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It is known that the techniques under the topic of Soft Computing have a strong capability of learning and 
cognition, as well as a good tolerance to uncertainty and imprecision. Due to these properties they can be 
applied successfully to Intelligent Vehicle Systems; ITS is a broad range of technologies and techniques 
that hold answers to many transportation problems. The unmanned control of the steering wheel of a 
vehicle is one of the most important challenges facing researchers in this area. This paper presents a 
method to adjust automatically a fuzzy controller to manage the steering wheel of a mass-produced 
vehicle; to reach it, information about the car state while a human driver is handling the car is taken and 
used to adjust, via iterative genetic algorithms an appropriated fuzzy controller. To evaluate the obtained 
controllers, it will be considered the performance obtained in the track following task, as well as the 
smoothness of the driving carried out. 

1. Introduction 

Intelligent Transportation Systems (ITS) apply information and 

communication techniques in order to achieve safe and efficient 

driving. In the automotive industry, ITS mainly is used to provide 

information to the driver and, in some cases, they are connected to 

the car actuators, attempting to minimize injuries and to prevent 

collisions [1]. 

The work described in this paper has been carried out at the 

AUTOPIA Program of the Centre of Automatic and Robotic, a part of 

the Spanish Council for Scientific Research (CSIC), which is focused 

on the area of autonomous vehicles. More concretely, the aim of the 

present work is the automatic control of the steering wheel (also 

known as lateral control) of a mass-produced vehicle, although 

another area of the research carried out by the AUTOPIA Program is 

longitudinal control, the control of the vehicle's speed and its adap-

tation to road features, using the throttle and the brake pedal as 

needed [2,3]. Research projects similar to AUTOPIA exist in different 

countries [4-7], 

Vehicles used by the AUTOPIA program are equipped 

with instrumentation and software necessary to perform their 

autonomous management, since an autonomous car must control 

some or all of its functions without external intervention [8-10]. 

To carry out the present work, they have been required: An asphalt 

set of test roads called ZOCO (acronym for Driving Zone), differ-

ential GPS coverage supplied by a high-precision GPS base station 

and a wireless LAN for differential correction generation and trans-

mission and a mass-produced Citron C3 Pluriel equipped with a 

DGPS, actuators for the steering wheel and pedals, and a computer 

connected to the communications network. There is long way until 

an implementation of full automatic-steering control comes on the 

market [11]. Due to that, researchers around the entire world focus 

their efforts in the study, implementation and validation of this 

kind of systems as is showed in the famous driverless cars competi-

tion sponsored by the Defense Advanced Research Projects Agency1 

(DARPA), the central research organization of the United States 

Department of Defense. DARPA has sponsored three competitions 

in the area of autonomous vehicles. 

Classical control techniques are the usual way to manage com-

plex systems such as the steering wheel of a car [12,13]. Other way 

is the use of artificial intelligence techniques; these methods are 

specially indicated when we try to emulate human control actions, 

such as human car driving. Fuzzy logic [14] has become a partic-

ularly widely used methodological approach to these tasks since 

Sugeno's work on fuzzy control in 1985 and 1987 [15,16]. Fuzzy 

1 http://www.darpa.mil/. 
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Reference Line 

Fig. 1. input variables graphical representation. 

systems arose from the desire to describe complex systems linguis-
tically, and fuzzy controllers allow a human approach to control 
design without the demand for knowledge of mathematical mod-
eling of more conventional control design methods [17]. Usually, 
generation of the membership functions and rule base that define 
a fuzzy controller is a task mainly done either iteratively, by trial-
and-error, or by expert knowledge. A task like this one is a natural 
candidate to be solved by means automatic techniques from the 
artificial intelligence field. 

Genetic algorithms (GA) are general purpose search algorithms 
which use principles inspired by natural genetic populations to 
evolve solutions to problems [18,19], The basic idea is to maintain 
a population of chromosomes, which represent candidate solu-
tions that evolves over time through a process of competition and 
controlled variation. Each chromosome in the population has an 
associated fitness to determine which chromosomes are used to 
form new ones in the competition process, which is called selection. 
The new ones are created using genetic operators such as crossover 
and mutation. GA have been used in literature in task of learn or 
optimize fuzzy controllers [20-22]. 

The ORBEX [23] (Spanish acronym for Fuzzy Experimental Com-
puter) fuzzy development environment has been used for the 
definition and implementation of fuzzy controllers. With ORBEX, 
several ways of driving can be defined to emulate different types 
of drivers: calm, quick, brusque, etc, orto adapt the driving to traf-
fic conditions: platoons, overtaking, etc. These strategies can be 
defined and implemented by means oft/ . . . then ., .rules in almost 
natural language [24]. 

This paper approaches the topic of using of genetic algorithms 
in the design of fuzzy logic controllers a real world application: a 
mass-produced vehicle steering wheel management. After a first 
part of capture of information about a human driver handling, that 
information is processed in order to get relevant information about 
the attitude of the driver. Once done this, a system able to get the 
information and return an appropriate fuzzy controller has been 
created, via application of an iterative genetic algorithm. The GA 
has been implemented in two iterative phases, the first one will 
improve the membership functions and the second one the rule 
base of the fuzzy controller. Finally, obtained controllers have been 
tested in a private and experimental area to verify that they show 
a similar behavior to the shown by human driver. 

2. Information capture and processing 

Generated fuzzy controllers will use two inputs obtained from 
the match between the GPS positioning information and the refer-
ence route, defined as GPS digital cartography. The input variables 
are: the lateral error and angular error. The lateral error represents 
the distance of the current car position to the theoretical car posi-
tion if it was on the desired trajectory, the reference line; its values 
can take any value (-co, +oo). The angular error is the angle shaped 
by the reference line and the car velocity vector; its values are 
restricted to the interval (-180,180). In Fig. 1 it can be seen the 
graphical representation of these values. 

Fig. 2. GPS reference route over an aerial view of ZOCO. 

The output will be the reference position sent to a low-level 
control layer consisting of a PID controller that manages a motor 
attached to the steering bar to take it to the reference position. 

2.1. Information capture 

The GPS maps that specify the desired route are built automat-
ically by tracking the route with a GPS-equipped car and, after 
the end of the run, a computer system selects the most significant 
waypoints that will be used as a reference line to measure lateral 
and angular errors and human drivers' actions. The reference line 
created to capture information on the human drivers' behavior is 
shown in Fig. 2 over an aerial view.

2
 The route consists of three 

curves towards the left followed by three curves towards the right 
Once the desired route had been built, two human drivers followed 
it. Then, a large data set was obtained for processing and, after that, 
a set of input and output values to apply the genetic algorithm 
is obtained. The data set contains information on the lateral and 
angular errors of the car and the human drivers' actions. 

22. Information processing 

The process starts with the data set that compiles the human 
driver's actions; this data set is showed in Fig. 3 (left), where the 
lateral and angular errors are presented on the X-y axis, and the 
position of the steering wheel adopted by the human driver on the 
Z-axis, between -1 (maximum turn to the right) and 1 (maximum 
turn to the left). 

The large number of points obtained almost provides a specific 
control surface. This also can slow down the process for estimat-
ing the fuzzy controller because the resulting controller response 
has to be compared with the human response. These responses will 
therefore make some empirical values that are added to the data 
set insignificant. Thus, there must be some way of guaranteeing 
freedom to the controller design and speed to the process. Accord-
ingly, in first place, the values of the set of points are normalized 
in the [-1,1 ], assuming a limit for the lateral error of ±5 m. After, 
a 21 x 21 grid is defined on the X-Y plane, and at each point in the 
grid the mean output of the closest points in the real input is taken. 
As can be seen in the graphs, there are zones in the grid without 
any associated value, so human driver actions in extreme situations, 
like an angular error of ±180°,... are not reflected in the graph. To 
assure that some extreme cases are covered, the following points 
deduced from common sense are added to the point swarms: 

• (1,1, l):ifthe lateral error is maximum to the right and the angu-
lar error is maximum to the right, steering must be maximum to 
the left: 

http: //maps.google.com/. 
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Fig. 3. Initial Data Set (left). Data set used to estimate the fuzzy controller (right). 

• ( -1 , - 1 , -1): if the lateral error is maximum to the left and the 
angular error is maximum to the left, steering must be maximum 
to the right 

Finally, in Fig. 3 (right) the final sets of points can be seen which 
are used as inputs to the genetic algorithm to ensure similarity with 
the human behavior observed and freedom to generate fuzzy con-
trollers with a smooth surface. This means that the car will maintain 
the same orientation without any brusque steering movements. 

3. Fuzzy controller optimization 

It is natural to think that the fuzzy controller for managing 
the steering wheel of a car must be symmetric; this would mean 
that the action taken when the inputs have a certain value must 
be inverse to the action taken when the inputs have inverse val-
ues. However, it is not the case because the aim of this work is 
to reproduce human driving so the controller does not have to be 
symmetric. Therefore, the system must be able to distinguish, for 
example, a driver who drives too far to the right of the reference 
line (for example, if he is driving a very slow vehicle, he must go to 
the right so as not to disturb the other drivers). 

A Mamdani fuzzy system is used to model the controller. The 
controller will have two fuzzy inputs, called Lateral Error and Angu-
lar Error. The fuzzyfication of each input variable is done by means 
of four or five membership functions (Section 3.1). There is only 
1 fuzzy output variable, called Steering, with 21 linguistic labels, 
whose membership functions are defined by singletons. The mini-
mum has been used for definingthe tnorm (AND) and the maximum 
for the tconorm (OR). In this paper, it will be distinguished three dif-
ferent rule bases of different complexity, explained in Section 3.2. 
The defuzzyfication method applied is Center of Mass. 

The representation of the fuzzy controllers with which the 
genetic algorithm will work is divided into two different parts: on 
the one hand, the representation of the membership functions (MF) 
and, on the other, the representation of the rule base (RB). This 
allows the process to work with and to improve both aspects of the 
fuzzy controller independently. 

3.1. Membership functions representation 

To generate the membership functions, two ways has been used; 
one of them to define a controller with 4 MF for each input variable 
and other one for a controller with 5. To represent 4 MF, 12 values 
are used (xi, x 2 , . . . , Xu)- The first six represent two membership 
functions for the linguistic variables high/low left deviation (HLD 
and LLD) and the last six represent two membership functions for 

the low/high right deviation (HRD and LRD), as it can be seen in 
Fig. 4 (top). To represent 5 MF 16 values are used (x-i, X2,..., Xi6). 
Again, the first six represent two membership functions for the lin-
guistic variables high/low left deviation (HLD and LLD), the next 
four represent the membership function no deviation (NO), and 
the last six represent two membership functions for the low/high 
right deviation (HRD and LRD); as we can see in Fig. 4 (bottom). 

To ensure that the membership functions have coherent values, 
the method will have to preserve some constraints, following ones 
are applied when a controller with 4 MF is defined: 

(1) ( - 1 < Xi.2,3,5,6,7 < 0) (0 < X8,9,10,11,12,4 < ! ) • 

(2) (x5 < X6) (X-i <X2<X3< X4) (x7 < X8 < Xg < X10) ( x l t < Xi2). 

(3) (x5 < x2) (xs < x i2). 
(4) (xi < x6) (xlt < x10). 
(5) (xi < x7) (x4 < Xjn). 

And the next ones are used when a controller with 5 MF is 
defined: 

(1) ( - 1 < Xx^^A^fiJA < 0 ) (0 <Xg>io,11,12,13,14,15,16 < ! ) • 

(2) (X5 < X6) (XÍ < X2 < X3 < X4) to < X8 < Xg < X10) (*11 < 

Xl2 < X13 < *14) (*15 < Xi6)-

(3) (X5 < X2) (X3 < X8) (*9 < X12) (*13 < * 1 6 ) . 
(4) (Xi < X6) (X7 < X4) (Xn < X10) (X15 < X14). 

(5) (X! < X7) (X6 < X4) (X10 < X14) (Xn < X15). 

In both lists, restriction sets (1) guarantees that the error 
towards the left is represented by negative values and towards 
the right by positive values; restriction sets (2) guarantees that the 
membership functions are trapeziums; restriction sets (3) guaran-
tees that every input value is covered with a maximum degree by, at 
the most, one membership function; restriction sets (4) guarantees 
that every input value is covered by at least, one membership func-
tion; and, finally, restriction sets (5) guarantees logical membership 
functions and avoids illogical values. 

The output can be one of the 21 Sugeno's singletons showed in 
Fig. 5, which is equivalent to a type I representation (with trapez-
iums) and is better for a control purpose because it allows faster 
operations [25]. 

The singletons are uniformly distributed in the interval [-1,1], 
with a separation between two adjacent ones of 0.1. The R denotes 
that the steering turn is in the right direction, and the L that it is 
in the left direction, and the number represent the strength of the 
turn; for example, R10 means a full turn of the steering wheel to 
the right, 15 a half turn to the left. N means no turn of the steer-
ing wheel. The singletons for the output of the controller do not 
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Table i 
Cases covered by the central rule base (C) and the marginal rule base (M). Label NO 
is not used in a 4 MF controller representation. 
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change, the genetic algorithm will be in charge of assigning them as 
consequents of predefined rule bases presented in next subsection. 

32. Rule base representation 

For the fuzzy controller, a set of three RB are available; the GA 
will work with the consequents of the rules, changing the con-
sequent assigned to one rule to obtain the best configuration of 
rules for the controller, i.e., for each possible antecedent, there 
will be a rule. Irrespective of whether the controller uses 4 or 5 
MF for each input variable, there are 3 different rule bases called 
Marginal, Central and Total, respectively. The Marginal RB works 
only with rules with a simple antecedent; the Central RB represents 
the rules with AND-composed antecedents; the Total RB consists 
of the union of the Central and Marginal RB. Cases covered by each 
RB can be seen in Table 1, where each cell (X, Y) in the table repre-
sents a rule like IF (Angular is X) AND (Lateral is Y) THEN Steering is 
ST, where ST can be one of the 21 singletons described previously. 
Table 2 shows the total number of rules of each possible controller 
representation, in function of the number of MF and the kind of RB 
used. 

As in the case of optimization of the membership functions, the 
rule base also contains specific restrictions in order to improve the 

Table 2 

Number of rules for each RB/MF possible combination. 

RB\MF 4 

Marginal 8 

Central 16 

Total 24 

5 

10 
25 
35 

application of the method to the problem. Mainly, the restriction 
that the rule base has to fulfill for each i and j rule is that if the 
antecedent of rule i is greater or equal to that of the antecedent 
of rule j , the singleton used in rule i has to be greater or equal to 
that of the antecedent used in rule j . To represent the rule base in a 
way that can be used by the genetic algorithm, an integer coding is 
used to represent the singleton assigned to the rule. Thus, a vector 
of the integers between 1 and 21 is needed with as many elements 
as rules as the rule base used and the vector will be optimized by 
means of an integer-coded genetic algorithm. 

3.3. Iterative genetic optimization schema 

The method is implemented in two different phases, which are 
repeated a given number of times and represent two GA; one of 
them in charge of improving MF and the other one the RB; the 
general schema used is showed in Fig. 6. 

The GA phases, both over the MF and RB, follows a steady-state 
genetic algorithm eschema, where, in each generation two indi-
viduals are selected to apply over them the crossover operator to 
generate two offsprings, then, they are mutated and inserted (or 
not) again in the population. As comented in previous subsections, 
a two-row real matrix with 12 or 16 columns is used to represent 
the membership functions of the controllers, and a vector of 8,10, 
16,24,25 or 35 integer elements is used to represent the rule base, 
the GA has been implemented by following the following operators: 

RIO 
1 

R9 R8 R7 R6 R5 R4 R3 R2 Rl N LI L2 L3 L4 L5 L6 L7 L8 L9L10 

-0.5 0 0.5 

Fig. 5. Membership functions for the output 
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• Selection: in each generation, two chromosomes are selected to 
apply the crossover operator on them. They are selected by binary 
tournament. 

• Crossover operator: BLX-a [26] applied to every value of the rep-
resentation makes it possible to generate two new chromosomes 
from two parent chromosomes in the optimization phase of the 
membership functions and a simple crossover [11] for the opti-
mization of the rule base. 

• Mutation operator, each position of every generated chromosome 
undergoes a random change according to a probability defined by 
a mutation rate, the mutation probability, om [18,19]. 

• Replacing method: each new chromosome generated will replace 
the worst chromosome in the population if its fitness is better. 

Each genetic algorithm will work with a population size of NMF 
or NRB and will be executed during GMF or Gas generations, respec-
tively. 

To measure the quality (fitness) of a given controller two factors 
must be considered: adjustment to human driver actions and to 
provide a smooth surface in its central zone; this zone is already 
the most used. To evaluate the first factor, the mean square error 
MSE is used between the controller output and the human drivers' 
actions. To evaluate the second factor, the surface is evaluated in 
a grid (ij), i,j = [-1, -0.9 0 , . . . , 0.9,1 ] and D is taken to be 
the largest difference between two adjacent points in the grid. The 
fitness function used will be the weighted aggregation of MSE and 
D (F = v • MSE + (1 - v) • D), with v = 0.75 (so the similarity with 
human behavior is given more importance than the smooth sur-
face). The genetic algorithm will try to minimize this value. 

4. Experimentation and results 

In the presented method we can observe the following aspects 
that have to be considered when parameters for the experiments 
are configured: there is always a copy of the best chromosome 
found in the population; before the improvement of each part of 
the controller (MF and RB) a new population is created and the 
improvement of each part of the fuzzy controller is done separately. 
Bearing in mind the characteristics of the method, the parameters 
must fulfill the following premises: 

• N
MF/RB

 m u s t De
 small because there is always a copy of the best 

chromosome found, and the probability of the chromosome being 
chosen from the best will be greater to explore the chromosomes 
near to it. 

GMF/RB
 m u s t a l s o be small because optimization of both parts 

of the controller is done separately and many iterations of the 
method with few generations are preferable to few iterations 
with many generations. 
It (number of iterations) must be large because of the previous 
comment. 
The a parameter used in the BLX-a crossover must be small (a 
< 0.5), so the exploitation of the chromosomes in the population 
is given more importance than the exploration of new chromo-
somes (this part is obtained by two separate genetic algorithms). 
The mutation probability pm must be high to change a large num-
ber of values of a chromosome. 

Bearing in mind these considerations, the parameters used for 
executing the method are: a = 0.2, pm = 0.25, It = 100, NMF = 
NRB = 10, GMF = GRB= 20. 

Once processed the input data in order to obtain a representa-
tive set of human's actions on the steering wheel (Section 2), the 
iterative genetic method (Section 3) has been applied to obtain a 
set of fuzzy controllers representing the human drivers' behavior. 
Fig. 7 shows the control surfaces of the controllers obtained, where 
it can be seen that all of them perform the extreme case restric-
tions, a full steering turn to the left if the lateral and angular error 
is maximum to the right and a full steering turn to the right if the 
lateral and angular error is maximum to the left. 

Controller has been tested in the Driving Zone using the GPS ref-
erence route shown in Fig. 2. The behavior of each fuzzy controller 
is shown next. Notice that all the routes were done at a velocity 
of between 15 km/h in curved lines and 25 km/h in straight lines. 
The experiments are shown by means of North-East UTM coordi-
nates, where the reference route and the route followed by the 
autonomous car are represented with each controller obtained. 
The routes followed by the car with each controller obtained are 
presented in Fig. 8. 

In Fig. 8, a relative good behavior of the controllers can be 
observed, it can be seen some differences between some con-
trollers; most of them are able to track a straight segment of the 
road, but all present the same failure, i.e., after a curve, the car 
moves away from the reference line. This failure may be because of 
the relatively high speed used to circulate around the test zone; or 
probably, because of the non-predictive model of the controllers, 
so that once the car leaves the curve, it does not know where the 
next target point is and keeps the steering wheel turn until the next 
GPS target position is processed (post-curve movement outside the 
reference line). To compare the ability of each controller to follow 
the route, the lateral and angular error obtained along the track 
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has been saved, and, Fig. 9 shows the normalized average of them, 
where it can be seen more precisely the differences between the 
behavior of each controller. 

Even the routes seem to be very similar, Fig. 9 shows that the 
worst behavior for the angular error was obtained by controller [5 
MF + Central RB] and the worst behavior for the lateral error by [4 
MF + Central RB]; there is not a notable difference between the con-
trollers that use 4 membership functions, even the [5 MF + Marginal 
RB] controller presents a values very similar to the controllers with 
4 MFs. The bigger difference can be found in the controller [5 MF 
+ Central RB] and [5 MF + Total RB]; [5 MF + Central RB] presents 
the minimum lateral error mean but, as has been said, the maxi-
mum angular error. The minimum angular error value can be seen 
in controller [5 MF + Total RB] and it presents an acceptable lateral 
error, so it is natural to think that [5 MF + Total RB] can be selected 
as the best controller obtained. 

5. Conclusions and future works 

This work has presented an automatic adjustment of fuzzy con-
trollers designed to automatically manage the steering wheel of 
a mass-produced vehicle which was equipped with the necessary 
instrumentation and software. To achieve this, an iterative genetic 
algorithm based method was implemented, capable of iteratively 
adjusting the membership functions and rule base which define a 
fuzzy controller. The method applied genetic algorithms with some 
constraints applied to the controllers to guarantee that the results 
could perform the automatic driving of an unmanned car. The con-
trollers also had to have a smooth surface in order to guarantee safe 
and comfortable driving for the car occupants. The controllers were 
tested on a private asphalt circuit, and most of them showed good 
behavior in straight lines, but also bad behavior in curve lines; this 
is caused by the non-predictive model used in the control, with no 
analysis of the non-immediate reference points of the desired route. 
The controllers showed very smooth driving, even when they were 
circulating at relatively high speeds. This is a good starting point 
for subsequent research in ITSs. Subsequent research will focus on 
improving the models obtained here in order to guarantee precise 
driving and also comfortable and smooth driving along a reference 
line. Furthermore, the consequences of using a determined num-
ber of membership functions will be studied and any other car state 
variable, rule base,... Safety and efficiency must also not be for-
gotten. All these important features will be considered in future 
research. 
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