most frequent as well as the most
discriminating Indian script syllables, called aksharas. They used single aksharas, akshara
bigrams, and akshara trigrams. Syllables would seem to be especially apt in situations
where distinction needs to be made between two closely-related languages.

Chunks, chunk n-grams and n-grams of n-grams Chunks are certain combinations
of characters that are deemed to have a special meaning in a language, such as syllables (You
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Reference 1 2 3 4 Method

He et al. (2016) * * * LR (cf. §6.6)
Piergallini et al. (2016a) * * * * LR
Samih and Maier (2016), Samih (2017) * * * CRF (cf. §10.7)
Schulz and Keller (2016) * * * CRF
Shrestha (2016) * * * * CRF
Sikdar and Gambäck (2016) * * * * CRF
Xia (2016) * * * CRF
Clematide and Makarov (2017) * * * CRF
Gómez-Adorno et al. (2017) * NB (cf. §6.5), SVM (cf. §6.8)
Martinc et al. (2017) * SVM, LR, RF (cf. §6.2), ...

Table 6: References (2016-) where prefixes and suffixes collected from a training corpus
have been used for LI. The columns indicate the length of the prefixes and suffixes.
The method column indicates the method used. The relevant section numbers are
mentioned in parentheses. “...” indicates that even more methods were used.

et al., 2008).5 You et al. (2008) used the trigrams of non-syllable chunks that were based on
MI. Yeong and Tan (2010) experimented also with Markovian bigrams using both character
and grapheme bigrams, but the syllable bigrams proved to work better. Graphemes in this
case are the minimal units of the writing system, where a single character may be composed
of several graphemes (e.g. in the case of the Hangul or Thai writing systems). Later, Yeong
and Tan (2011) also used grapheme uni- and trigrams. Yeong and Tan (2011) achieved their
best results combining word unigrams and syllable bigrams with a grapheme back-off.

Elfardy, Al-Badrashiny, and Diab (2014) used the MADAMIRA toolkit (Pasha et al.,
2014) for D3 decliticization and then used D3-token 5-grams. D3 decliticization is a way
to preprocess Arabic words presented by Habash and Sadat (2006). They evaluated the
performance of an otherwise similar language identifier using character 5-grams, and found
that the one using D3-token 5-grams performed somewhat better (F-score of 77.6 vs. 73.7)
over the development set of the shared task at the EMNLP 2014 workshop on Computational
Approaches to Code Switching (Solorio et al., 2014).

Graphones are sequences of characters linked to sequences of corresponding phonemes.
They are automatically deduced from a bilingual corpus which consists of words and their
correct pronunciations using Joint Sequence Models (“JSM”) (Bisani & Ney, 2008). Giwa
and Davel (2014) used language tags instead of phonemes when generating the graphones
and then used Markovian graphone n-grams from 1 to 8 in LI. In word-level LI between
four South African languages, their identifier obtained an accuracy of 97.2%.

5.5 Words

Position of words Kumar, Kumar, and Soman (2015) used the position of the current
word in word-level LI. The position of words in sentences has also been used as a feature in
code-switching point prediction by Dongen (2017).

5. They can be considered to be variable-length character n-grams that have been selected using certain
criteria.
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Word characteristics
Frequency of each possible character
Number of different characters
Number of different vowels
Whether the first and last characters were consonants or vowels
Number of character twins in two categories: vowel-vowel or consonant-consonant
Number of diphthongs
Overall number of syllables as well as the number of syllables with one, two or three characters
Number of characters in the first and last syllables
Number of syllables by type: AB, BA, ALB, BAI or BAL
(A, I stand for vowels and B, L stand for consonants)

Table 7: Word characteristics used by Mustonen (1965).

The characteristics of words Mustonen (1965) used the characteristics of words as
parts of discriminating functions. The characteristics used by Mustonen (1965) are listed
in Table 7. Barman, Wagner, Chrupala, and Foster (2014b) used string edit distance and
n-gram overlap between the word to be identified and words in dictionaries. Similarly,
Jhamtani et al. (2014) used a modified edit distance, which considers common spelling
substitutions when Hindi is written using Latin characters. Das and Gambäck (2013) used
the Minimum Edit Distance (“MED”).

Basic dictionary Basic dictionaries are unordered lists of words belonging to a language.
Basic dictionaries do not include information about word frequency, and are independent
of the dictionaries of other languages. Vitale (1991) used a dictionary for LI as a part of his
speech synthesizer. Each word in a dictionary had only one possible “language”, or pronun-
ciation category. More recently, a basic dictionary has been used for LI by Adouane and
Dobnik (2017), Dongen (2017), and Duvenhage et al. (2017). The lexicon based identifier
used by Adouane and Dobnik (2017) achieved an accuracy of 81.98% in word level LI when
distinguishing between 6 languages and 3 additional categories.6 The test texts were mul-
tilingual documents mainly written in Algerian Arabic; the accuracy for the majority-class
baseline – that is every word identified as Algerian Arabic – was 55.10%.

Dictionary of unique words Unique word dictionaries include only those words of the
language, that do not belong to the other languages targeted by the language identifier.
Kulikowski (1991) used unique short words (from one to three characters) to differentiate
between languages. Recently, a dictionary of unique words was used for LI by Adouane
(2016), Guellil and Azouaou (2016), and Martinc et al. (2017). Language variety specific
word lists were part of those features evaluated by Martinc et al. (2017) with FeatureUnion
in scikit-learn; they had equal weight to the character flood counts mentioned in Section 5.3.

Specific classes of words Giguet (1995) used exhaustive lists of function words collected
from dictionaries. Wechsler, Páraic, and Schäuble (1997) used stop words – that is non-
content or closed-class words – as a training corpus. Similarly, Lins and Gonçalves (2004)
used words from closed word classes, and Stupar et al. (2011) used lists of function words.

6. The languages and categories were: Algerian Arabic, modern standard Arabic, French, Berber, English,
borrowings, named entities, and sounds and interjections.
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Al-Badrashiny, Elfardy, and Diab (2015) used a lexicon of Arabic words and phrases that
convey modality. Common to these features is that they are determined based on linguistic
knowledge.

Discriminating words Rehůřek and Kolkus (2009) used the most relevant words for each
language. Babu and Kumar (2010) used unique or nearly unique words. Franco-Salvador
et al. (2015a) used Information Gain Word-Patterns (“IG-WP”) to select the words with
the highest information gain.

Most common words Souter, Churcher, Hayes, Hughes, and Johnson (1994) made an
(unordered) list of the most common words for each language, as, more recently, did Caza-
mias, Dixit, and Marek (2015), Panich (2015), and Abainia et al. (2016). Pavan, Tandon,
and Varma (2010) encoded the most common words to root forms with the Soundex algo-
rithm.

Word frequency Mather (1998) collected the frequencies of words into feature vectors.
Ács et al. (2015) used TF-IDF scores of words to distinguish between language groups.
Recently, the frequency of words has also been used for LI by Clematide and Makarov
(2017) and Gómez-Adorno et al. (2017). Gómez-Adorno et al. (2017) used the frequency
of words and character n-grams as features in the DSL 2017 shared task (Zampieri et al.,
2017). Their two-staged language identifier using SVM in language group identification and
NB within groups achieved 6th position, with an accuracy of 91.46%.

The relative frequency of words Poutsma (2002) and Zhdanova (2002) were the first
to use relative frequencies of words in LI. Jauhiainen (2010) found that combining the use of
character n-grams with the use of words provided the best results. His language identifier
obtained 99.8% average recall for 50 character sequences for the 10 evaluated languages
(choosing between the 13 languages known by the language identifier) when using character
n-grams from 1 to 6 combined with words. Tiedemann and Ljubešić (2012) calculated
the relative frequency of words over all the languages. Artemenko and Shramko (2005)
calculated the IDF of words, following the approach outlined in Equation 8. Xu et al. (2016)
calculated the Pointwise Mutual Information (“PMI”) for words and used it to group words
to Chinese dialects or dialect groups. Recently, the relative frequency of words has also
been used for LI by Jauhiainen et al. (2017a, 2017b) and Jourlin (2017)

Short words Grefenstette (1995) used the relative frequency of words with less than six
characters. Recently, Panich (2015) also used short words, as did Simaki et al. (2017). The
Relief feature selection algorithm used by Simaki et al. (2017) to rank the importance of
different features placed short words (of less than three characters) at 8th position out of
the 31 ranked features.

Search engine queries Alex (2005) used the relative frequency calculated from Google
searches. Google was later also used by You et al. (2008) and Yang and Liang (2010).

Word probability maps Scherrer and Rambow (2010) created probability maps for
words for German dialect identification between six dialects. In a word probability map,
each predetermined geographic point has a probability for each word form. Probabilities
were derived using a linguistic atlas and automatically-induced dialect lexicons.
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Morphological analyzers and spellchecking Pienaar and Snyman (2010) used com-
mercial spelling checkers, which utilized lexicons and morphological analyzers. The language
identifier of Pienaar and Snyman (2010) obtained 97.9% accuracy when classifying one-line
texts between 11 official South African languages. Elfardy and Diab (2012) used the AL-
MORGEANA analyzer (Habash, 2007) to check if the word had an analysis in Modern
Standard Arabic. They also used sound change rules to use possible phonological variants
with the analyzer. Joshi, Bhatt, and Patel (2013) used spellchecking and morphological
analyzers to detect English words from Hindi–English mixed search queries. Akosu and
Selamat (2014) used spelling checkers to distinguish between 15 languages, extending the
work of Pienaar and Snyman (2010) with dynamic model selection in order to gain bet-
ter performance. Shrestha (2014) used a similarity count to find if mystery words were
misspelled versions of words in a dictionary.

Word clusters Pham and Tran (2003) used an “LBG-VQ” (Linde, Buzo & Gray algo-
rithm for Vector Quantization) approach to design a codebook for each language (Linde,
Buzo, & Gray, 1980). The codebook contained a predetermined number of codevectors.
Each codeword represented the word it was generated from as well as zero or more words
close to it in the vector space.

5.6 Word Combinations

Sentence length Elfardy and Diab (2013) used the number of words in a sentence with
NB. van der Lee and Bosch (2017) and Simaki et al. (2017) used the sentence length calcu-
lated in both words and characters with several machine learning algorithms. The feature
selection algorithm used by Simaki et al. (2017) placed the sentence length calculated in
characters in 14th position, or 29th position when the sentence length was calculated in
words (out of the 31 highest-ranking features).

Statistics of words van der Lee and Bosch (2017) used the ratio to the total number of
words of: once-occurring words, twice-occurring words, short words, long words, function
words, adjectives and adverbs, personal pronouns, and question words. They also used the
word-length distribution for words of 1–20 characters. Together with a variety of other
features, their language identifier was able to distinguish between the Netherlandic and the
Flemish Dutch varieties with 88% accuracy.
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Article 1 2 3 4 5 6 7 Method

Bhattu and Ravi (2015) *** *** *** *** *** LR (cf. §6.6)
Bobicev (2015) *** PPM-C (cf. §5.7)
Ghosh, Ghosh, and Das (2015) *** *** *** *** *** *** *** CRF (cf. §10.7)
Huang (2015) *** * * Product (cf. §6.5)
Qiao and Lévy (2015) * * SVM (cf. §6.8)
Raghavi, Chinnakotla, and Shrivas-
tava (2015)

*** *** *** *** *** *** *** SVM

Shah et al. (2015) *** *** *** *** SVM
Adouane et al. (2016c, 2016a) *** ** ** * * SVM
Adouane (2016) *** *** ** * NB (cf. §6.5), SVM,

LR, kNN (cf. §6.11),
DT (cf. §6.2)

Barbaresi (2016) *** RF (cf. §6.2)
Eldesouki et al. (2016) *** * * SVM, LR, NN (cf.

§6.9), NB
Franco-Penya and Sanchez (2016) * *** NB, SVM
Hanani et al. (2016) *** *** *** LSTM RNN (cf.

§6.9)
Samih and Maier (2016), Samih
(2017)

*** *** *** *** *** *** *** CRF

Samih et al. (2016) *** *** *** *** *** LSTM RNN - CRF
Schulz and Keller (2016) *** *** *** *** *** CRF
Sikdar and Gambäck (2016) *** *** *** *** *** CRF
Xia (2016) *** *** *** CRF
Zampieri, Malmasi, Sulea, and
Dinu (2016)

*** ** SVM

Alrifai et al. (2017) * * * SVM
Criscuolo and Aluísio (2017) *** *** NN (cf. §6.9)
Gamallo et al. (2017) *** *** *** Perplexity (cf. §6.6)
Hanani et al. (2017) *** *** * SVM
Kheng, Léa, and Granitzer (2017) *** *** *** NB, SVM, RF
van der Lee and Bosch (2017) AdaBoost (cf. §6.11),

DT, SVM, NB, ...
Mathur et al. (2017) ** *** * * * * * NB, LR
Mendoza and Mendelsohn (2017) *** Product
Miura et al. (2017) *** *** SVM
Poulston, Waseem, and Stevenson
(2017)

*** *** LR

Rangel et al. (2017a) *** SVM, NB, NN, ...
Rijhwani, Sequeira, Choudhury,
Bali, and Maddila (2017)

*** *** *** HMM (cf. §6.10)

Sanchez-Perez et al. (2017) *** *** SVM
Tellez et al. (2017) *** *** *** SVM

Table 8: References (2015–) where word n-grams have been used as features. The numbered
columns indicate the length of the n-grams used. “***” indicates the best and
“**” the second best n-gram length, as evaluated in the article in question. “*”
indicates less effective n-gram lengths. Identical numbers of asterisks indicate that
there was no clear order of effectiveness, or that all the n-gram lengths were used
simultaneously. The method column indicates the method used. The relevant
section numbers are mentioned in parentheses. “...” indicates that even more
methods were used.
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Word n-grams Marcadet et al. (2005) used at least the previous and following words
with manual rules in word-level LI for text-to-speech synthesis. Rosner and Farrugia
(2007) used Markovian word n-grams with a Hidden Markov Model (“HMM”) tagger (Sec-
tion 6.10). Table 8 lists more recent articles where word n-grams or similar constructs
have been used. “PPM” in the methods column refers to Prediction by Partial Matching
(Section 5.7), and “kNN” to k Nearest Neighbor classification (Section 6.11). In their final
model, Mathur et al. (2017) ended up using only character n-grams and word unigrams,
and did not use the word n-grams they experimented with in their preliminary experi-
ments. Sanchez-Perez et al. (2017) evaluated different combinations of word and character
n-grams with SVMs. The best combination for language variety identification was using
all the features simultaneously. Tellez et al. (2017) used normal and gapped word n-grams
and character n-grams simultaneously.

Singh (2006) used word trigrams simultaneously with character 4-grams. He concluded
that word-based models can be used to augment the results from character n-grams when
they are not providing reliable identification results. Table 9 lists articles where both
character and word n-grams have been used together. “CBOW” in the methods column
refer to Continuous Bag of Words neural network (Section 6.9), and “MIRA” to Margin
Infused Relaxed Algorithm (Section 6.8).

Co-occurrences of words Wan (2016) uses word embeddings consisting of Positive
Pointwise Mutual Information (“PPMI”) counts to represent each word type. Then they
use Truncated Singular Value Decomposition (“TSVD”) to reduce the dimension of the
word vectors to 100. Elgabou and Kazakov (2017) used k-means clustering when building
dialectal Arabic corpora. Kheng et al. (2017) used features provided by Latent Semantic
Analysis (“LSA”) with SVMs and NB. LSA based features were used together with word
n-grams in identifying Arabic and Spanish varieties with a SVM classifier as part of the lan-
guage variety identification shared task at PAN 2017 (Rangel et al., 2017b). Their language
identifier attained 16th position at the shared task.

Mikolov, Chen, Corrado, and Jeffrey (2013) present two models, the CBOW model and
the continuous skip-gram model. The CBOW model can be used to generate a word given
its context and the skip-gram model can generate the context given a word. The projection
matrix, which is the weight matrix between the input layer and the hidden layer, can be
divided into vectors, one vector for each word in the vocabulary. These word-vectors are
also referred to as word embeddings. The embeddings can be used as features in other
tasks after the neural network has been trained. Lin, Ammar, Levin, and Dyer (2014),
Chang and Lin (2014), Franco-Salvador et al. (2015a), Franco-Salvador, Rosso, and Rangel
(2015b), Jain (2015), Franco-Salvador, Kondrak, and Rosso (2017a), Franco-Salvador et al.
(2017b), and Rangel et al. (2017a) used word embeddings generated by the word2vec skip-
gram model (Mikolov et al., 2013) as features in LI. Poulston et al. (2017) used word2vec
word embeddings and k-means clustering. Akhtyamova, Cardiff, and Ignatov (2017), Samih
(2017), and Kodiyan, Hardegger, Neuhaus, and Cieliebak (2017) also used word embeddings
created with word2vec. Kodiyan et al. (2017) used word embeddings with GRUs, and
attained 12th place in language variety identification in the Twitter shared task at PAN
2017 (Rangel et al., 2017b).
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Article 1 2 3 4 5 6 7 char Method

Singh (2006, 2010) ✓ 1-4 similarity measures (cf.
§6.6)

Das and Gambäck (2013, 2014) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1-7 SVM (cf. §6.8)
Nguyen and Dogruöz (2013) ✓ ✓ ✓ 1-5 LR (cf. §6.6), CRF (cf.

§10.7)
Chittaranjan, Vyas, Bali, and
Choudhury (2014)

✓ ✓ ✓ 1-5 CRF

Darwish et al. (2014) ✓ ✓ ✓ 1-5 RF (cf. §6.2)
Goutte, Léger, and Carpuat (2014) ✓ ✓ 2-6 SVM, NB-like (cf. §6.5)
Gupta, Kumar, and Ekbal (2014) ✓ ✓ ✓ ✓ ✓ 1-3 RF, SVM, DT (cf. §6.2),

...
King, Radev, and Abney (2014) ✓ ✓ 1-5 NB, LR, SVM
Ullman (2014) ✓ ✓ 1-4 NB-like
Ács et al. (2015) ✓ ✓ 1-4 LR, SVM
Chang and Lin (2014) ✓ ✓ ✓ 2-3 RNN (cf. §6.9)
Goutte and Léger (2015) ✓ ✓ 2-6 SVM, NB-like
Jain (2015) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2-4 CRF
Malmasi and Dras (2015a) ✓ ✓ 1-3 SVM
Malmasi and Dras (2015b) ✓ ✓ 1-6 SVM
Malmasi et al. (2015) ✓ ✓ 1-4 SVM
Castro et al. (2016) ✓ ✓ 2-7 Product (cf. §6.5)
Zirikly, Desmet, and Diab (2016) ✓ ✓ ✓ 1-6 LR
Basile et al. (2017) ✓ ✓ 3-6 SVM
Castro et al. (2017) ✓ ✓ 2-7 NB, LR, SVM, RF
Ciobanu, Zampieri, Malmasi, and
Dinu (2017)

✓ ✓ 1-6 SVM

Çöltekin and Rama (2017) ✓ ✓ ✓ 1-7+ SVM
Markov, Gómez-Adorno, and
Sidorov (2017)

✓ ✓ ✓ 3-7 SVM, NB

Martinc et al. (2017) ✓ ✓ 4 SVM, LR, RF, ...
Medvedeva, Kroon, and Plank
(2017)

✓ ✓ ✓ ✓ 1-6 SVM, CBOW (cf. §6.9)

Mendoza and Mendelsohn (2017) ✓ ✓ 1-6 SVM
Pla and Hurtado (2017) ✓ ✓ ✓ ✓ 1-6 SVM
Williams and Dagli (2017) ✓ ✓ ✓ ✓ ✓ 1-5 MIRA (cf. §6.8)

Table 9: List of articles where word and character n-grams have been used as features. The
numbered columns indicate the length of the word n-grams and char-column the
length of character n-grams used. The method column indicates the method used.
The relevant section numbers are mentioned in parentheses. “...” indicates that
even more methods were used.

Çöltekin and Rama (2016) trained both character and word embeddings using the Fast-
Text text classification method (Joulin et al., 2017) on the DSL 2016 shared task, where it
reached low accuracy when compared with the other methods. Xia (2016) used FastText
to train word vectors including subword information. Then he used these word vectors
together with some additional word features to train a CRF-model which was used for
code-switching detection.
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Barman et al. (2014b) extracted features from the hidden layer of a Recurrent Neural
Network (“RNN”) that had been trained to predict the next character in a string. They
evaluated several features with a SVM classifier, and found the RNN-extracted features
alone were far inferior to character n-grams. However, the RNN features slightly improved
the results when they were added as additional information to the classifier on top of the
other features.

Syntax and part-of-speech (“POS”)-tags Alex (2005) evaluated methods for de-
tecting foreign language inclusions and experimented with a Conditional Markov Model
(“CMM”) tagger, which had performed well on Named Entity Recognition (“NER”) (Klein,
Smarr, Nguyen, & Manning, 2003). Alex (2005) was able to produce the best results by in-
corporating her own English inclusion classifier’s decision as a feature for the tagger, and not
using the tagger’s POS-tags. Romsdorfer and Pfister (2007) used syntactic parsers together
with dictionaries and morpheme lexicons. Lui and Cook (2013) used n-grams composed of
POS-tags and function words. Piergallini et al. (2016a) used labels from a NER system,
cluster prefixes, and Brown clusters (Brown, deSouza, Mercer, Della Pietra, & Lai, 1992).

Adouane and Dobnik (2017) used POS-tag n-grams from one to three and Bestgen
(2017) from one to five, and Martinc et al. (2017) used POS-tag trigrams with TF-IDF
weighting. POS-tag trigrams were part of the features evaluated by Martinc et al. (2017)
for Spanish variety identification, where they were found to have less importance than
character repetition and lists of unique words (as mentioned earlier). Schulz and Keller
(2016), Basile et al. (2017), van der Lee and Bosch (2017), and Simaki et al. (2017) also
recently used POS-tags. Schulz and Keller (2016) used POS-tags together with character
n-gram prefixes and suffixes in word level language identification in Latin–Middle English
mixed text. Their CRF based classifier was able to attain a macro-averaged F-score of 67.4.

Franco-Salvador et al. (2015a) used POS-tags with emotion-labeled graphs in Spanish
variety identification. In emotion-labeled graphs, each POS-tag was connected to one or
more emotion nodes if a relationship between the original word and the emotion was found in
the Spanish Emotion Lexicon. They also used POS-tags with IG-WP. Elfardy et al. (2014)
used the MADAMIRA tool for morphological analysis disambiguation. The polySVOX
text analysis module described by Romsdorfer and Pfister (2007) uses two-level rules and
morpheme lexicons on the sub-word level and separate definite clause grammars (DCGs) on
word, sentence, and paragraph levels. The language of sub-word units, words, sentences, and
paragraphs in multilingual documents is identified at the same time as performing syntactic
analysis of the document. Noh, Talib, Ahmad, Halim, and Mohamed (2009) converted
sentences into POS-tag patterns using a word-POS dictionary for Malay. The POS-tag
patterns were then used by a neural network to indicate whether the sentences were written
in Malay or not. Laboreiro, Bošnjak, Sarmento, Rodrigues, and Oliveira (2013) used Jspell
to detect differences in the grammar of Portuguese variants. Bekavac et al. (2014) used a
syntactic grammar to recognize verb-da-verb constructions, which are characteristic of the
Serbian language. The syntactic grammar was used together with several morphological
grammars to distinguish between Croatian and Serbian.

Languages identified for surrounding words in word-level LI Marcadet et al.
(2005) used the weighted LI scores of the words to the left and right of the word to be
classified. Rosner and Farrugia (2007) used language labels within an HMM. Akhil and Ab-
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hishek (2014) used the language labels of other words in the same sentence to determine the
language of the ambiguous word. The languages of the other words had been determined by
the positive Decision Rules (Section 6.1), using dictionaries of unique words when possible.
Elfardy and Diab (2013) used the word-level language labels obtained with the approach
of Elfardy, Al-Badrashiny, and Diab (2013) on sentence-level dialect identification. Das
and Gambäck (2013, 2014) used the language tags of the previous three words with an
SVM. Mukherjee, Ravi, and Datta (2014) used language labels of surrounding words with
NB. King et al. (2015) used the language probabilities of the previous word to determining
weights for languages. King et al. (2014) used unigram, bigram and trigram language label
transition probabilities. Papalexakis, Nguyen, and Dogruöz (2014) used the language labels
for the two previous words as well as knowledge of whether code-switching had already
been detected or not. Raj and Karfa (2014) used the language label of the previous word
to determine the language of an ambiguous word. Sinha and Srinivasa (2014) also used
the language label of the previous word. Chanda, Das, and Mazumdar (2016a) used the
language identifications of 2–4 surrounding words for post-identification correction in word-
level LI. Samih and Maier (2016) used language labels, among other features, with a CRF
when identifying code-switching between Modern Standard Arabic and Moroccan Darija
Dialectal Arabic. With the best settings, their system was able to attain an accuracy of
91.4% at the word level. Dongen (2017) used language labels of the current and two previous
words in code-switching point prediction. The predictive strength of the current label was
lower than the count of code-switches, but better than the length or position of the word.
All of the features were used together with NB, DT and SVM. Guzmán, Ricard, Serigos,
Bullock, and Toribio (2017) used language label bigrams with an HMM together with a
5-gram character model in word-level language identification of texts including Spanish–
English and French–English code-switching. They achieved word-level accuracy rates of
95% and 97%, respectively.

5.7 Feature Smoothing

Feature smoothing is required in order to handle the cases where not all features fi in a
test document have been attested in the training corpus for a certain language. Thus, it is
used especially when the count of features is high, or when the amount of training data is
low. Smoothing is usually handled as part of the method, and not pre-calculated into the
language models. Most of the smoothing methods evaluated by Chen and Goodman (1999)
have been used in LI, and we follow the order of methods in that article.

Additive smoothing (Laplace, Lidstone) In Laplace smoothing, an extra number
of occurrences is added to every possible feature in the language model. Dunning (1994)
used Laplace’s sample size correction (add-one smoothing) with the product of Markovian
probabilities. Adams and Resnik (1997) experimented with additive smoothing of 0.5, and
noted that it was almost as good as Good-Turing smoothing. Chen and Goodman (1999)
calculate the values for each n-gram as:

vCg(f) =
c(Cg, f) + λ

lCn
g
+ |U(Cn

g )|λ
(11)
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where vCg(f) is the probability estimate of n-gram f in the model and c(Cg, f) its frequency
in the training corpus. lCn

g
is the total number of n-grams of length n and |U(Cn

g )| the
number of distinct n-grams in the training corpus. λ is the Lidstone smoothing parameter.
When using Laplace smoothing, λ is equal to 1 and with Lidstone smoothing, the λ is
usually set to a value between 0 and 1.

The penalty values used by Jauhiainen et al. (2016) with the HeLI method function
as a form of additive smoothing. Vatanen et al. (2010) evaluated additive, Katz, absolute
discounting (Ney, Essen, & Kneser, 1994), and Kneser-Ney smoothing methods. Additive
smoothing produced the least accurate results of the four methods. Cann (2015) and Franco-
Penya and Sanchez (2016) evaluated NB with several different Lidstone smoothing values.
Cianflone and Kosseim (2016) used additive smoothing with character n-grams as a baseline
classifier, which they were unable to beat with Convolutional Neural Networks (“CNNs”).

Good-Turing Discounting Adams and Resnik (1997) used Good-Turing smoothing
with the product of Markovian probabilities. Chen and Goodman (1999) define the Good-
Turing smoothed count cGT (C, f) as:

cGT (Cg, f) = (c(Cg, f) + 1)
rc(Cg ,f)+1

rc(Cg ,f)
(12)

where rc(Cg ,f) is the number of features occurring exactly c(Cg, f) times in the corpus Cg.
More recently, Good-Turing smoothing has been used by Giwa (2016) and Gamallo, Pichel,
Alegria, and Agirrezabal (2016). Gamallo et al. (2016) used the smoothing for unseen words
with a NB classifier, attaining 13th place in DSL 2016 shared task (Malmasi et al., 2016).

Jelinek-Mercer Rehůřek and Kolkus (2009) used Jelinek-Mercer smoothing correction
over the relative frequencies of words, calculated as follows:

vCg(f) = λ
c(C, f)

lCF

+ (1− λ)
c(Cg, f)

lCF
g

(13)

where λ is a smoothing parameter, which is usually some small value like 0.1. Mendizabal
et al. (2014) used character 1–8 grams with Jelinek-Mercer smoothing. Their language
identifier using character 5-grams achieved 3rd place (out of 12) in the TweetLID shared
task constrained track (Zubiaga et al., 2016).

Katz Ramisch (2008) and Vatanen et al. (2010) used the Katz back-off smoothing (Katz,
1987) from the SRILM toolkit (Stolcke, 2002), with perplexity. Katz smoothing is an
extension of Good-Turing discounting. The probability mass left over from the discounted
n-grams is then distributed over unseen n-grams via a smoothing factor. In the smoothing
evaluations by Vatanen et al. (2010), Katz smoothing performed almost as well as absolute
discounting, which produced the best results. Giwa and Davel (2013) evaluated Witten-
Bell, Katz, and absolute discounting smoothing methods. Witten-Bell got 87.7%, Katz
87.5%, and absolute discounting 87.4% accuracy with character 4-grams.

Prediction by Partial Matching (PPM/Witten-Bell) Teahan (2000) used the PPM-
C algorithm for LI. PPM-C is basically a product of Markovian probabilities with an escape
scheme. If an unseen context is encountered for the character being processed, the escape
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probability is used together with a lower-order model probability. In PPM-C, the escape
probability is the sum of the seen contexts in the language model. PPM-C was lately
used by Adouane et al. (2016d). The PPM-D+ algorithm was used by Celikel (2005).
Bergsma, McNamee, Bagdouri, Fink, and Wilson (2012) and McNamee (2016) used a PPM-
A variant. Yamaguchi and Tanaka-Ishii (2012) also used PPM. The language identifier of
Yamaguchi and Tanaka-Ishii (2012) obtained 91.4% accuracy when classifying 100 character
texts between 277 languages. Jaech, Mulcaire, Hathi, Ostendorf, and Smith (2016b) used
Witten-Bell smoothing with perplexity.

Herman, Suchomel, Baisa, and Rychlý (2016) used a Chunk-Based Language Model
(“CBLM”), which is similar to PPM models.

Absolute discounting Vatanen et al. (2010) used several smoothing techniques with
Markovian probabilities. Absolute discounting from the VariKN toolkit performed the best.
Vatanen et al. (2010) define the smoothing as follows: a constant D is subtracted from the
counts c(Cg, ui−n+1,...,i) of all observed n-grams ui−n+1,...,i and the held-out probability
mass is distributed between the unseen n-grams in relation to the probabilities of lower
order n-grams Pg(ui|ui−n+2,...,i−1), as follows:

PCg(ui|ui−n+1,...,i−1) =
c(Cg, ui−n+1,...,i)−D

c(Cg, ui−n+1,...,i−1)
+ λui−n+1,...,i−1

PCg(ui|ui−n+2,...,i−1) (14)

where λui−n+1,...,i−1
is a scaling factor that makes the conditional distribution sum to one.

Absolute discounting with Markovian probabilities from the VariKN toolkit was later also
used by Rodrigues (2012), Maier and Gómez-Rodríguez (2014), and Jauhiainen et al.
(2017b).

Kneser-Ney smoothing The original Kneser-Ney smoothing is based on absolute dis-
counting with an added back-off function to lower-order models (Vatanen et al., 2010). Chen
and Goodman (1999) introduced a modified version of the Kneser-Ney smoothing using in-
terpolation instead of back-off. Chen and Maison (2003) used the Markovian probabilities
with Witten-Bell and modified Kneser-Ney smoothing. Giwa (2016), Balažević et al. (2016),
and Rijhwani et al. (2017) also recently used modified Kneser-Ney discounting. Barbaresi
(2016) used both original and modified Kneser-Ney smoothings. In the evaluations of Vata-
nen et al. (2010), Kneser-Ney smoothing fared better than additive, but somewhat worse
than the Katz and absolute discounting smoothing. Lately Samih and Maier (2016) also
used Kneser-Ney smoothing.

Castro et al. (2016, 2017) evaluated several smoothing techniques with character and
word n-grams: Laplace/Lidstone, Witten-Bell, Good-Turing, and Kneser-Ney. In their
evaluations, additive smoothing with 0.1 provided the best results. Good-Turing was not
as good as additive smoothing, but better than Witten-Bell and Kneser-Ney smoothing.
Witten-Bell proved to be clearly better than Kneser-Ney.

6. Methods
In recent years there has been a tendency towards attempting to combine several different
types of features into one classifier or classifier ensemble. Many recent studies use readily
available classifier implementations and simply report how well they worked with the feature
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set used in the context of their study. There are many methods presented in this article that
are still not available as out of the box implementations, however. There are many studies
which have not been re-evaluated at all, going as far back as Mustonen (1965). In this
survey, we consider two methods to be the same if they always produce exactly the same
results from exactly the same inputs. Our hope is that this article will inspire new studies
and many previously unseen ways of combining features and methods. In the following
sections, the reviewed articles are grouped by the methods used for LI.

Rubinstein and Hastie (1997) divide classification methods into informative and dis-
criminative classifiers. Generative7 classifiers aim to model the underlying phenomenon,
and classification is performed by calculating a probability for the observations using the
model of each class. Discriminative classifiers do not try to model the phenomenon itself,
but are instead modeling the class boundaries or the class probabilities directly. As exam-
ples of generative classifiers, Rubinstein and Hastie (1997) list Fisher Discriminant Analysis,
Hidden Markov Models (Section 6.10), and Naive Bayes (Section 6.5), and as examples of
discriminative classifiers, Logistic Regression (Section 6.6), Neural Networks (Section 6.9),
and Generalized Additive Models.

Ng and Jordan (2002) use Logistic Regression as an example of a discriminative classifier
and Naive Bayes as an example of a generative classifier. Experimenting with the two
methods, they show that if the amount of training material is large enough, discriminative
classifiers usually attain better results. However, in many cases the generative classifier
obtains better results when the amount of training data is small.

In generative probabilistic modeling, it is possible to calculate the probability of a given
text using language models, irrespective of the other languages being considered. Adding
new languages to generative systems only requires modeling the languages to be added, but
in a system using a discriminative classifier, all the languages have to be re-trained. With
discriminative models, new borders for the remaining languages also have to be learned when
removing languages from the repertoire. Some commonly-used techniques, such as tuning
hyperparameters using a development corpus, can move otherwise generative classifiers
towards the discriminative side.

6.1 Decision Rules
Henrich (1989) used positive Decision Rules with unique characters and character n-grams,
that is, if a unique character or character n-gram was found, the language was identified.
The positive Decision Rule (unique features) for the test document M and the training
corpus Cg can be formulated as follows:

RDR+(g,M) =

{

1 , if ∃f ∈ U(M) : c(Cg, f) > 0 ∧ c(Cj , u) = 0 ∧ g ̸= j

0 , otherwise (15)

where U(M) is the set of unique features in M , Cg is the corpus for language g, and Cj is
a corpus of any other language j. Positive decision rules can also be used with non-unique
features when the decisions are made in a certain order. For example, Dongen (2017)
presents the pseudo code for her dictionary lookup tool, where these kind of decisions
are part of an if-then-else statement block. Her (manual) rule-based dictionary lookup

7. We follow (Ng & Jordan, 2002) and refer to informative classifiers as generative classifiers.
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tool works better for Dutch–English code-switching detection than the SVM, DT, or CRF
methods she experiments with. The positive Decision Rule has also been used recently by
Abainia et al. (2016), Chanda et al. (2016b, 2016a), Guellil and Azouaou (2016), Gupta,
Bhatt, and Mittal (2016), Adouane and Dobnik (2017), and He et al. (2016). He et al. (2016)
used the positive decision rule with unique characters in distinguishing between Uyghur and
Kazakh. If the text did not include any unique characters then the language of the text
was identified using other features with a LR classifier.

In the negative Decision Rule, if a character or character combination that was found
in M does not exist in a particular language, that language is omitted from further identi-
fication. The negative Decision Rule can be expressed as:

RDR−(g,M) =

{

0 , if ∃f ∈ U(M) : c(Cg, f) = 0
1 , otherwise (16)

where Cg is the corpus for language g. The negative Decision Rule was first used by Giguet
(1995) in LI.

Alshutayri et al. (2016) evaluated the JRIP classifier from the Waikato Environment
for Knowledge Analysis (“WEKA”) (Hall et al., 2009). JRIP is an implementation of the
propositional rule learner (Cohen, 1995). It was found to be inferior to the SVM, NB and
DT algorithms.

In isolation the desicion rules tend not to scale well to larger numbers of languages (or
very short test documents), and are thus mostly used in combination with other LI methods
or as a Decision Tree.

6.2 Decision Trees

Häkkinen and Tian (2001) were the earliest users of Decision Trees (“DTs”) in LI. They
used DTs based on characters and their context, without any frequency information. In
training the DT, each node is split into child nodes according to an information theoretic
optimization criterion. For each node, a feature is chosen which maximizes the information
gain at that node. The information gain is calculated for each feature, and the feature
with the highest gain is selected for the node. In the identification phase, the nodes are
traversed until only one language is left (i.e. a leaf node is reached). Later, Ceylan and Kim
(2009), Eskander, Al-Badrashiny, Habash, and Rambow (2014), and Moodley (2016) have
been especially successful in using DTs. Moodley (2016) used DTs with character trigrams
and was able to achieve an F-score of 68.76 at the word level when distinguishing between
11 languages used in South Africa.

A Random Forest (RF) is an ensemble classifier generating many DTs (Breiman, 2001).
It has been succesfully used in LI by Jhamtani et al. (2014), Darwish et al. (2014), Ranjan,
Raja, Priyadharshini, and Balabantaray (2016), and Malmasi and Zampieri (2017a, 2017b).
Malmasi and Zampieri (2017a, 2017b) used RFs as a meta-classification algorithm in an
SVM ensemble. As an ensemble method, the RF-classifier outperformed both voting and
mean probability ensembles, resulting in first place on the German Dialect Identification
(“GDI”) shared task and second place on the ADI shared tasks at the VarDial Evaluation
Campaign 2017 (Zampieri et al., 2017).
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6.3 Simple Scoring
In simple scoring, each feature in the test document is checked against the language model
for each language, and languages which contain that feature are given a point, as follows:

Rsimple(g,M) =

l
MF
∑

i=1

{

1 , if fi ∈ dom(O(Cg))
0 , otherwise (17)

where fi is the ith feature found in the test document M . The language scoring the most
points is the winner. Simple scoring is still a good alternative when facing an easy problem
such as preliminary language group identification. It was recently used for this purpose by
Franco-Salvador et al. (2015b) with a basic dictionary. They achieved 99.8% accuracy when
distinguishing between 6 language groups. Kadri and Moussaoui (2013) use a version of
simple scoring as a distance measure, assigning a penalty value to features not found in a
model. In this version, the language scoring the least amount of points is the winner. Their
language identifier obtained a 100% success rate with character 4-grams when classifying
relatively large documents (from 1 to 3 kilobytes), between 10 languages. Simple scoring
was also used lately by Balažević et al. (2016), Selamat and Akosu (2016), and Duvenhage
et al. (2017).

6.4 Sum or Average of Values
The sum of values can be expressed as:

Rsum(g,M) =

l
MF
∑

i=1

vCg(fi) (18)

where fi is the ith feature found in the test document M , and vCg(fi) is the value for the
feature in the language model of the language g. The language with the highest score is the
winner.

The simplest case of Equation 18 is when the text to be identified contains only one
feature. An example of this is Shrestha (2014) who used the frequencies of short words
as values in word-level identification. For longer words, he summed up the frequencies of
different-sized n-grams found in the word to be identified. Giwa and Davel (2014) first cal-
culated the language corresponding to each graphone. They then summed up the predicted
languages, and the language scoring the highest was the winner. When a tie occurred,
they used the product of the Markovian graphone n-grams. Their method managed to
outperform SVMs in their tests.

Henrich (1989) used the average of all the relative frequencies of the n-grams in the
text to be identified as in Equation 19. Vogel and Tresner-Kirsch (2012) evaluated several
variations of the LIGA algorithm introduced by Tromp and Pechenizkiy (2011). LIGA is
basically the sum of relative frequencies using character tri- and 4-grams. Moodley (2016)
and Jauhiainen et al. (2017b) also used LIGA and logLIGA methods. In the experiments of
Jauhiainen et al. (2017b), LIGA and logLIGA were clearly inferior to the other evaluated
methods. The average or sum of relative frequencies was also used recently by Abainia
et al. (2016) and Martadinata et al. (2016). Martadinata et al. (2016) compared the sum of
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the relative frequencies of words to the out-of-place method (Section 6.6) and the product
of Markovian probabilities (Section 6.5). The sum of relative frequencies was not able to
attain the same level of accuracy as the two other methods when distinguishing between
four Indonesian languages.

Ng and Selamat (2009) summed up LFDF values (see Section 5.2), obtaining 99.75%
accuracy when classifying document sized texts between four languages using Arabic script.
Vitale (1991) calculates the score of the language for the test document M as the average
of the probability estimates of the features, as follows:

Ravg(g,M) =

l
MF
∑

i=1

vCg(fi)

lMF

(19)

where lMF is the number of features in the test document M . Brown (2013) summed
weighted relative frequencies of character n-grams, and normalized the score by dividing by
the length (in characters) of the test document. Normalizing the sums by document length
does not change the order of the scored languages, but it gives comparable results between
different lengths of test documents.

Vega and Bressan (2001a, 2001b) summed up the feature weights and divided them by
the number of words in the test document in order to set a threshold to detect unknown
languages. Their language identifier obtained 89% precision and 94% recall when classifying
documents between five languages. El-Shishiny et al. (2004) used a weighting method
combining alphabets, prefixes, suffixes and words. Elfardy and Diab (2012) summed up
values from a word trigram ranking, basic dictionary and morphological analyzer lookup.
Akhil and Abhishek (2014) summed up language labels of the surrounding words to identify
the language of the current word. Bekavac et al. (2014) summed up points awarded by the
presence of morphological and syntactic features. Gamallo et al. (2014) used inverse rank
positions as values.

Ács et al. (2015) computed the sum of keywords weighted with TF-IDF to distinguish
between language groups in the 2015 DSL shared task (Zampieri et al., 2015). Their lan-
guage group classifier achieved 100% accuracy. Fabra-Boluda, Rangel, and Rosso (2015)
summed up the TF-IDF derived probabilities of words. They used the sum as one of six
features given to a Bayesian Net classifier.

6.5 Product of Values

The product of values can be expressed as follows:

Rprod(g,M) =

l
MF
∏

i

vCg(fi) (20)

where fi is the ith feature found in test document M , and vCg(fi) is the value for the feature
in the language model of language g. The language with the highest score is the winner.
Some form of feature smoothing is usually required with the product of values method to
avoid multiplying by zero.
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Product of relative frequencies Church (1985) was the first to use the product of
relative frequencies and it has been widely used ever since; recent examples include Castro
et al. (2016, 2017), Hanani et al. (2017), and Jauhiainen et al. (2017b). Castro et al.
(2016, 2017) used the product of relative frequencies in discriminating between Brazilian
and European Portuguese in tweets. As mentioned earlier, they evaluated several smoothing
techniques and the best configuration was an ensemble combining Good-Turing smoothed
word unigrams, Witten-Bell smoothed word bigrams, and Lidstone smoothed character
6-grams. The ensemble achieved an average F1-score of 0.9272 for tweets.

Some of the authors use a sum of log frequencies rather than a product of frequencies to
avoid underflow issues over large numbers of features, but the two methods yield the same
relative ordering, with the proviso that the maximum of multiplying numbers between 0
and 1 becomes the minimum of summing their negative logarithms, as can be inferred from:

Rlogsum(g,M) = − log(Rprod(g,M)) = − log
l
MF
∏

i=1

vCg(fi) =

l
MF
∑

i=1

− log(vCg(fi)) (21)

Naive Bayes (NB) When (multinomial8) NB is used in LI, each feature used has a
probability to indicate each language. The probabilities of all features found in the test
document are multiplied for each language, and the language with the highest probability
is selected, as in Equation 20. Theoretically the features are assumed to be independent
of each other, but in practice using features that are functionally dependent can improve
classification accuracy (Peng & Schuurmans, 2003).

NB implementations have been widely used for LI, usually with a more varied set of
features than simple character or word n-grams of the same type and length. The features
are typically represented as feature vectors given to a NB classifier. Mukherjee et al. (2014)
trained a NB classifier with language labels of surrounding words to help predict the lan-
guage of ambiguous words first identified using an SVM. The language identifier used by
Tan et al. (2014) obtained 99.97% accuracy with 5-grams of characters when classifying
sentence-sized texts between six language groups. Goutte et al. (2014) used a probabilistic
model similar to NB. Bhattu and Ravi (2015) used NB and naive Bayes EM, which uses
the Expectation–Maximization (“EM”) algorithm in a semi-supervised setting to improve
accuracy. Ljubešić and Kranjcić (2014) used Gaussian naive Bayes (“GNB”, i.e. NB with
Gaussian estimation over continuous variables) from scikit-learn.

Bayesian Network Classifiers In contrast to NB, in Bayesian networks the features are
not assumed to be independent of each other. The network learns the dependencies between
features in a training phase. Fabra-Boluda et al. (2015) used a Bayesian Net classifier in
two-staged (group first) LI over the open track of the DSL 2015 shared task coming second
out of the three teams that participated. Rangel et al. (2017a) similarly evaluated Bayesian
Nets, but found them to perform worse than the other 11 algorithms they tested.

Product of Markovian probabilities House and Neuburg (1977) used the product
of the Markovian probabilities of character bigrams. The language identifier created by
Brown (2013, 2014b), “whatlang”, obtains 99.2% classification accuracy with smoothing

8. To the best of our knowledge, the multivariate Bernoulli version of NB has never been used for LI. See
Giwa (2016) for a possible explanation.
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for 65 character test strings, when distinguishing between 1,100 languages. The product
of Markovian probabilities has recently also been used by Samih and Maier (2016) and
Mendoza and Mendelsohn (2017). Mendoza and Mendelsohn (2017) evaluated several ma-
chine learning algorithms using the DSL 2016 dataset, and found the product of Markovian
probabilities with word bigrams to perform clearly worse than the other evaluated methods:
Logistic Regression (Section 6.6), Random Forest (Section 6.2), and several SVM configu-
rations (Section 6.8).

HeLI Jauhiainen et al. (2016) use a word-based backoff method called HeLI. Here, each
language is represented by several different language models, only one of which is used for
each word found in the test document. The language models for each language are: a
word-level language model, and one or more models based on character n-grams of order
1 to nmax. When a word that is not included in the word-level model is encountered in
a test document, the method backs off to using character n-grams of the size nmax. If
there is not even a partial coverage here, the method backs off to lower order n-grams
and continues backing off until at least a partial coverage is obtained (potentially all the
way to character unigrams). The LI system of Jauhiainen et al. (2016) implementing the
HeLI method attained shared first place in the closed track of the DSL 2016 shared task
(Malmasi et al., 2016), and was the best method tested by Jauhiainen et al. (2017b) for
test documents longer than 30 characters.

6.6 Similarity Measures
Out-of-place method The well-known method of Cavnar and Trenkle (1994) uses over-
lapping character n-grams of varying sizes based on words. The language models are created
by tokenizing the training texts for each language g into words, and then padding each word
with spaces, one before and four after. Each padded word is then divided into overlapping
character n-grams of sizes 1–5, and the counts of every unique n-gram are calculated over
the training corpus. The n-grams are ordered by frequency and k of the most frequent
n-grams, f1, ..., fk, are used as the domain of the language model O(Cg) for the language
g. The rank of an n-gram f in language g is determined by the n-gram frequency in the
training corpus Cg and denoted rankCg(f).

During LI, the test document M is treated in a similar way and a corresponding model
O(M) of the K most frequent n-grams is created. Then a distance score is calculated
between the model of the test document and each of the language models. The value
vCg(f) is calculated as the difference in ranks between rankCg(f) and rankM (f) of the n-
gram f in the domain dom(O(M)) of the model of the test document. If an n-gram is
not found in a language model, a special penalty value p is added to the total score of the
language for each missing n-gram. The penalty value should be higher than the maximum
possible distance between ranks.

vCg(f) =

{

| rankM (f)− rankCg(f)| , if f ∈ dom(O(Cg))
p , if f /∈ dom(O(Cg))

(22)

The score RCT(g) for each language g is the sum of values, as in Equation 18. The language
with the lowest score RCT(g) is selected as the identified language. The method is equivalent
to Spearman’s measure of disarray (Diaconis & Graham, 1977). The out-of-place method
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has been widely used in LI literature as a baseline. In the evaluations of Jauhiainen et al.
(2017b) for 285 languages, the out-of-place method achieved an F-score of 95% for 35-
character test documents. It was the fourth best of the seven evaluated methods for test
document lengths over 20 characters.

Local Rank Distance (“LRD”) Local Rank Distance (Ionescu, 2013) is a measure of
difference between two strings. LRD is calculated by adding together the distances sepa-
rating comparable units (for example character n-grams) across two strings. The distance
is only calculated within a local window of predetermined length. Ionescu and Popescu
(2016) and Ionescu and Butnaru (2017) used LRD with a Radial Basis Function (“RBF”)
kernel (see Section 6.8). For learning, they experimented with both Kernel Discriminant
Analysis (“KDA”) and Kernel Ridge Regression (“KRR”). Ionescu and Butnaru (2017) won
the ADI 2017 shared task with the LRD and KRR combination, and came 5th in the GDI
2017 shared task with the same system (Zampieri et al., 2017).

Franco-Salvador et al. (2017a) used KDA in language variety identification. They eval-
uated the use of string kernels with KDA against word embeddings with SVM and LR
classifiers, and found the KDA classifier to perform the best. However, a linear interpola-
tion combining the KDA and LR classifiers gained even higher results for all three datasets
used.

Levenshtein distance Pavan et al. (2010) calculated the Levenshtein distance between
the language models and each word in the test text. The similary score for each language
was the inverse of the sum of the Levenshtein distances. Their language identifier obtained
97.7% precision when classifying texts from two to four words between five languages. Later
Guellil and Azouaou (2016) used Levenshtein distance for Algerian dialect identification and
Gupta et al. (2016) for query word identification. Gupta et al. (2016) used a version of the
n-gram Markov model to choose the most relevant result from a list of words generated by
the Levenshtein algorithm.

Probability difference Botha, Zimu, and Barnard (2007), Botha and Barnard (2007),
Botha (2008), and Botha and Barnard (2012) calculated the difference between probabilities
as in Equation 23.

Rdiff (g,M) =
∑

i

(vM (fi)− vCg(fi)) (23)

where vM (fi) is the probability for the feature fi in the test text and vCg(fi) the correspond-
ing probability in the language model of the language g. The language with the lowest score
R(g) is selected as the most likely language for the test text. Singh (2006, 2010) used the
log probability difference and the absolute log probability difference. The log probability
difference proved slightly better, obtaining a precision of 94.31% using both character and
word n-grams when classifying 100 character texts between 53 language-encoding pairs.

Vectors Depending on the algorithm, it can be easier to view language models as vectors
of weights over the target features. In the following methods, each language is represented
by one or more feature vectors. Methods where each feature type is represented by only one
feature vector are also sometimes referred to as centroid-based (Takçı & Güngör, 2012) or
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nearest prototype methods. Distance measures are generally applied to all features included
in the feature vectors.

Kruengkrai et al. (2005) calculated the squared Euclidean distance between feature
vectors. The Squared Euclidean distance can be calculated as:

Reuc2(g,M) =
∑

i

(vM (fi)− vCg(fi))
2 (24)

Hamzah (2010) used the simQ similarity measure, which is closely related to the Squared
Euclidean distance.

Stensby et al. (2010) investigated the LI of multilingual documents using a Stochastic
Learning Weak Estimator (“SLWE”) method. In SLWE, the document is processed one
word at a time and the language of each word is identified using a feature vector representing
the current word as well as the words processed so far. This feature vector includes all
possible units from the language models – in their case mixed-order character n-grams
from one to four. The vector is updated using the SLWE updating scheme to increase the
probabilities of units found in the current word. The probabilities of units that have been
found in previous words, but not in the current one, are on the other hand decreased. After
processing each word, the distance of the feature vector to the probability distribution of
each language is calculated, and the best-matching language is chosen as the language of the
current word. Their language identifier obtained 96.0% accuracy when classifying sentences
with ten words between three languages. They used the Euclidean distance as the distance
measure as follows:

Reuc(g,M) =
√

Reuc2(g,M) (25)
Tomović and Janičić (2007) compared the use of Euclidean distance with their own

similarity functions. Prager (1999) calculated the cosine angle between the feature vector
of the test document and the feature vectors acting as language models. This is also called
the cosine similarity and is calculated as follows:

Rcos(g,M) =

∑

i vM (fi)vCg(fi)
√
∑

i vM (fi)2
√

∑

i vCg(fi)
2

(26)

The method of Prager (1999) was evaluated by Lui, Lau, and Baldwin (2014a) in the
context of LI over multilingual documents. The cosine similarity was used recently by
Schaetti (2017) with TF-IDF values in the language variety identification shared task of
PAN 2017 (Rangel et al., 2017b). He compared the performance of the cosine similarity
with CNN. For English varieties the cosine similarity achieved 83% accuracy while a CNN
reached only 66%.

One common trick with cosine similarity is to pre-normalise the feature vectors to unit
length (e.g. Brown, 2012), in which case the calculation takes the form of the simple dot
product:

Rdotprod(g,M) =
∑

i

vM (fi)vCg(fi) (27)

Jauhiainen (2010) used chi-squared distance, calculated as follows:

Rchi-square(g,M) =
∑

i

(vCg(fi)− vM (fi))
2

vM (fi)
(28)

712



Automatic Language Identification in Texts: A Survey

Abainia et al. (2016) compared Manhattan, Bhattacharyya, chi-squared, Canberra, Bray
Curtis, histogram intersection, correlation distances, and out-of-place distances, and found
the out-of-place method to be the most accurate.

Entropy Singh (2006, 2010) used cross-entropy and symmetric cross-entropy. Cross-
entropy is calculated as follows, where vM (fi) and vCg(fi) are the probabilities of the feature
fi in the the test document M and the corpus Cg:

Rcross-entropy(g,M) =
∑

i

vM (fi) log vCg(fi) (29)

Symmetric cross-entropy is calculated as:

Rsym-cross-entropy(g,M) =
∑

i

vM (fi) log vCg(fi) + vCg(fi) log vM (fi) (30)

For cross-entropy, distribution M must be smoothed, and for symmetric cross-entropy, both
probability distributions must be smoothed. Cross-entropy was used recently by Hanani
et al. (2017) with words in the GDI 2017 shared task, but the results were inferior to a byte
n-gram based sum of log-frequencies, which attained 7th position in the shared task.

Yamaguchi and Tanaka-Ishii (2012) used a cross-entropy estimating method they call
the Mean of Matching Statistics (“MMS”). In MMS, every possible suffix of the test text
ui, ..., ulM is compared with the language model of each language, and the average of the
lengths of the longest possible units in the language model matching the beginning of
each suffix is calculated. They compared the performance of MMS with that of PPM
(Section 5.7), and find that PPM achieves slightly better performance in their evaluations
on over 200 languages.

Sibun and Reynar (1996) and Baldwin and Lui (2010a) calculated the relative entropy
between the language models and the test document, as follows:

Rrel-entropy(g,M) =
∑

i

vM (fi) log
vM (fi)

vCg(fi)
(31)

This method is also commonly referred to as Kullback-Leibler (“KL”) divergence or skew
divergence. Jauhiainen (2010) compared relative entropy with the product of the relative
frequencies for different-sized character n-grams, and found that relative entropy was only
competitive when used with character bigrams. The product of relative frequencies gained
clearly higher recall with higher-order n-grams when compared with relative entropy.

Singh (2006, 2010) also used the RE and MRE measures, which are related to relative
entropy. The RE measure is calculated as follows:

RRE(g,M) =
∑

i

vM (fi)
log vM (fi)

log vCg(fi)
(32)

MRE is the symmetric version of the same measure. In the tests performed by Singh (2006,
2010), the RE measure with character n-grams outperformed other tested methods obtain-
ing 98.51% precision when classifying 100 character texts between 53 language-encoding
pairs.
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Logistic Regression (LR) Chen and Maison (2003) used a logistic regression (“LR”)
model (also commonly referred to as “maximum entropy” within NLP), smoothed with a
Gaussian prior (Hosmer, Lemeshow, & Sturdivant, 2013). Porta and Sancho (2014) defined
LR for character-based features as follows:

RLR(g,M) =
1

Z
exp

l
MT
∑

j

l
CF
∑

i

vCg(fi), if ∃fi ∈ U(MT
j ) (33)

where Z is a normalization factor and lMT is the word count in the word-tokenized test
document. Ács et al. (2015) used an LR classifier and found it to be considerably faster
than an SVM, with comparable results. Their LR classifier ranked 6 out of 9 on the closed
submission track of the DSL 2015 shared task. Lu and Mohamed (2011) used Adaptive
Logistic Regression, which automatically optimizes parameters. In recent years LR has
been widely used for LI.

Perplexity Ramisch (2008) was the first to use perplexity for LI, in the manner of a
language model. He calculated the perplexity for the test document M as follows:

Hg(M) =
1

lMn

lMn
∑

i

log2 vCg(fi) (34)

Rperplexity(g,M) = 2Hg(M) (35)

where vCg(fi) were the Katz smoothed relative frequencies of word n-grams fi of the length
n. Rodrigues (2012) and Jauhiainen et al. (2017b) evaluated the best performing method
used by Vatanen et al. (2010). Character n-gram based perplexity was the best method
for extremely short texts in the evaluations of Jauhiainen et al. (2017b), but for longer
sequences the methods of Brown (2012) and Jauhiainen (2010) proved to be better. Lately,
Gamallo et al. (2017) used perplexity in the DSL and GDI 2017 shared tasks, achieving 9th
and 8th place, respectively (Zampieri et al., 2017).

Other similarity measures Rau (1974) used Yule’s characteristic K and the Kolmogorov-
Smirnov goodness of fit test to categorize languages. Kolmogorov-Smirnov proved to be the
better of the two, obtaining 89% recall for 53 characters (one punch card) of text when
choosing between two languages. In the goodness of fit test, the ranks of features in the
models of the languages and the test document are compared. Martins and Silva (2005)
experimented with Jiang and Conrath’s (JC) distance (Jiang & Conrath, 1997) and Lin’s
similarity measure (Lin, 1998), as well as the out-of-place method. They conclude that
Lin’s similarity measure was consistently the most accurate of the three. JC-distance mea-
sure was later evaluated by Singh (2006, 2010), and was outperformed by the RE measure.
Ranaivo-Malançon and Ng (2005) and Ranaivo-Malançon (2006) calculated special ratios
from the number of trigrams in the language models when compared with the text to be
identified. da Silva and Lopes (2006a, 2006b, 2007) used the quadratic discrimination score
to create the feature vectors representing the languages and the test document. They then
calculated the Mahalanobis distance between the languages and the test document. Their
language identifier obtained 98.9% precision when classifying texts of four “screen lines”
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between 19 languages. Nguyen and Cornips (2016) used odds ratio to identify the language
of parts of words when identifying between two languages. Odds ratio for language g when
compared with language h for morph fi is calculated as in Equation 36.

Rodds(g, fi) = log
vCh

(fi)(1− vCg(fi))

(1− vCh
(fi))vCg(fi)

(36)

6.7 Discriminant Functions
The differences between languages can be stored in discriminant functions. The functions
are then used to map the test document into an n-dimensional space. The distance of the
test document to the languages known by the language identifier is calculated, and the
nearest language is selected (in the manner of a nearest prototype classifier).

Murthy and Kumar (2006) used multiple linear regression to calculate discriminant
functions for two-way LI for Indian languages. Bhargava, Sharma, Sharma, and Baid (2015)
compared linear regression, NB, and LR. The precision for the three methods was very
similar, with linear regression coming second in terms of precision after LR.

Multiple discriminant analysis was used for LI by Mustonen (1965). He used two func-
tions, the first separated Finnish from English and Swedish, and the second separated
English and Swedish from each other. He used Mahalanobis’ D2 as a distance measure. Vi-
nosh Babu and Baskaran (2005) used Multivariate Analysis (“MVA”) with Principal Com-
ponent Analysis (“PCA”) for dimensionality reduction and LI. Takçı and Ekinci (2012)
compared discriminant analysis with SVM and NN using characters as features, and con-
cluded that the SVM was the best method.

King and Abney (2013) experimented with the Winnow 2 algorithm (Littlestone, 1987),
but the method was outperformed by other methods they tested.

6.8 Support Vector Machines (“SVMs”)
With support vector machines (“SVMs”), a binary classifier is learned by learning a sepa-
rating hyperplane between the two classes of instances which maximizes the margin between
them (Boser, Guyon, & Vapnik, 1992). The simplest way to extend the basic SVM model
into a multiclass classifier is via a suite of one-vs-rest classifiers, where the classifier with the
highest score determines the language of the test document. One feature of SVMs that has
made them particularly popular is their compatibility with kernels, whereby the separating
hyperplane can be calculated via a non-linear projection of the original instance space. In
the following paragraphs, we list the different kernels that have been used with SVMs for
LI.

Linear kernel SVMs For LI with SVMs, the predominant approach has been a simple
linear kernel SVM model. The linear kernel model has a weight vector vCg(f) and the
classification of a feature vector vM (f), representing the test document M , is calculated as
follows:

Rsvm-lin(g,M) = (
∑

i

vM (fi)vCg(fi)) + b (37)

where b is a scalar bias term. If Rsvm-lin is equal to or greater than zero, M is categorized
as g.
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The first to use a linear kernel SVM were Kim and Park (2007), and generally speaking,
linear-kernel SVMs have been widely used for LI, with great success across a range of
shared tasks. Goutte et al. (2014) won the DSL 2014 shared task. The three submissions
by Malmasi and Dras (2015b) to the DSL 2015 shared task, using three different linear
SVM configurations, were the three best submissions overall. The second (Zampieri et al.,
2015) and the third (Goutte & Léger, 2015) best teams also utilized SVMs with a linear
kernel. Çöltekin and Rama (2016) won the DSL 2016 and Bestgen (2017) the DSL 2017
shared task using linear SVMs. Malmasi and Zampieri (2016) won ADI 2016 and Malmasi
and Zampieri (2017b) won the GDI 2017 shared task, with an ensemble of linear kernel
SVMs.

Polynomial kernel SVMs Bar and Dershowitz (2014) were the first to apply polynomial
kernel SVMs to LI. With a polynomial kernel Rsvm-pol can be calculated as:

Rsvm-pol(g,M) = ((
∑

i

vM (fi)vCg(fi)) + b)d (38)

where d is the polynomial degree, and a hyperparameter of the model.

Radial Basis Function (RBF) kernel SVMs Another popular kernel is the RBF
function, also known as a Gaussian or squared exponential kernel. With an RBF kernel
Rsvm-rbf is calculated as:

Rsvm-rbf(g,M) = exp(−
(
∑

i |vM (fi)− vCg(fi)|)
2

2σ2
) (39)

where σ is a hyperparameter. Botha et al. (2007) were the first to use an RBF kernel SVM
for LI. In their experiments, they found that the SVM was more accurate than a probability
difference based classifier, but with substantially higher computational complexity.

Sigmoid kernel SVMs With sigmoid kernel SVMs, also known as hyperbolic tangent
SVMs, Rsvm-sig can be calculated as:

Rsvm-sig(g,M) = tanh((
∑

i

vM (fi)vCg(fi)) + b) (40)

Bhargava and Kondrak (2010) were the first to use a sigmoid kernel SVM for LI, followed
by Majliš (2012b), who found the SVM to perform better than NB, Classification And
Regression Tree (“CART”), or the sum of relative frequencies.

Other kernels Other kernels that have been used with SVMs for LI include exponential
kernels (Alrifai et al., 2017) and rational kernels (Porta, 2014). Kruengkrai et al. (2005)
were the first to use SVMs for LI, in the form of string kernels using Ukkonen’s algorithm.
They used the same string kernels with Euclidean distance, which did not perform as well
as SVM. Castro et al. (2017) compared SVMs with linear and on-line passive–aggressive
kernels for LI, and found passive–aggressive kernels to perform better, but both SVMs
to be inferior to NB and Log-Likelihood Ratio (sum of log-probabilities). Kim and Park
(2007) experimented with the Sequential Minimal Optimization (“SMO”) algorithm, but
found a simple linear kernel SVM to perform better. Alshutayri et al. (2016) achieved the
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Reference linear string RBF sigmoid d
n exp. pas. aggr.

Bhargava and Kondrak (2010) *** * ** ** *
Takçı and Güngör (2012) * * *
Giwa and Davel (2013), Giwa (2016) ** ***
Eldesouki et al. (2016) *** *
Hanani et al. (2016) *** * *
Xu et al. (2016) *** * * *
Alrifai et al. (2017) ** *** *
Castro et al. (2017) ** ***
Franco-Salvador et al. (2017a) * * *

Table 10: References where SVMs have been tested with different kernels. The columns
indicate the kernels used. “dn” stands for polynomial kernel.

best results using the SMO algorithm, whereas Lamabam and Chakma (2016) found CRFs
to work better than SMO. Alrifai et al. (2017) found that SMO was better than linear,
exponential and polynomial kernel SVMs for Arabic tweet gender and dialect prediction.

Table 10 lists articles where SVMs with different kernels have been compared. Goutte,
Léger, Malmasi, and Zampieri (2016) evaluated three different SVM approaches using
datasets from different DSL shared tasks. SVM-based approaches were the top performing
systems in the 2014 and 2015 shared tasks.

Margin Infused Relaxed Algorithm (“MIRA”) Williams and Dagli (2017) used
SVMs with the Margin Infused Relaxed Algorithm, which is an incremental version of
SVM training. In their evaluation, this method achieved better results than off-the-shelf
langid.py (Lui & Baldwin, 2011).

6.9 Neural Networks (“NN”)

Batchelder (1992) was the first to use Neural Networks (“NN”) for LI, in the form of a
simple BackPropagation Neural Network (“BPNN”) (Hecht-Nielsen, 1989) with a single
layer of hidden units, which is also called a multi-layer perceptron (“MLP”) model. She
used words as the input features for the neural network. Tian, Häkkinen, Riis, and Jensen
(2002) and Tian and Suontausta (2003) succesfully applied MLP to LI.

Jalam and Teytaud (2001b, 2001a) and Jalam (2003) used radial basis function (RBF)
networks for LI. Selamat, Ng, and Mikami (2007) were the first to use adaptive resonance
learning (“ART”) neural networks for LI. Abainia et al. (2016) used Neural Text Categorizer
(“NTC”: Jo, 2008) as a baseline. NTC is an MLP-like NN using string vectors instead of
number vectors.

MacNamara et al. (1998) were the first to use a RNN (Jordan, 1986) for LI. They
concluded that RNNs are less accurate than the simple sum of logarithms of counts of
character bi- or trigrams, possibly due to the relatively modestly-sized dataset they exper-
imented with. Babu and Kumar (2010) compared NNs with the out-of-place method (see
sec. 6.6). Their results show that the latter, used with bigrams and trigrams of characters,
obtains clearly higher identification accuracy when dealing with test documents shorter
than 400 characters.
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RNNs were more successfully used later by Chang and Lin (2014) who also incorporated
character n-gram features in to the network architecture. Cazamias et al. (2015) were the
first to use a Long Short-Term Memory (“LSTM”) for LI (Hochreiter & Schmidhuber, 1997),
and Bjerva (2016) was the first to use Gated Recurrent Unit networks (“GRUs”), both of
which are RNN variants. Bjerva (2016) used byte-level representations of sentences as input
for the networks. Recently, Hanani et al. (2016) and Samih et al. (2016) also used LSTMs.
Samih et al. (2016) participated in the shared tasks of the 2nd workshop on Computational
Approaches to Code Switching, and attained first place for MSA-Egyptian and second place
for Spanish–English. Later, GRUs were successfully used for LI by Jurgens, Tsvetkov, and
Jurafsky (2017) and Kocmi and Bojar (2017). In addition to GRUs, Bjerva (2016) also
experimented with deep residual networks (“ResNets”) at DSL 2016.

During 2016 and 2017, there was a spike in the use of convolutional neural networks
(CNNs) for LI, most successfully by Jaech et al. (2016b) and Jaech, Mulcaire, Hathi, Os-
tendorf, and Smith (2016a). Recently, Li, Cohn, and Baldwin (2018) combined a CNN with
adversarial learning to better generalize to unseen domains, surpassing the results of Lui
and Baldwin (2012) based on the same training regime as langid.py.

Medvedeva et al. (2017) used CBOW NN, achieving better results over the development
set of DSL 2017 than RNN-based neural networks. Franco-Salvador et al. (2017b) used deep
averaging networks (DANs) based on word embeddings in language variety identification.
They participated in the language variety identification track of the PAN 2017 Author Pro-
filing Shared Task (Rangel et al., 2017b) and attained 14th place with an average accuracy
of 85.1%.

6.10 Other Methods

Simaki et al. (2017) used the decision table (Kohavi, 1995) majority classifier algorithm from
the WEKA toolkit in English variety detection. In their tests, the decision table achieved
73.07% accuracy, not far behind Bagging (see Section 6.11), which was the best method
they tested.

Ueda and Nakagawa (1990) were the first to apply hidden Markov models (HMM)
to LI (Rabiner & Juang, 1986). More recently HMMs have been used by Adouane and
Dobnik (2017), Guzmán et al. (2017), and Rijhwani et al. (2017). Binas (2005) generated
aggregate Markov models, which resulted in the best results when distinguishing between
six languages, obtaining 74% accuracy with text length of ten characters. King et al. (2014)
used an extended Markov Model (“eMM”), which is essentially a standard HMM with
modified emission probabilities. Their eMM used manually optimized weights to combine
four n-gram scores (products of relative frequencies) into one n-gram score. Xia, Lewis,
and Poon (2009) used Markov logic networks (Richardson & Domingos, 2006) to predict
the language used in interlinear glossed text examples contained in linguistic papers.

Hayta, Takçı, and Eminli (2013) evaluated the use of unsupervised Fuzzy C Means
algorithm (“FCM”) in language identification (Bezdek, Ehrlich, & Full, 1984). The unsu-
pervised algorithm was used on the training data to create document clusters. Each cluster
was tagged with the language having the most documents in the cluster. Then in the
identification phase, the test text was mapped to the closest cluster and identified with its

718



Automatic Language Identification in Texts: A Survey

language. A supervised centroid classifier based on cosine similarity obtained clearly better
results in their experiments (93% vs. 77% accuracy).

Barbaresi (2016) and Martinc et al. (2017) evaluated the extreme gradient boosting
(“XGBoost”) method (Chen & Guestrin, 2016). Barbaresi (2016) found that gradient boost-
ing gave better results than RFs, while conversely, Martinc et al. (2017) found that LR gave
better results than gradient boosting.

Benedetto, Caglioti, and Loreto (2002) used compression methods for LI, whereby a
single test document is added to the training text of each language in turn, and the language
with the smallest difference (after compression) between the sizes of the original training
text file and the combined training and test document files is selected as the prediction.
This has obvious disadvantages in terms of real-time computational cost for prediction,
but is closely related to language modeling approaches to LI (with the obvious difference
that the language model does not need to be retrained for each test document). In terms
of compression methods, Haţegan, Bârligǎ, and Tǎbuş (2009) experimented with Maximal
Tree Machines (“MTMs”), and Bush (2014) used LZW-based compression.

Very popular in text categorization and topic modeling, Tratz, Briesch, Laoudi, and
Voss (2013), Tratz (2014), and Voss et al. (2014) used Latent Dirichlet Allocation (“LDA”:
Blei et al., 2003) based features in classifying tweets between Arabic dialects, English, and
French. Each tweet was assigned with an LDA topic, which was used as one of the features
of an LR classifier.

Poulston et al. (2017) used a Gaussian Process classifier with an RBF kernel in an
ensemble with an LR classifier. Their ensemble achieved only ninth place in the PAN
Author Profiling language variety shared task (Rangel et al., 2017b) and did not reach the
results of the baseline for the task.

Espichán-Linares and Oncevay-Marcos (2017, 2018) used a Passive Aggressive classifier
(Crammer, Dekel, Keshet, Shalev-Shwartz, & Singer, 2006), which proved to be almost as
good as the SVMs in their evaluations between five different machine learning algorithms
from the same package.

6.11 Ensemble Methods

Ensemble methods are meta-classification methods capable of combining several base clas-
sifiers into a combined model via a “meta-classifier” over the outputs of the base classifiers,
either explicitly trained or using some heuristic. It is a simple and effective approach that is
used widely in machine learning to boost results beyond those of the individual base classi-
fiers, and particularly effective when applied to large numbers of individually uncorrelated
base classifiers.

Majority and Plurality Voting Rau (1974) used simple majority voting to combine
classifiers using different features and methods. In majority voting, the language of the test
document is identified if a majority (> 1

2) of the classifiers in the ensemble vote for the
same language. In plurality voting, the language with most votes is chosen as in the simple
scoring method (Equation 17). Some authors also refer to plurality voting as majority
voting.

Carter, Weerkamp, and Tsagkias (2013) used majority voting in tweet LI. Giwa and
Davel (2014) used majority voting with JSM classifiers. Goutte et al. (2014) and Malmasi
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and Dras (2015a) used majority voting between SVM classifiers trained with different fea-
tures. Gupta et al. (2014) used majority voting to combine four classifiers: RF, random tree,
SVM, and DT. Doval, Vilares, and Vilares (2014) and Lui and Baldwin (2014) used majority
voting between three off-the-shelf language identifiers. Leidig (2014) used majority voting
between perplexity-based and other classifiers. Zamora et al. (2014) used majority voting
between three sum of relative frequencies-based classifiers where values were weighted with
different weighting schemes. Malmasi and Dras (2015b) evaluated six ensemble methods
with SVMs, and found that the mean probability rule performed better than plurality vot-
ing. Later, Malmasi and Dras (2017) confirmed these earlier findings. Also, Malmasi and
Zampieri (2016, 2017a, 2017b) and Mendoza and Mendelsohn (2017) used plurality voting
with SVMs.

Gamallo et al. (2017) used voting between several perplexity-based classifiers with dif-
ferent features at the 2017 DSL shared task. A voting ensemble gave better results on the
closed track than a singular word-based perplexity classifier (0.9025 weighted F1-score over
0.9013), but worse results on the open track (0.9016 with ensemble and 0.9065 without).

Highest Probability Ensemble In a highest probability ensemble, the winner is simply
the language which is given the highest probability by any of the individual classifiers in the
ensemble. You et al. (2008) used Gaussian Mixture Models (“GMM”) to give probabilities
to the outputs of classifiers using different features. Doval et al. (2014) used higher con-
fidence between two off-the-shelf language identifiers. Goutte et al. (2014) used GMM to
transform SVM prediction scores into probabilities. Malmasi and Dras (2015b, 2017) used
highest confidence over a range of base SVMs. Malmasi and Dras (2017) used an ensemble
composed of low-dimension hash-based classifiers. According to their experiments, hash-
ing provided up to 86% dimensionality reduction without negatively affecting performance.
Their probability-based ensemble obtained 89.2% accuracy, while the voting ensemble got
88.7%. Balažević et al. (2016) combined an SVM and a LR classifier.

Mean Probability Rule A mean probability ensemble can be used to combine classifiers
that produce probabilities (or other mutually comparable values) for languages. The average
of values for each language over the classifier results is used to determine the winner and
the results are equal to the sum of values method (Equation 18). Malmasi and Dras (2015b)
evaluated several ensemble methods and found that the mean probability ensemble attained
better results than plurality voting, median probability, product, highest confidence, or
Borda count ensembles. With the mean probability ensemble which combined several SVM
classifiers, Malmasi and Dras (2015b) outperformed all the other participating teams on the
DSL 2015 shared task.

Median Probability Rule In a median probability ensemble, the medians over the
probabilities given by the individual classifiers are calculated for each language. Malmasi
and Dras (2015b) and Malmasi and Zampieri (2016) used a median probability rule ensemble
over SVM classifiers. Consistent with the results of Malmasi and Dras (2015b), Malmasi and
Zampieri (2016) found that a mean ensemble was better than a median ensemble, attaining
68% accuracy vs. 67% for the median ensemble.

Product Rule A product rule ensemble takes the probabilities for the base classifiers and
calculates their product (or sum of the log probabilities), with the effect of penalising any
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language where there is a particularly low probability from any of the base classifiers. Giwa
and Davel (2014) used log probability voting with JSM classifiers. Giwa and Davel (2014)
observed a small increase in average accuracy using the product ensemble over a majority
voting ensemble.

k-best Ensemble (k-best) In a k-best ensemble, several models are created for each
language g by partitioning the corpus Cg into separate samples. The score R(Cgi ,M) is
calculated for each model. For each language, plurality voting is then applied to the k

models with the best scores to predict the language of the test document M . Jalam and
Teytaud (2001a) evaluated k-best with k = 1 based on several similarity measures. Kerwin
(2006) compared k = 10 and k = 50 and concluded that there was no major difference
in accuracy when distinguishing between six languages (100 character test set). Baykan,
Henzinger, and Weber (2008) experimented with k-best classifiers, but they gave clearly
worse results than the other classifiers they evaluated. Barman et al. (2014b) used k-best
in two phases, first selecting k1 = 800 closest neighbors with simple similarity, and then
using k2 = 16 with a more advanced similarity ranking.

Bootstrap Aggregating (Bagging) In bagging, independent samples of the training
data are generated by random sampling with replacement, individual classifiers are trained
over each such training data sample, and the final classification is determined by plurality
voting (Breiman, 1996). Martinc et al. (2017) evaluated the use of bagging with an LR
classifier in PAN 2017 language variety identification shared task (Rangel et al., 2017b),
however, bagging did not improve the accuracy in the 10-fold cross-validation experiments
on the training set. Sierra, Montes-y Gómez, Solorio, and González (2017) used bagging
with word convolutional neural networks (“W-CNN”) in the same shared task, attaining 7th
position. Simaki et al. (2017) used bagging with DTs in English national variety detection
and found DT-based bagging to be the best evaluated method when all 60 different features
(a wide selection of formal, POS, lexicon-based, and data-based features) were used, at-
taining 73.86% accuracy. Simaki et al. (2017) continued the experiments using the ReliefF
feature selection algorithm from the WEKA toolkit to select the most efficient features, and
achieved 77.32% accuracy over the reduced feature set using a NB classifier.

Rotation Forest Rangel et al. (2017a) evaluated the Rotation Forest (Rodríguez, Kuncheva,
& Alonso, 2006) meta classifier for DTs. The method randomly splits the used features into
a pre-determined number of subsets and then uses PCA for each subset. It obtained 66.6%
accuracy, attaining fifth place among the twelve methods evaluated.

Adaptive Boosting (AdaBoost) The AdaBoost algorithm (Freund & Schapire, 1997)
examines the performance of the base classifiers on the evaluation set and iteratively boosts
the significance of misclassified training instances, with a restart mechanism to avoid local
minima. AdaBoost was the best of the five machine learning techniques evaluated by van
der Lee and Bosch (2017), faring better than C4.5 (Quinlan, 1993), NB, RF, and linear
SVM. Rangel et al. (2017a) used the LogitBoost variation of AdaBoost (Friedman, Hastie,
& Tibshirani, 2000). It obtained 67.0% accuracy, attaining third place among the twelve
methods evaluated.

Stacked generalization (Stacking) In stacking, a higher level classifier is explicitly
trained on the output of several base classifiers (Wolpert, 1992). You et al. (2008) used
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AdaBoost.ECC and CART to combine classifiers using different features. More recently,
Mathur et al. (2017) used LR to combine the results of five RNNs. As an ensemble they
produced better results than NB and LR, which were better than the individual RNNs. Also
in 2017, Malmasi and Zampieri (2017a, 2017b) used RF to combine several linear SVMs
with different features. The system used by Malmasi and Zampieri (2017b) ranked first in
the German dialect identification shared task, and the system by Malmasi and Zampieri
(2017a) came second (71.65% accuracy) in the Arabic dialect identification shared task.

7. Empirical Evaluation
In the previous two sections, we have alluded to issues of evaluation in LI research to date.
In this section, we examine the literature more closely, providing a broad overview of the
evaluation metrics that have been used, as well as the experimental settings in which LI
research has been evaluated.

7.1 Standardized Evaluation for LI
The most common approach is to treat the task as a document-level classification problem.
Given a set of evaluation documents, each having a known correct label from a closed set of
labels (often referred to as the “gold-standard”), and a predicted label for each document
from the same set, the document-level accuracy is the proportion of documents that are
correctly labeled over the entire evaluation collection. This is the most frequently reported
metric and conveys the same information as the error rate, which is simply the proportion
of documents that are incorrectly labeled (i.e. 1− accuracy).

Authors sometimes provide a per-language breakdown of results. There are two dis-
tinct ways in which results are generally summarized per-language: (1) precision, in which
documents are grouped according to their predicted language; and (2) recall, in which doc-
uments are grouped according to what language they are actually written in. Earlier work
has tended to only provide a breakdown based on the correct label (i.e. only reporting per-
language recall). This gives us a sense of how likely a document in any given language is
to be classified correctly, but does not give an indication of how likely a prediction for a
given language is of being correct. Under the monolingual assumption (i.e. each document
is written in exactly one language), this is not too much of a problem, as a false negative for
one language must also be a false positive for another language, so precision and recall are
closely linked. Nonetheless, authors have recently tended to explicitly provide both preci-
sion and recall for clarity. It is also common practice to report an F-score F , which is the
harmonic mean of precision and recall. The F-score (also sometimes called F1-score or F-
measure) was developed in IR to measure the effectiveness of retrieval with respect to a user
who attaches different relative importance to precision and recall (van Rijsbergen, 1979).
When used as an evaluation metric for classification tasks, it is common to place equal
weight on precision and recall (hence “F1”-score, in reference to the β hyper-parameter,
which equally weights precision and recall when β = 1).

In addition to evaluating performance for each individual language, authors have also
sought to convey the relationship between classification errors and specific sets of languages.
Errors in LI systems are generally not random; rather, certain sets of languages are much
more likely to be confused. The typical method of conveying this information is through
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the use of a confusion matrix, a tabulation of the distribution of (predicted language, actual
language) pairs.

Presenting full confusion matrices becomes problematic as the number of languages
considered increases, and as a result has become relatively uncommon in work that covers
a broader range of languages. Per-language results are also harder to interpret as the
number of languages increases, and so it is common to present only collection-level summary
statistics. There are two conventional methods for summarizing across a whole collection:
(1) giving each document equal weight; and (2) giving each class (i.e. language) equal
weight. (1) is referred to as a micro-average, and (2) as a macro-average. For LI under
the monolingual assumption, micro-averaged precision and recall are the same, since each
instance of a false positive for one language must also be a false negative for another
language. In other words, micro-averaged precision and recall are both simply the collection-
level accuracy. On the other hand, macro-averaged precision and recall give equal weight to
each language. In datasets where the number of documents per language is the same, this
again works out to being the collection-level average. However, LI research has frequently
dealt with datasets where there is a substantial skew between classes. In such cases, the
collection-level accuracy is strongly biased towards more heavily-represented languages. To
address this issue, in work on skewed document collections, authors tend to report both the
collection-level accuracy and the macro-averaged precision/recall/F-score, in order to give
a more complete picture of the characteristics of the method being studied.

Whereas the notions of macro-averaged precision and recall are clearly defined, there
are two possible methods to calculate the macro-averaged F-score. The first is to calculate
it as the harmonic mean of the macro-averaged precision and recall, and the second is to
calculate it as the arithmetic mean of the per-class F-score.

The comparability of published results is also limited by the variation in size and source
of the data used for evaluation. In work to date, authors have used data from a variety
of different sources to evaluate the performance of proposed solutions. Typically, data
for a number of languages is collected from a single source (for example web pages: Lins
& Gonçalves, 2004, or a newswire source: Takçı & Güngör, 2012), and the number of
languages considered varies widely. Earlier work tended to focus on a smaller number of
Western European languages. Notable exceptions are Sibun and Spitz (1994), which con-
sidered 23 languages including some African and Asian languages, and Kikui (1996), which
included Japanese. Later work has shifted focus to supporting larger numbers of languages
simultaneously, with the work of Brown (2014b) pushing the upper bound, reporting a lan-
guage identifier that supports over 1300 languages. The increased size of the language set
considered is partly due to the increased availability of language-labeled documents from
novel sources such as Wikipedia and Twitter. This supplements existing data from trans-
lations of the Universal Declaration of Human Rights, bible translations, as well as parallel
texts from MT datasets such as OPUS (Tiedemann, 2012) and SETimes, and European
Government data such as JRC-Acquis (Steinberger et al., 2006). These factors have led
to a shift away from proprietary datasets such as the ECI multilingual corpus that were
commonly used in earlier research. As more languages are considered simultaneously, the
accuracy of LI systems decreases. A particularly striking illustration of this is the evalua-
tion results by Jauhiainen et al. (2017b) for the logLIGA method (Vogel & Tresner-Kirsch,
2012). Vogel and Tresner-Kirsch (2012) report an accuracy of 99.8% over tweets (averaging
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80 characters) in six European languages as opposed to the 97.9% from the original LIGA
method. The LIGA and logLIGA implementations by Jauhiainen et al. (2017b) have com-
parable accuracy for six languages, but the accuracy for 285 languages (with 70 character
test length) is only slightly over 60% for logLIGA and the original LIGA method is at almost
85%. Many evaluations are not directly comparable as the test sizes, language sets, and
hyper-parameters differ. A particularly good example is the method of Cavnar and Trenkle
(1994). The original paper reports an accuracy of 99.8% over eight European languages
(>300 bytes test size). Lui and Baldwin (2011) report an accuracy of 68.6% for the method
over a dataset of 67 languages (500 byte test size), and Jauhiainen et al. (2017b) report an
accuracy of over 90% for 285 languages (25 character test size).

Separate to the question of the number and variety of languages included are issues
regarding the quantity of training data used. A number of studies have examined the
relationship between LI accuracy and quantity of training data through the use of learning
curves. The general finding is that LI accuracy increases with more training data, though
there are some authors that report an optimal amount of training data, where adding more
training data decreases accuracy thereafter (Ljubešić, Mikelić, & Boras, 2007). Overall, it
is not clear whether there is a universal quantity of data that is “enough” for any language,
rather this amount appears to be affected by the particular set of languages as well as the
domain of the data. As a rough gauge, training data quantities on the order of 50KB per
language onwards appear to be quite common (Souter et al., 1994; Adams & Resnik, 1997;
Prager, 1999; Xafopoulos et al., 2004; Takçı & Güngör, 2012), and most of the reported
learning curves appear to plateau somewhere around 100KB to 1MB per language. The
breakdown presented by Baldwin and Lui (2010a) shows that with less than 100KB per
language, there are some languages where classification accuracy is near perfect, whereas
there are others where it is very poor.

Another aspect that is frequently reported on is how long a sample of text needs to be
before its language can be correctly detected. Unsurprisingly, the general consensus is that
longer samples are easier to classify correctly. There is a strong interest in classifying short
segments of text, as certain applications naturally involve short text documents, such as LI
of microblog messages or search engine queries. Another area where LI of texts as short as
one word has been investigated is in the context of dealing with documents that contain text
in more than one language, where word-level LI has been proposed as a possible solution
(see Section 10.6). These outstanding challenges have led to research focused specifically
on LI of shorter segments of text, which we discuss in more detail in Section 10.7.

From a practical perspective, knowing the rate at which a LI system can process and clas-
sify documents is useful as it allows a practitioner to predict the time required to process
a document collection given certain computational resources. However, so many factors
influence the rate at which documents are processed that comparison of absolute values
across publications is largely meaningless. Instead, it is more valuable to consider publica-
tions that compare multiple systems under controlled conditions (same computer hardware,
same evaluation data, etc.). The most common observations are that classification times
between different algorithms can differ by orders of magnitude (Poutsma, 2002; Lui & Bald-
win, 2011, 2012; Majliš, 2012b; Takçı & Ekinci, 2012; Takçı & Güngör, 2012; Brown, 2013),
and that the fastest methods are not always the most accurate (Poutsma, 2002; Majliš,
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2012b; Brown, 2013). Beyond that, the diversity of systems tested and the variety in the
test data make it difficult to draw further conclusions about the relative speed of algorithms.

Where explicit feature selection is used, the number of features retained is a parameter
of interest, as it affects both the memory requirements of the LI system and its classification
rate. In general, a smaller feature set results in a faster and more lightweight identifier.
Relatively few authors give specific details of the relationship between the number of features
selected and accuracy (Cavnar & Trenkle, 1994; Jauhiainen, 2010; Vatanen et al., 2010;
Brown, 2012; Majliš, 2012b; Jhamtani et al., 2014). A potential reason for this is that the
improvement in accuracy plateaus with increasing feature count (Vatanen et al., 2010; Lui
& Baldwin, 2011; Brown, 2012; Lui & Baldwin, 2012), though the exact number of features
required varies substantially with the method and the data used. At the lower end of the
scale, Cavnar and Trenkle (1994) report that 300–400 features per language is sufficient.
Conversely Jauhiainen et al. (2017b) found that, for the same method, the best results for
the evaluation set were attained with 20,000 features per language.

7.2 Corpora Used for LI Evaluation

As discussed in Section 7.1, the objective comparison of different methods for LI is difficult
due to the variation in the data that different authors have used to evaluate LI methods.
Baldwin and Lui (2010a) emphasize this by demonstrating how the performance of a system
can vary according to the data used for evaluation. This implies that comparisons of results
reported by different authors may not be meaningful, as a strong result in one paper may
not translate into a strong result on the dataset used in a different paper. In other areas of
research, authors have proposed standardized corpora to allow for the objective comparison
of different methods.

Some authors have released datasets to accompany their work, to allow for direct repli-
cation of their experiments and encourage comparison and standardization. Table 11 lists
a number of datasets that have been released to accompany specific LI publications. In
this list, we only include corpora that were prepared specifically for LI research, and that
include the full text of documents. Corpora of language-labelled Twitter messages that only
provide document identifiers are also available, but reproducing the full original corpus is
always an issue as the original Twitter messages are deleted or otherwise made unavailable.

One challenge in standardizing datasets for LI is that the codes used to label languages
are not fully standardized, and a large proportion of labeling systems only cover a minor
portion of the languages used in the world today (Constable & Simons, 2000). Xia, Lewis,
and Lewis (2010) discuss this problem in detail, listing different language code sets, as well
as the internal structure exhibited by some of the code sets. Some standards consider certain
groups of “languages” as varieties of a single macro-language, whereas others consider them
to be discrete languages. An example of this is found in South Slavic languages, where
some language code sets refer to Serbo-Croatian, whereas others make distinctions between
Bosnian, Serbian and Croatian (Tiedemann & Ljubešić, 2012). The unclear boundaries
between such languages make it difficult to build a reference corpus of documents for each
language, or to compare language-specific results across datasets.

Another challenge in standardizing datasets for LI is the great deal of variation that can
exist between data in the same language. We examine this in greater detail in Section 10.2,
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Reference Type Source
Baldwin and Lui (2010a) Multilingual (81) Government Documents, News Texts, Wikipedia

https://github.com/varh1i/language_detection/tree/master/src/main/resources/naacl2010-langid

Baldwin and Lui (2010b) Multilingual (74) Wikipedia (synthetic multilingual docs)
http://people.eng.unimelb.edu.au/tbaldwin/etc/altw2010-langid.tgz

Vatanen et al. (2010) Multiglingual (281) Universal Declaration of Human Rights (UDHR)
http://research.ics.aalto.fi/cog/data/udhr/

Tromp and Pechenizkiy (2011) Multilingual (6) Twitter
http://www.win.tue.nl/~mpechen/projects/smm/LIGA_Benelearn11_dataset.zip

Zaidan and Callison-Burch (2011) Arabic dialects (5) Arabic Online Commentary (AOC)
https://github.com/sjeblee/AOC

Lui and Baldwin (2011) Multilingual Various
http://people.eng.unimelb.edu.au/tbaldwin/etc/ijcnlp2011-langid.tgz

Majliš (2012b) Multilingual (124) Wikipedia (YALI)
http://ufal.mff.cuni.cz/tools/yali

Tiedemann and Ljubešić (2012) Multilingual (10) SETimes (News Texts)
http://www.nljubesic.net/resources/corpora/setimes/

Brown (2013) Multilingual (970/1279) Bible Translations, Wikipedia
http://sourceforge.net/projects/la-strings/files/Language-Data/

King and Abney (2013) Multilingual (30) Web Crawl
http://www-personal.umich.edu/~benking/resources/mixed-language-annotations-release-v1.0.tgz

Lui and Baldwin (2014) Multilingual (65) Twitter
http://people.eng.unimelb.edu.au/tbaldwin/data/lasm2014-twituser-v1.tgz

Lui et al. (2014a) Multilingual (156) WikipediaMulti
http://people.eng.unimelb.edu.au/tbaldwin/etc/wikipedia-multi-v6.tgz

Tan et al. (2014) Multilingual (22) News Texts
http://ttg.uni-saarland.de/resources/DSLCC/

Chanda et al. (2016b) Code-switching (2) Facebook chats
https://github.com/ArunavhaChanda/Facebook-Code-Mixed-Corpus

Blodgett, Wei, and O’Connor (2017) Multilingual (70) Twitter70
http://slanglab.cs.umass.edu/TwitterLangID/

Table 11: Published LI Datasets

where we discuss how the same language can use a number of different orthographies,
can be digitized using a number of different encodings, and may also exist in transliterated
forms. The issue of variation within a language complicates the development of standardized
datasets, due to challenges in determining which variants of a language should be included.
Since we have seen that the performance of LI systems can vary per-domain (Baldwin &
Lui, 2010a), that LI research is often motivated by target applications (see Section 8), and
that domain-specific information can be used to improve accuracy (see Section 10.9), it is
often unsound to use a generic LI dataset to develop a language identifier for a particular
domain.

A third challenge in standardizing datasets for LI is the cost of obtaining correctly-
labeled data. Manual labeling of data is usually prohibitively expensive, as it requires
access to native speakers of all languages that the dataset aims to include. Large quantities
of raw text data are available from sources such as web crawls or Wikipedia, but this data is
frequently mislabeled (e.g. most non-English Wikipedias still include some English-language
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documents). In constructing corpora from such resources, it is common to use some form
of automatic LI, but this makes such corpora unsuitable for evaluation purposes as they
are biased towards documents that can be correctly identified by automatic systems (Lui &
Baldwin, 2014). Future work in this area could investigate other means of ensuring correct
gold-standard labels while minimizing the annotation cost.

Despite these challenges, standardized datasets are critical for replicable and comparable
research in LI. Where a subset of data is used from a larger collection, researchers should
include details of the specific subset, including any breakdown into training and test data, or
partitions for cross-validation. Where data from a new source is used, justification should be
given for its inclusion, as well as some means for other researchers to replicate experiments
on the same dataset.

7.3 LI Shared Tasks

To address specific sub-problems in LI, a number of shared tasks have been organized
on problems such as LI in multilingual documents (Baldwin & Lui, 2010b), code-switched
data (Solorio et al., 2014), discriminating between closely related languages (Zampieri, Tan,
Ljubešić, & Tiedemann, 2014), and dialect and language variety identification in various lan-
guages (Grouin, Forest, Da Sylva, Paroubek, & Zweigenbaum, 2011; Zampieri et al., 2017;
Rangel et al., 2017b; Ali, Vogel, & Renals, 2017). Shared tasks are important for LI because
they provide datasets and standardized evaluation methods that serve as benchmarks for
the LI community. We summarize all LI shared tasks organized to date in Table 12.

Generally, datasets for shared tasks have been made publicly available after the con-
clusion of the task, and are a good source of standardized evaluation data. However, the
shared tasks to date have tended to target specific sub-problems in LI, and no general,
broad-coverage LI datasets have been compiled. Widespread interest in LI over closely-
related languages has resulted in a number of shared tasks that specifically tackle the issue.
Some tasks have focused on varieties of a specific language. For example, the DEFT2010
shared task (Grouin et al., 2011) examined varieties of French, requiring participants to
classify French documents with respect to their geographical source, in addition to the
decade in which they were published. Another example is the Arabic Dialect Identification
(“ADI”) shared task at the VarDial workshop (Malmasi, 2017; Zampieri et al., 2017), and
the Arabic Multi-Genre Broadcast (“MGB”) Challenge (Ali et al., 2017).

Two shared tasks focused on a narrow group of languages using Twitter data. The first
was TweetLID, a shared task on LI of Twitter messages according to six languages in com-
mon use in Spain, namely: Spanish, Portuguese, Catalan, English, Galician, and Basque (in
order of the number of documents in the dataset) (Zubiaga et al., 2014, 2016). The organiz-
ers provided almost 35,000 Twitter messages, and in addition to the six monolingual tags,
supported four additional categories: undetermined, multilingual (i.e. the message contains
more than one language, without requiring the system to specify the component languages),
ambiguous (i.e. the message is ambiguous between two or more of the six target languages),
and other (i.e. the message is in a language other than the six target languages). The second
shared task was the PAN lab on authorship profiling 2017 (Rangel et al., 2017b). The PAN
lab on authorship profiling is held annually and historically has focused on age, gender,
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Year – Title Reference

2010 – DÉfi Fouille de Texte (DEFT) Grouin et al. (2011)
https://deft.limsi.fr

2010 – Australasian Language Technology Workshop Baldwin and Lui (2010b)
http://www.alta.asn.au

2014 – Twitter Language Identification Workshop at SEPLN 2014 Zubiaga et al. (2014)
http://komunitatea.elhuyar.org/tweetlid/?lang=en_us

2014 – Computational Approaches to Code Switching Solorio et al. (2014)
http://emnlp2014.org/workshops/CodeSwitch/call.html

2014 – First DSL Shared Task at VarDial Zampieri et al. (2014)
http://corporavm.uni-koeln.de/vardial/sharedtask.html

2015 – Second DSL Shared Task at VarDial Zampieri et al. (2015)
http://ttg.uni-saarland.de/lt4vardial2015/dsl.html

2016 – First Arabic Dialect Identification (ADI) at VarDial Malmasi et al. (2016)
http://ttg.uni-saarland.de/vardial2016/dsl2016.html

2016 – Third DSL Shared Task at VarDial Malmasi et al. (2016)
http://ttg.uni-saarland.de/vardial2016/dsl2016.html

2017 – Second Arabic Dialect Identification (ADI) at VarDial Zampieri et al. (2017)
http://ttg.uni-saarland.de/vardial2017/sharedtask2017.html

2017 – Fourth DSL Shared Task at VarDial Zampieri et al. (2017)
http://ttg.uni-saarland.de/vardial2017/sharedtask2017.html

2017 – First German Dialect Identification (ADI) at VarDial Zampieri et al. (2017)
http://ttg.uni-saarland.de/vardial2017/sharedtask2017.html

2017 – PAN lab on Author Profiling Rangel et al. (2017b)
http://pan.webis.de/clef17/pan17-web/author-profiling.html

2017 – Arabic Multi-Genre Broadcast (MGB) Challenge Ali et al. (2017)
http://www.mgb-challenge.org/arabic.html

Table 12: List of LI shared tasks.

and personality traits prediction in social media. In 2017, the competition introduced the
inclusion of language varieties and dialects of Arabic, English, Spanish, and Portuguese.

More ambitiously, the four editions of the Discriminating between Similar Languages
(DSL) (Zampieri et al., 2014, 2015; Malmasi et al., 2016; Zampieri et al., 2017) shared tasks
required participants to discriminate between a set of languages in several language groups,
each consisting of highly-similar languages or national varieties of that language. The
dataset, entitled DSL Corpus Collection (“DSLCC”) (Tan et al., 2014), and the languages
included are summarized in Table 13. Historically the best-performing systems (Goutte
et al., 2014; Lui et al., 2014b; Bestgen, 2017) have approached the task via hierarchical
classification, first predicting the language group, then the language within that group.
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Language/Variety v1.0 (2014) v2.0/2.1 (2015) v3.0 (2016) v4.0 (2017)

Bosnian ✓ ✓ ✓ ✓

Croatian ✓ ✓ ✓ ✓

Serbian ✓ ✓ ✓ ✓

Czech ✓ ✓

Slovak ✓ ✓

Indonesian ✓ ✓ ✓ ✓

Malay ✓ ✓ ✓ ✓

Brazilian Portuguese ✓ ✓ ✓ ✓

European Portuguese ✓ ✓ ✓ ✓

Macanese Portuguese ✓

Argentine Spanish ✓ ✓ ✓ ✓

Castilian Spanish ✓ ✓ ✓ ✓

Mexican Spanish ✓ ✓

Peruvian Spanish ✓

Bulgarian ✓

Macedonian ✓

Canadian French ✓ ✓

Hexagonal French ✓ ✓

American English ✓

British English ✓

Persian ✓

Dari ✓

Table 13: DSLCC: the languages included in each version of the corpus collection, grouped by
language similarity.

8. Application Areas
There are various reasons to investigate LI. Studies in LI approach the task from different
perspectives, and with different motivations and application goals in mind. In this section,
we briefly summarize what these motivations are, and how their specific needs differ.

The oldest motivation for automatic LI is perhaps in conjunction with translation
(Beesley, 1988). Automatic LI is used as a pre-processing step to determine what transla-
tion model to apply to an input text, whether it be by routing to a specific human translator
or by applying MT. Such a use case is still very common, and can be seen in the Google
Chrome web browser (Google, 2019), where a built-in LI module is used to offer MT services
to the user when the detected language of the web page being visited differs from the user’s
language settings.

NLP components such as POS taggers and parsers tend to make a strong assumption
that the input text is monolingual in a given language. Similarly to the translation case,
LI can play an obvious role in routing documents written in different languages to NLP
components tailored to those languages. More subtle is the case of documents with mixed
multilingual content, the most commonly-occurring instance of which is foreign inclusion,
where a document is predominantly in a single language (e.g. German or Japanese) but
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is interspersed with words and phrases (often technical terms) from a language such as
English. For example, Alex, Dubey, and Keller (2007) found that around 6% of word
tokens in German text sourced from the Internet are English inclusions. In the context of
POS tagging, one strategy for dealing with inclusions is to have a dedicated POS for all
foreign words, and force the POS tagger to perform both foreign inclusion detection and
POS-tag these words in the target language; this is the approach taken in the Penn POS
tagset, for example (Marcus, Santorini, & Marcinkiewicz, 1993). An alternative strategy is
to have an explicit foreign inclusion detection pre-processor, and some special handling of
foreign inclusions. For example, in the context of German parsing, Alex et al. (2007) used
foreign inclusion predictions to restrict the set of (German) POS-tags used to form a parse
tree, and found that this approach substantially improved parser accuracy.

Another commonly-mentioned use case is for multilingual document storage and re-
trieval. A document retrieval system (such as, but not limited to, a web search engine) may
be required to index documents in multiple languages. In such a setting, it is common to
apply LI at two points: (1) to the documents being indexed; and (2) to the queries being
executed on the collection. Simple keyword matching techniques can be problematic in
text-based document retrieval, because the same word can be valid in multiple languages.
A classic example of such words (known as “false friends”) includes Gift, which in Ger-
man means “poison”. Performing LI on both the document and the query helps to avoid
confusion between such terms, by taking advantage of the context in which it appears in
order to infer the language. This has resulted in specific work in LI of web pages, as well
as search engine queries. Roy, Choudhury, Majumder, and Agarwal (2013) and Sequeira
et al. (2015) give overviews of shared tasks specifically concentrating on language labeling
of individual search query words. Having said this, in many cases, the search query itself
does a sufficiently good job of selecting documents in a particular language, and overt LI is
often not performed in mixed multilingual search contexts.

Automatic LI has also been used to facilitate linguistic and other text-based research.
Suzuki et al. (2002) report that their motivation for developing a language identifier was “to
find out how many web pages are written in a particular language”. Automatic LI has been
used in constructing web-based corpora. The Crúbadán project (Scannell, 2007) and the
Finno-Ugric Languages and the Internet project (Jauhiainen, Jauhiainen, & Lindén, 2015)
make use of automated LI techniques to gather linguistic resources for under-resourced
languages. Similarly, the Online Database of INterlinear text (“ODIN”: Lewis & Xia, 2010)
uses automated LI as one of the steps in collecting interlinear glossed text from the web for
purposes of linguistic search and bootstrapping NLP tools.

One challenge in collecting linguistic resources from the web is that documents can
be multilingual (i.e. contain text in more than one language). This is problematic for
standard LI methods, which assume that a document is written in a single language, and
has prompted research into segmenting text by language, as well as word-level LI, to enable
extraction of linguistic resources from multilingual documents. A number of LI shared
tasks discussed in detail in Section 7.3 included data from social media. Examples are
the TweetLID shared task on tweet LI held at SEPLN 2014 (Zubiaga et al., 2014, 2016),
the data sets used in the first and second shared tasks on LI in code-switched data which
were partially taken from Twitter (Solorio et al., 2014; Molina et al., 2016), and the third
edition of the DSL shared task which contained two out-of-domain test sets consisting of
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tweets (Malmasi et al., 2016). The 5th edition of the PAN at CLEF author profiling task
included language variety identification for tweets (Rangel et al., 2017b). There has also
been research on identifying the language of private messages between eBay users (Mayer,
2012), presumably as a filtering step prior to more in-depth data analysis.

9. Off-the-Shelf Language Identifiers

An “off-the-shelf” language identifier is software that is distributed with pre-trained models
for a number of languages, so that a user is not required to provide training data before
using the system. Such a setup is highly attractive to many end-users of automatic LI whose
main interest is in utilizing the output of a language identifier rather than implementing
and developing the technique. To this end, a number of off-the-shelf language identifiers
have been released over time. Many authors have evaluated these off-the-shelf identifiers,
including a recent evaluation involving 13 language identifiers which was carried out by
Pawelka and Jürgens (2015). In this section, we provide a brief summary of open-source or
otherwise free systems that are available, as well as the key characteristics of each system.
We have also included dates of when the software has been last updated as of October 2018.

TextCat is the most well-known Perl implementation of the out-of-place method, it
lists models for 76 languages in its off-the-shelf configuration; the program is not actively
maintained (van Noord, 1997). TextCat is not the only example of an off-the-shelf imple-
mentation of the out-of-place method: other implementations include libtextcat with 76
language models (Scheelen, 2003), JTCL with 15 languages (Hammerl, 2013), and mguesser
with 104 models for different language-encoding pairs (Barkov, 2008). The main issue ad-
dressed by later implementations is classification speed: TextCat is implemented in Perl
and is not optimized for speed, whereas implementations such as libtextcat and mguesser
have been specifically written to be fast and efficient. whatlang-rs uses an algorithm based
on character trigrams and refers the user to the Cavnar and Trenkle (1994) article. It comes
pre-trained with 83 languages (Popatov, 2016).

ChromeCLD is the language identifier embedded in the Google Chrome web browser
(Sites, 2013). It uses a NB classifier, and script-specific classification strategies. ChromeCLD
assumes that all the input is in UTF-8, and assigns the responsibility of encoding detection
and transcoding to the user. ChromeCLD uses Unicode information to determine the script of
the input. ChromeCLD also implements a number of pre-processing heuristics to help boost
performance on its target domain (web pages), such as stripping character sequences like
.jpg. The standard implementation supports 83 languages, and an extended model is also
available, that supports 160 languages.

LangDetect is a Java library that implements a language identifier based on a NB
classifier trained over character n-grams. The software comes with pre-trained models for 53
languages, using data from Wikipedia (Nakatani, 2010). LangDetect makes use of a range
of normalization heuristics to improve the performance on particular languages, including:
(1) clustering of Chinese/Japanese/Korean characters to reduce sparseness; (2) removal of
“language-independent” characters, and other text normalization; and (3) normalization of
Arabic characters.

langid.py is a Python implementation of the method described by Lui and Baldwin
(2011), which exploits training data for the same language across multiple different sources
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of text to identify sequences of characters that are strongly predictive of a given language,
regardless of the source of the text. This feature set is combined with a NB classifier,
and is distributed with a pre-trained model for 97 languages prepared using data from 5
different text sources (Lui, 2011). Lui and Baldwin (2012) provide an empirical comparison
of langid.py to TextCat, LangDetect and ChromeCLD and find that it compares favorably
both in terms of accuracy and classification speed. There are also implementations of the
classifier component (but not the training portion) of langid.py in Java (Weiss, 2013), C
(Lui, 2014b), and JavaScript (Lui, 2014c).

whatlang (Brown, 2013) uses a vector-space model with per-feature weighting on char-
acter n-gram sequences. One particular feature of whatlang is that it uses discriminative
training in selecting features, i.e. it specifically makes use of features that are strong evi-
dence against a particular language, which is generally not captured by NB models. Another
feature of whatlang is that it uses inter-string smoothing to exploit sentence-level locality in
making language predictions, under the assumption that adjacent sentences are likely to be
in the same language. Brown (2013) reports that this substantially improves the accuracy of
the identifier. Another distinguishing feature of whatlang is that it comes pre-trained with
data for 1400 languages, which is the highest number by a large margin of any off-the-shelf
system (Brown, 2014a).

whatthelang is a recent language identifier written in Python, which utilizes the Fast-
Text NN-based text classification algorithm. It supports 176 languages (Sangeeth, 2017).

YALI implements an off-the-shelf classifier trained using Wikipedia data, covering 122
languages (Majliš, 2012a). Although not described as such, the actual classification algo-
rithm used is a linear model, and is thus closely related to both NB and a cosine-based
vector space model.

In addition to the above-mentioned general-purpose language identifiers, there have
also been efforts to produce pre-trained language identifiers targeted specifically at Twitter
messages. LDIG is a Twitter-specific LI tool with built-in models for 19 languages (Nakatani,
2011). It uses a document representation based on tries (Okanohara & Tsujii, 2009). The
algorithm is a LR classifier using all possible substrings of the data, which is important to
maximize the available information from the relatively short Twitter messages.

Lui and Baldwin (2014) provides a comparison of 8 off-the-shelf language identifiers
applied without re-training to Twitter messages. One issue they report is that comparing
the accuracy of off-the-shelf systems is difficult because of the different subset of languages
supported by each system, which may also not fully cover the languages present in the
target data. The authors choose to compare accuracy over the full set of languages, arguing
that this best reflects the likely use-case of applying an off-the-shelf LI system to new data.
They find that the best individual systems are ChromeCLD, langid.py and LangDetect, but
that slightly higher accuracy can be attained by a simple voting-based ensemble classifier
involving these three systems.

In addition to this, commercial or other closed-source language identifiers and language
identifier services exist, of which we name a few. The Polyglot 3000 (Likasoft, 2015) and
Lextek Language Identifier (Lextek, 2019) are standalone language identifiers for Windows.
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10. Research Directions and Open Issues in LI

Several papers have catalogued open issues in LI (Sibun & Reynar, 1996; Xia et al., 2010;
Hughes et al., 2006; da Silva & Lopes, 2006b; Baldwin & Lui, 2010a; Botha & Barnard,
2012; Malmasi et al., 2016). Some of the issues, such as text representation (Section 5) and
choice of algorithm (Section 6), have already been covered in detail in this survey. In this
section, we synthesize the remaining issues into a single section, and also add new issues
that have not been discussed in previous work. For each issue, we review related work and
suggest promising directions for future work.

10.1 Text Preprocessing

Text preprocessing (also known as normalization) is an umbrella term for techniques where
an automatic transformation is applied to text before it is presented to a classifier. The
aim of such a process is to eliminate sources of variation that are expected to be confound-
ing factors with respect to the target task. Text preprocessing is slightly different from
data cleaning, as data cleaning is a transformation applied only to training data, whereas
normalization is applied to both training and test data. Hughes et al. (2006) raise text
preprocessing as an outstanding issue in LI, arguing that its effects on the task have not
been sufficiently investigated. In this section, we summarize the normalization strategies
that have been proposed in the LI literature.

Case folding is the elimination of capitalization, replacing characters in a text with either
their lower-case or upper-case forms. Basic approaches generally map between [a-z] and
[A-Z] in the ASCII encoding, but this approach is insufficient for extended Latin encodings,
where diacritics must also be appropriately handled. A resource that makes this possible is
the Unicode Character Database (UCD)(Unicode, 2019) which defines uppercase, lowercase
and titlecase properties for each character, enabling automatic case folding for documents
in a Unicode encoding such as UTF-8.

Range compression is the grouping of a range of characters into a single logical set for
counting purposes, and is a technique that is commonly used to deal with the sparsity
that results from character sets for ideographic languages, such as Chinese, that may have
thousands of unique “characters”, each of which is observed with relatively low frequency.
Simões, Almeida, and Byers (2014) use such a technique where all characters in a given range
are mapped into a single “bucket”, and the frequency of items in each bucket is used as a
feature to represent the document. Byte-level representations of encodings that use multi-
byte sequences to represent codepoints achieve a similar effect by “splitting” codepoints.
In encodings such as UTF-8, the codepoints used by a single language are usually grouped
together in “code planes”, where each codepoint in a given code plane shares the same upper
byte. Thus, even though the distribution over codepoints may be quite sparse, when the
byte-level representation uses byte sequences that are shorter than the multi-byte sequence
of a codepoint, the shared upper byte will be predictive of specific languages.

Cleaning may also be applied, where heuristic rules are used to remove some data that
is perceived to hinder the accuracy of the language identifier. For example, Suzuki et al.
(2002) identify HTML entities as a candidate for removal in document cleaning, on the basis
that classifiers trained on data which does not include such entities may drop in accuracy
when applied to raw HTML documents. ChromeCLD includes heuristics such as expanding
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HTML entities, deleting digits and punctuation, and removing SGML-like tags. Similarly,
LangDetect also removes “language-independent characters” such as numbers, symbols,
URLs, and email addresses. It also removes words that are all-capitals and tries to remove
other acronyms and proper names using heuristics.

In the domain of Twitter messages, Tromp and Pechenizkiy (2011) remove links, user-
names, smilies, and hashtags (a Twitter-specific “tagging” feature), arguing that these en-
tities are language independent and thus should not feature in the model. Xafopoulos et al.
(2004) address LI of web pages, and report removing HTML formatting, and applying stop-
ping using a small stopword list. Takçı and Ekinci (2012) carry out LI experiments on the
ECI multilingual corpus and report removing punctuation, space characters, and digits.

The idea of preprocessing text to eliminate domain-specific “noise” is closely related to
the idea of learning domain-independent characteristics of a language (Lui & Baldwin, 2011).
One difference is that normalization is normally heuristic-driven, where a manually-specified
set of rules is used to eliminate unwanted elements of the text, whereas domain-independent
text representations are data-driven, where text from different sources is used to identify
the characteristics that a language shares between different sources. Both approaches share
conceptual similarities with problems such as content extraction for web pages. In essence,
the aim is to isolate the components of the text that actually represent language, and
suppress the components that carry other information. One application is the language-
aware extraction of text strings embedded in binary files, which has been shown to perform
better than conventional heuristic approaches (Brown, 2012). Future work in this area could
focus specifically on the application of language-aware techniques to content extraction,
using models of language to segment documents into textual and non-textual components.
Such methods could also be used to iteratively improve LI itself by improving the quality
of training data.

10.2 Orthography and Transliteration

LI is further complicated when we consider that some languages can be written in different
orthographies (e.g. Bosnian and Serbian can be written in both Latin and Cyrillic script).
Transliteration is another phenomenon that has a similar effect, whereby phonetic tran-
scriptions in another script are produced for particular languages. These transcriptions
can either be standardized and officially sanctioned, such as the use of Hanyu Pinyin for
Chinese, or may also emerge irregularly and organically as in the case of arabizi for Arabic
(Yaghan, 2008). Hughes et al. (2006) identify variation in the encodings and scripts used
by a given language as an open issue in LI, pointing out that early work tended to focus
on languages written using a romanized script, and suggesting that dealing with issues of
encoding and orthography adds substantial complexity to the task. Suzuki et al. (2002)
discuss the relative difficulties of discriminating between languages that vary in any com-
bination of encoding, script and language family, and give examples of pairs of languages
that fall into each category.

LI across orthographies and transliteration is an area that has not received much at-
tention in work to date, but presents unique and interesting challenges that are suitable
targets for future research. An interesting and unexplored question is whether it is pos-
sible to detect that documents in different encodings or scripts are written in the same
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language, or what language a text is transliterated from, without any a-priori knowledge of
the encoding or scripts used. One possible approach to this could be to take advantage of
standard orderings of alphabets in a language – the pattern of differences between adjacent
characters should be consistent across encodings, though whether this is characteristic of
any given language requires exploration.

10.3 Supporting Low-Resource Languages

Hughes et al. (2006) paint a fairly bleak picture of the support for low-resource languages
in automatic LI. This is supported by the arguments of Xia et al. (2010) who detail specific
issues in building hugely multilingual datasets. Abney and Bird (2010) also specifically
called for research into automatic LI for low-density languages. Ethnologue (Simons &
Fennig, 2017) lists a total of 7099 languages. Xia et al. (2010) describe the Ethnologue in
more detail, and discuss the role that LI plays in other aspects of supporting minority lan-
guages, including detecting and cataloging resources. The problem is circular: LI methods
are typically supervised, and need training data for each language to be covered, but the
most efficient way to recover such data is through LI methods.

A number of projects are ongoing with the specific aim of gathering linguistic data
from the web, targeting as broad a set of languages as possible. One such project is the
aforementioned ODIN (Xia et al., 2009; Lewis & Xia, 2010), which aims to collect parallel
snippets of text from Linguistics articles published on the web. ODIN specifically targets
articles containing Interlinear Glossed Text (IGT), a semi-structured format for presenting
text and a corresponding gloss that is commonly used in Linguistics.

Other projects that exist with the aim of creating text corpora for under-resourced
languages by crawling the web are the Crúbadán project (Scannell, 2007) and SeedLing
(Emerson, Tan, Fertmann, Palmer, & Regneri, 2014). The Crúbadán crawler uses seed
data in a target language to generate word lists that in turn are used as queries for a
search engine. The returned documents are then compared with the seed resource via an
automatic language identifier, which is used to eliminate false positives. Scannell (2007)
reports that corpora for over 400 languages have been built using this method. The SeedLing
project crawls texts from several web sources which has resulted in a total of 1451 languages
from 105 language families. According to the authors, this represents 19% of the world’s
languages.

Much recent work on multilingual documents (Section 10.6) has been done with support
for minority languages as a key goal. One of the common problems with gathering linguistic
data from the web is that the data in the target language is often embedded in a docu-
ment containing data in another language. This has spurred recent developments in text
segmentation by language and word-level LI. Lui et al. (2014a) present a method to detect
documents that contain text in more than one language and identify the languages present
with their relative proportions in the document. The method is evaluated on real-world
data from a web crawl targeted to collect documents for specific low-density languages.

LI for low-resource languages is a promising area for future work. One of the key
questions that has not been clearly answered is how much data is needed to accurately
model a language for purposes of LI. Work to date suggests that there may not be a simple
answer to this question as accuracy varies according to the number and variety of languages
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modeled (Baldwin & Lui, 2010a), as well as the diversity of data available to model a specific
language (Lui & Baldwin, 2011).

10.4 Number of Languages

Early research in LI tended to focus on a very limited number of languages (sometimes as
few as 2). This situation has improved somewhat with many current off-the-shelf language
identifiers supporting on the order of 50–100 languages (Section 9). The standout in this
regard is Brown (2014b), supporting 1311 languages in its default configuration. However,
evaluation of the identifier of Brown (2013) on a different domain found that the system
suffered in terms of accuracy because it detected many languages that were not present in
the test data (Lui & Baldwin, 2014).

Lewis and Xia (2010) describe the construction of web crawlers specifically targeting
IGT, as well as the identification of the languages represented in the IGT snippets. LI for
thousands of languages from very small quantities of text is one of the issues that they have
had to tackle. They list four specific challenges for LI in ODIN: (1) the large number of
languages; (2) “unseen” languages that appear in the test data but not in training data;
(3) short target sentences; and (4) (sometimes inconsistent) transliteration into Latin text.
Their solution to this task is to take advantage of a domain-specific feature: they assume
that the name of the language that they are extracting must appear in the document
containing the IGT, and hence treat this as a co-reference resolution problem. They report
that this approach significantly outperforms the text-based LI approach in this particular
problem setting.

An interesting area to explore is the trade-off between the number of languages supported
and the accuracy per-language. From existing results it is not clear if it is possible to
continue increasing the number of languages supported without adversely affecting the
average accuracy, but it would be useful to quantify if this is actually the case across a
broad range of text sources. Table 14 lists the articles where the LI with more than 30
languages has been investigated.

10.5 “Unseen” Languages and Unsupervised LI

“Unseen” languages are languages that we do not have training data for but may nonetheless
be encountered by a LI system when applied to real-world data. Dealing with languages for
which we do not have training data has been identified as an issue by Hughes et al. (2006) and
has also been mentioned by Xia et al. (2009) as a specific challenge in harvesting linguistic
data from the web. Elfardy and Diab (2012) use an unlabeled training set with a labeled
evaluation set for token-level code-switching identification between Modern Standard Arabic
(MSA) and dialectal Arabic. They utilize existing dictionaries and also a morphological
analyzer for MSA, so the system is supported by extensive external knowledge sources. The
possibility to use unannotated training material is nonetheless a very useful feature.

Some authors have attempted to tackle the unseen language problem through attempts
at unsupervised labeling of text by language. Mather (1998) uses an unsupervised clus-
tering algorithm to separate a multilingual corpus into groups corresponding to languages.
She uses singular value decomposition (SVD) to first identify the words that discriminate
between documents and then to separate the terms into highly correlating groups. The
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Reference # Lang Reference # Lang

Brown (2014b) 1366 Brown (2013) 1100
Brown (2012) 923 Xia et al. (2009) c. 600
Rodrigues (2012) 372 King and Dehdari (2008) 300
Jauhiainen, Lindén, and Jauhiainen
(2015b)

285 Jauhiainen et al. (2017b) 285

Vatanen et al. (2010) 281 Yamaguchi and Tanaka-Ishii (2012) >200
Cazamias et al. (2015) 200 Chew, Mikami, and Nagano (2011) 182
Lui (2014a) 143 Kocmi and Bojar (2017) 136
Majliš (2011) 122 Jauhiainen (2010) 103
Majliš (2012b) 90 Lui and Baldwin (2011) 89
Baldwin and Lui (2010b) 74 Chew, Mikami, Marasinghe, and

Nandasara (2009)
68

Baldwin and Lui (2010a) 67 Lui and Baldwin (2012) 67
Lui and Baldwin (2014) 65 Goldszmidt et al. (2013) 52
Chen and Maison (2003) 48 Lui et al. (2014a) 44
Singh (2006) 39 Cowie et al. (1999) 34
Ludovik and Zacharski (1999) 34 Hammarström (2007) 32
Abainia, Ouamour, and Sayoud (2014) 32 King and Abney (2013) 31

Table 14: Empirical evaluations with more than 30 languages.

documents grouped together by these discriminating terms are merged and the process
is repeated until the wanted number of groups (corresponding to languages) is reached.
Biemann and Teresniak (2005) also present an approach to the unseen language problem,
building graphs of co-occurrences of words in sentences, and then partitioning the graph
using a custom graph-clustering algorithm which labels each word in the cluster with a
single label. The number of labels is initialized to be the same as the number of words, and
decreases as the algorithm is recursively applied. After a small number of iterations (the
authors report 20), the labels become relatively stable and can be interpreted as cluster
labels. Smaller clusters are then discarded, and the remaining clusters are interpreted as
groups of words for each language. Shiells and Pham (2010) compared the Chinese Whis-
pers algorithm of Biemann and Teresniak (2005) and Graclus clustering on unsupervised
Tweet LI. They conclude that Chinese Whispers is better suited to LI. Selamat and Ng
(2008) used Fuzzy ART NNs for unsupervised language clustering for documents in Arabic,
Persian, and Urdu. In Fuzzy ART, the clusters are also dynamically updated during the
identification process.

Amine, Elberrichi, and Simonet (2010) also tackle the unseen language problem through
clustering. They use a character n-gram representation for text, and a clustering algorithm
that consists of an initial k-means phase, followed by particle-swarm optimization. This
produces a large number of small clusters, which are then labeled by language through a
separate step. Wan (2016) used co-occurrences of words with k-means clustering in word-
level unsupervised LI. They used a Dirichlet process Gaussian mixture model (“DPGMM”),
a non-parametric variant of a GMM, to automatically determine the number of clusters,
and manually labeled the language of each cluster. Poulston et al. (2017) also used k-
means clustering, and Alfter (2015) used the x-means clustering algorithm in a custom
framework. Lin et al. (2014) utilized unlabeled data to improve their LI system by using a
CRF autoencoder, unsupervised word embeddings, and word lists.
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A different partial solution to the issue of unseen languages is to design the classifier to
be able to output “unknown” as a prediction for language. This helps to alleviate one of the
problems commonly associated with the presence of unseen languages – classifiers without
an “unknown” facility are forced to pick a language for each document, and in the case of
unseen languages, the choice may be arbitrary and unpredictable (Biemann & Teresniak,
2005). When LI is used for filtering purposes, i.e. to select documents in a single language,
this mislabeling can introduce substantial noise into the data extracted; furthermore, it does
not matter what or how many unseen languages there are, as long as they are consistently
rejected. Therefore the “unknown” output provides an adequate solution to the unseen
language problem for purposes of filtering.

The easiest way to implement unknown language detection is through thresholding.
Most systems internally compute a score for each language for an unknown text, so thresh-
olding can be applied either with a global threshold (Cowie et al., 1999), a per-language
threshold (Suzuki et al., 2002), or by comparing the score for the top-scoring N -languages.
The problem of unseen languages and open-set recognition was also considered by Malmasi
and Dras (2015b), Zampieri et al. (2015), and Malmasi (2017). Malmasi (2017) experiments
with one-class classification (“OCC”) and reaches an F-score on 98.9 using OC-SVMs (SVMs
trained only with data from one language) to discriminate between 10 languages.

Another possible method for unknown language detection that has not been explored
extensively in the literature, is the use of non-parametric mixture models based on Hier-
archical Dirichlet Processes (“HDP”). Such models have been successful in topic modeling,
where an outstanding issue with the popular LDA model is the need to specify the number
of topics in advance. Lui et al. (2014a) introduced an approach to detecting multilingual
documents that uses a model very similar to LDA, where languages are analogous to topics
in the LDA model. Using a similar analogy, an HDP-based model may be able to detect
documents that are written in a language that is not currently modeled by the system.
Voss et al. (2014) used LDA to cluster unannotated tweets. Recently Zhang, Clark, Wang,
and Li (2016) used LDA in unsupervised sentence-level LI. They manually identified the
languages of the topics created with LDA. If there were more topics than languages then
the topics in the same language were merged.

Filtering, a task that we mentioned earlier in this section, is a very common application
of LI, and it is therefore surprising that there is little research on filtering for specific
languages. Filtering is a limit case of LI with unseen languages, where all languages but
one can be considered unknown. Future work could examine how useful different types of
negative evidence are for filtering – if we want to detect English documents, e.g., are there
empirical advantages in having distinct models of Italian and German (even if we don’t care
about the distinction between the two languages), or can we group them all together in a
single “negative” class? Are we better off including as many languages as possible in the
negative class, or can we safely exclude some?

10.6 Multilingual Documents

Multilingual documents are documents that contain text in more than one language. In
constructing the hrWac corpus (Ljubešić & Klubička, 2014), Stupar et al. (2011) found that
4% of the documents they collected contained text in more than one language. Martins and
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Silva (2005) report that web pages in many languages contain formulaic strings in English
that do not actually contribute to the content of the page, but may nonetheless confound
attempts to identify multilingual documents. Recent research has investigated how to make
use of multilingual documents from sources such as web crawls (King & Abney, 2013), forum
posts (Nguyen & Dogruöz, 2013), and microblog messages (Ling, Xiang, Dyer, Black, &
Trancoso, 2013). However, most LI methods assume that a document contains text from a
single language, and so are not directly applicable to multilingual documents.

Handling of multilingual documents has been named as an open research question
(Hughes et al., 2006). Most NLP techniques presuppose monolingual input data, so in-
clusion of data in foreign languages introduces noise, and can degrade the performance
of NLP systems. Automatic detection of multilingual documents can be used as a pre-
filtering step to improve the quality of input data. Detecting multilingual documents is
also important for acquiring linguistic data from the web, and has applications in mining
bilingual texts for statistical MT from online resources (Ling et al., 2013), or to study code-
switching phenomena in online communications. There has also been interest in extracting
text resources for low-density languages from multilingual web pages containing both the
low-density language and another language such as English.

The need to handle multilingual documents has prompted researchers to revisit the
granularity of LI. Many researchers consider document-level LI to be relatively easy, and
that sentence-level and word-level LI are more suitable targets for further research. However,
word-level and sentence-level tokenization are not language-independent tasks, and for some
languages are substantially harder than others (Peng, Feng, & McCallum, 2004).

Linguini (Prager, 1999) is a language identifier that supports identification of multi-
lingual documents. The system is based on a vector space model using cosine similarity.
LI for multilingual documents is performed through the use of virtual mixed languages.
Prager (1999) shows how to construct vectors representative of particular combinations of
languages independent of the relative proportions, and proposes a method for choosing com-
binations of languages to consider for any given document. One weakness of this approach
is that for exhaustive coverage, this method is factorial in the number of languages, and
as such intractable for a large set of languages. Furthermore, calculating the parameters
for the virtual mixed languages becomes infeasibly complex for mixtures of more than 3
languages.

As mentioned previously, Lui et al. (2014a) propose an LDA-inspired LI method for
multilingual documents that is able to identify that a document is multilingual, identify the
languages present and estimate the relative proportions of the document written in each
language. To remove the need to specify the number of topics (or in this case, languages)
in advance, Lui et al. (2014a) use a greedy heuristic that attempts to find the subset of
languages that maximizes the posterior probability of a target document. One advantage
of this approach is that it is not constrained to 3-language combinations like the method of
Prager (1999). Language set identification has also been considered by Suzuki et al. (2002),
Jauhiainen et al. (2015b), and Pla and Hurtado (2015, 2017).

To encourage further research on LI for multilingual documents, in the aforementioned
shared task hosted by the Australiasian Language Technology Workshop 2010, discussed in
Section 7.3, participants were required to predict the language(s) present in a held-out test
set containing monolingual and bilingual documents (Baldwin & Lui, 2010b). The dataset
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was prepared using data from Wikipedia, and bilingual documents were produced using
a segment from an article in one language and a segment from the equivalent article in
another language. Equivalence between articles was determined using the cross-language
links embedded within each Wikipedia article.9 The winning entry (Tran, Nguyen, & Kieu,
2010) first built monolingual models from multilingual training data, and then applied them
to a chunked version of the test data, making the final prediction a function of the prediction
over chunks.

Another approach to handling multilingual documents is to attempt to segment them
into contiguous monolingual segments. In addition to identifying the languages present, this
requires identifying the locations of boundaries in the text which mark the transition from
one language to another. Several methods for supervised language segmentation have been
proposed. Cowie et al. (1999) generalized a LI algorithm for monolingual documents by
adding a dynamic programming algorithm based on a simple Markov model of multilingual
documents. More recently, multilingual LI algorithms have also been presented by Jhamtani
et al. (2014), Minocha and Tyers (2014), Pethö and Mózes (2014), Ullman (2014), and King
et al. (2015).

10.7 Short Texts

LI of short strings is known to be challenging for existing LI techniques. Mandl et al.
(2006) tested four different classification methods, and found that all have substantially
lower accuracy when applied to texts of 25 characters compared with texts of 125 characters.
These findings were later strengthened, for example, by Vatanen et al. (2010) and Jauhiainen
et al. (2017b).

Hammarström (2007) describes a method specifically targeted at short texts that aug-
ments a dictionary with an affix table, which was tested over synthetic data derived from
a parallel bible corpus. Vatanen et al. (2010) focus on messages of 5–21 characters, using
n-gram language models over data drawn the from Universal Declaration of Human Rights
(UDHR). We would expect that generic methods for LI of short texts should be effective
in any domain where short texts are found, such as search engine queries or microblog
messages. However, Hammarström (2007) and Vatanen et al. (2010) both only test their
systems in a single domain: bible texts in the former case, and texts from the UDHR in
the latter case. Other research has shown that LI results do not trivially generalize across
domains (Baldwin & Lui, 2010a), and found that LI in UDHR documents is relatively easy
(Yamaguchi & Tanaka-Ishii, 2012). For both bible and UDHR data, we expect that the
linguistic content is relatively grammatical and well-formed, an expectation that does not
carry across to domains such as search engine queries and microblogs. Another “short text”
domain where LI has been studied is LI of proper names. Häkkinen and Tian (2001) identify
this as an issue. Konstantopoulos (2007) found that LI of names is more accurate than LI
of generic words of equivalent length.

Bergsma et al. (2012) raise an important criticism of LI work on Twitter messages to
date: only a small number of European languages has been considered. Bergsma et al.
(2012) expand the scope of LI for Twitter, covering nine languages across Cyrillic, Arabic

9. Note that such articles are not necessarily direct translations but rather articles about the same topic
written in different languages.
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and Devanagari scripts. Lui and Baldwin (2014) expand the evaluation further, introduc-
ing a dataset of language-labeled Twitter messages across 65 languages constructed using
a semi-automatic method that leverages user identity to avoid inducing a bias in the eval-
uation set towards messages that existing systems are able to identify correctly. Lui and
Baldwin (2014) also test a 1300-language model based on Brown (2013), but find that it per-
forms relatively poorly in the target domain due to a tendency to over-predict low-resource
languages.

Work has also been done on LI of single words in a document, where the task is to
label each word in the document with a specific language. Work to date in this area has
assumed that word tokenization can be carried out on the basis of whitespace. Singh and
Gorla (2007) explore word-level LI in the context of segmenting a multilingual document
into monolingual segments. Other work has assumed that the languages present in the
document are known in advance.

Conditional random fields (“CRFs”: Lafferty et al., 2001) are a sequence labeling method
most often used in LI for labeling the language of individual words in a multilingual text.
CRFs can be thought of as a finite state model with probabilistic transition probabilities
optimised over pre-defined cliques. They can use any observations made from the test doc-
ument as features, including language labels given by monolingual language identifiers for
words. King and Abney (2013) used a CRF trained with generalized expectation criteria,
and found it to be the most accurate of all methods tested (NB, LR, HMM, CRF) at word-
level LI. King and Abney (2013) introduce a technique to estimate the parameters using
only monolingual data, an important consideration as there is no readily-available collection
of manually-labeled multilingual documents with word-level annotations. Nguyen and Do-
gruöz (2013) present a two-pass approach to processing Turkish-Dutch bilingual documents,
where the first pass labels each word independently and the second pass uses the local con-
text of a word to further refine the predictions. Nguyen and Dogruöz (2013) achieved 97,6%
accuracy on distinguishing between the two languages using a linear-chain CRF. Clematide
and Makarov (2017) are the only ones so far to use a CRF for LI of monolingual texts.
With a CRF, they attained a higher F-score in German dialect identification than NB or an
ensemble consisting of NB, CRF, and SVM. Lately CRFs were also used for LI by Dongen
(2017) and Samih (2017). Giwa and Davel (2013) investigate LI of individual words in the
context of code-switching. They find that smoothing of n-gram models substantially im-
proves accuracy of a language identifier based on a NB classifier when applied to individual
words.

10.8 Similar Languages, Language Varieties, and Dialects

While one line of research into LI has focused on pushing the boundaries of how many
languages are supported simultaneously by a single system (Xia et al., 2010; Brown, 2012,
2013), another has taken a complementary path and focused on LI in groups of similar
languages. Research in this area typically does not make a distinction between languages,
varieties and dialects, because such terminological differences tend to be politically rather
than linguistically motivated (Clyne, 1992; Xia et al., 2010; Zampieri & Gebre, 2012), and
from an NLP perspective the challenges faced are very similar.
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LI for closely-related languages, language varieties, and dialects has been studied for
Malay–Indonesian (Ranaivo-Malançon, 2006), Indian languages (Murthy & Kumar, 2006),
South Slavic languages (Ljubešić et al., 2007; Tiedemann & Ljubešić, 2012; Ljubešić &
Kranjcić, 2014, 2015), Serbo-Croatian dialects (Zecevic & Vujicic-Stankovic, 2013), English
varieties (Lui & Cook, 2013; Simaki et al., 2017), Dutch–Flemish (van der Lee & Bosch,
2017), Dutch dialects (including a temporal dimension) (Trieschnigg, Hiemstra, Theune, de
Jong, &Meder, 2012), German Dialects (Hollenstein & Aepli, 2015) Mainland–Singaporean–
Taiwanese Chinese (Huang & Lee, 2008), Portuguese varieties (Zampieri & Gebre, 2012;
Zampieri et al., 2016), Spanish varieties (Zampieri et al., 2013; Maier & Gómez-Rodríguez,
2014), French varieties (Mokhov, 2010b, 2010a; Diwersy, Evert, & Neumann, 2014), lan-
guages of the Iberian Peninsula (Zubiaga et al., 2014), Romanian dialects (Ciobanu &
Dinu, 2016), and Arabic dialects (Elfardy & Diab, 2013; Zaidan & Callison-Burch, 2014;
Tillmann, Al-Onaizan, & Mansour, 2014; Sadat et al., 2014a; Wray, 2018), the last of
which we discuss in more detail in this section. As to off-the-shelf tools which can iden-
tify closely-related languages, Zampieri and Gebre (2014) released a LI system trained to
identify 27 languages, including 10 language varieties. Closely-related languages, language
varieties, and dialects have also been the focus of a number of shared tasks in recent years
as discussed in Section 7.3.

Similar languages are a known problem for existing language identifiers (Ranaivo-Malançon,
2006; Zampieri, 2013). Suzuki et al. (2002) identify language pairs from the same language
family that also share a common script and the same encoding, as the most difficult to dis-
criminate. Tiedemann and Ljubešić (2012) report that TextCat achieves only 45% accuracy
when trained and tested on 3-way Bosnian/Serbian/Croatian dataset. Lui and Cook (2013)
found that LI methods are not competitive with conventional word-based document catego-
rization methods in distinguishing between national varieties of English. Ranaivo-Malançon
(2006) reports that a character trigram model is able to distinguish Malay/Indonesian from
English, French, German, and Dutch, but handcrafted rules are needed to distinguish be-
tween Malay and Indonesian. One kind of rule is the use of “exclusive words” that are
known to occur in only one of the languages. A similar idea is used by Tiedemann and
Ljubešić (2012), in automatically learning a “blacklist” of words that have a strong nega-
tive correlation with a language – i.e. their presence implies that the text is not written in
a particular language. In doing so, they achieve an overall accuracy of 98%, far surpassing
the 45% of TextCat. Brown (2013) also adopts such “discriminative training” to make use
of negative evidence in LI.

Zampieri (2013) observed that general-purpose approaches to LI typically use a charac-
ter n-gram representation of text, but successful approaches for closely-related languages,
varieties, and dialects seem to favor a word-based representation or higher-order n-grams
(e.g. 4-grams, 5-grams, and even 6-grams) that often cover whole words (Huang & Lee, 2008;
Tiedemann & Ljubešić, 2012; Lui & Cook, 2013; Goutte et al., 2016). The study compared
character n-grams with word-based representations for LI over varieties of Spanish, Por-
tuguese and French, and found that word-level models performed better for varieties of
Spanish, but character n-gram models perform better in the case of Portuguese and French.

To train accurate and robust LI systems that discriminate between language varieties
or similar languages, models should ideally be able to capture not only lexical but more
abstract systemic differences between languages. One way to achieve this, is by using
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features that use de-lexicalized text representations (e.g. by substituting named entities or
content words by placeholders), or at a higher level of abstraction, using POS-tags or other
morphosyntactic information (Zampieri et al., 2013; Lui et al., 2014b; Bestgen, 2017), or
even adversarial machine learning to modify the learned representations to remove such
artefacts (Li et al., 2018). Finally, an interesting research direction could be to combine
work on closely-related languages with the analysis of regional or dialectal differences in
language use (Peirsman, Geeraerts, & Speelman, 2010; Anstein, 2013; Doyle, 2014; Diwersy
et al., 2014).

In recent years, there has been a significant increase of interest in the computational
processing of Arabic. This is evidenced by a number of research papers in several NLP
tasks and applications including the identification/discrimination of Arabic dialects (El-
fardy & Diab, 2013; Zaidan & Callison-Burch, 2014). Arabic is particularly interesting for
researchers interested in language variation due to the fact that the language is often in
a diaglossic situation, in which the standard form (Modern Standard Arabic or “MSA”)
coexists with several regional dialects which are used in everyday communication.

Among the studies published on the topic of Arabic LI, Elfardy and Diab (2013) pro-
posed a supervised approach to distinguish between MSA and Egyptian Arabic at the sen-
tence level, and achieved up to 85.5% accuracy over an Arabic online commentary dataset
(Zaidan & Callison-Burch, 2011). Tillmann et al. (2014) achieved higher results over the
same dataset using a linear-kernel SVM classifier.

Zaidan and Callison-Burch (2014) compiled a dataset containing MSA, Egyptian Arabic,
Gulf Arabic and Levantine Arabic, and used it to investigate three classification tasks: (1)
MSA and dialectal Arabic; (2) four-way classification – MSA, Egyptian Arabic, Gulf Arabic,
and Levantine Arabic; and (3) three-way classification – Egyptian Arabic, Gulf Arabic, and
Levantine Arabic.

Salloum, Elfardy, Alamir-Salloum, Habash, and Diab (2014) explores the use of sentence-
level Arabic dialect identification as a pre-processor for MT, in customizing the selection
of the MT model used to translate a given sentence to the dialect it uses. In performing
dialect-specific MT, the authors achieve an improvement of 1.0% BLEU score compared
with a baseline system which does not differentiate between Arabic dialects.

Finally, in addition to the above-mentioned dataset of Zaidan and Callison-Burch (2011),
there are a number of notable multi-dialect corpora of Arabic: a multi-dialect corpus of
broadcast speeches used in the ADI shared task (Ali et al., 2016); a multi-dialect corpus
of (informal) written Arabic containing newspaper comments and Twitter data (Cotterell
& Callison-Burch, 2014); a parallel corpus of 2,000 sentences in MSA, Egyptian Arabic,
Tunisian Arabic, Jordanian Arabic, Palestinian Arabic, and Syrian Arabic, in addition to
English (Bouamor, Habash, & Oflazer, 2014); a corpus of sentences in 18 Arabic dialects
(corresponding to 18 different Arabic-speaking countries) based on data manually sourced
from web forums (Sadat et al., 2014a); and finally two recently compiled multi-dialect
corpora containing microblog posts from Twitter (Elgabou & Kazakov, 2017; Alshutayri &
Atwell, 2017).

While not specifically targeted at identifying language varieties, Jurgens et al. (2017)
made the critical observation that when naively trained, LI systems tend to perform most
poorly over language varieties from the lowest socio-economic demographics (focusing par-
ticularly on the case of English), as they tend to be most under-represented in training
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corpora. If, as a research community, we are interested in the social equitability of our
systems, it is critical that we develop datasets that are truly representative of the global
population, to better quantify and remove this effect. To this end, Jurgens et al. (2017)
detail a method for constructing a more representative dataset, and demonstrate the impact
of training on such a dataset in terms of alleviating socio-economic bias.

10.9 Domain-specific LI
One approach to LI is to build a generic language identifier that aims to correctly identify
the language of a text without any information about the source of the text. Some work
has specifically targeted LI across multiple domains, learning characteristics of languages
that are consistent between different sources of text (Lui & Baldwin, 2011). However, there
are often domain-specific features that are useful for identifying the language of a text. In
this survey, our primary focus has been on LI of digitally-encoded text, using only the text
itself as evidence on which to base the prediction of the language. Within a text, there
can sometimes be domain-specific peculiarities that can be used for LI. For example, Mayer
(2012) investigates LI of user-to-user messages in the eBay e-commerce portal. He finds
that using only the first two and last two words of a message is sufficient for identifying the
language of a message.

11. Conclusions
This article has presented a comprehensive survey on language identification of digitally-
encoded text. We have shown that LI is a rich, complex, and multi-faceted problem that
has engaged a wide variety of research communities. LI accuracy is critical as it is often
the first step in longer text processing pipelines, so errors made in LI will propagate and
degrade the performance of later stages. Under controlled conditions, such as limiting
the number of languages to a small set of Western European languages and using long,
grammatical, and structured text such as government documents as training data, it is
possible to achieve near-perfect accuracy. This led many researchers to consider LI a solved
problem, as argued by McNamee (2005). However, LI becomes much harder when taking
into account the peculiarities of real-world data, such as very short documents (e.g. search
engine queries), non-linguistic “noise” (e.g. HTML markup), non-standard use of language
(e.g. as seen in social media data), and mixed-language documents (e.g. forum posts in
multilingual web forums).

Modern approaches to LI are generally data-driven and are based on comparing new
documents with models of each target language learned from data. The types of models
as well as the sources of training data used in the literature are diverse, and work to date
has not compared and evaluated these in a systematic manner, making it difficult to draw
broader conclusions about what the “best” method for LI actually is.

Existing work on LI serves to illustrate that the scope and depth of the problem are
much greater than they may first appear. In Section 10, we discussed open issues in LI,
identifying the key challenges, and outlining opportunities for future research. Far from
being a solved problem, aspects of LI make it an archetypal learning task with subtleties
that could be tackled by future work on supervised learning, representation learning, multi-
task learning, domain adaptation, multi-label classification and other subfields of machine
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learning. We hope that this paper can serve as a reference point for future work in the area,
both for providing insight into work to date, as well as pointing towards the key aspects
that merit further investigation.
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