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Abstract. A well designed space must consider not only ease of movement, but 

also ensure safety in a panic situation, such as emergency evacuation in a 

stadium or hospital. The movement statistics connected with pedestrian flow 

can be very helpful in feasible layout design. In this study, we examined four-

way pedestrian movement statistics generated from heuristic search techniques 

to find feasible classroom layout solutions. The aim of the experiment is to 

compare how fast and effective the algorithms can generate automatic solutions 

to the layout. Experiments from our preliminary study have shown that 

promising results for simulated annealing and genetic algorithm operator 

algorithms in pedestrian simulation modelling. Our experimental results are 

compared with current classroom layouts. We find a feasible layout with a 

staggering shaped and wider lane, objects shift aside to the walls creating bigger 

lanes in the middle of layout, or escape routes are created surrounding the 

clustered objects. 

Keywords: Genetic Algorithm, Simulated Annealing, Cellular Automata, 

Pedestrian statistics, Classroom layout.  

1   Introduction 

Pedestrian simulations on egress plans provide in-depth analysis on pedestrian 

movement during evacuation processes but do not offer any consideration of the 

distribution of objects or obstacles inside the floor layout itself. The smooth flow of 

pedestrians is formed by a feasible allocation of obstacles in a layout. Thus, in 

architectural planning, it is important to carefully consider the position of obstacles in 

a layout as well as the location of exits. However, many pedestrian simulation studies 

on evacuation plans are often focused on pedestrian behaviour and do not assess the 

interaction with obstacles inside the floor plan. If we could analyse the relationship of 

different pedestrians with the obstacles, then it would allow us to configure a better 

distribution of obstacles in a layout. For example, pedestrian statistics generated from 

the simulations could be investigated further and show us where the collision points 

are in a full grid layout. That way, we can identify ‘bad’ regions and predict feasible 

layouts. If we could also study different types of pedestrian flow in a microscopic 

level of the simulation, then it will give us greater control on different sets of 

pedestrians in and out of the layout. For example, an evacuation process in a hospital, 

where the allocation of some critical resources, namely medical and non-medical 
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staff, to the various units of a hospital at the time of emergency. This way, we have a 

choice to first evacuate sets of patients as fast as possible and save more lives. 

In this paper, we implement simulated annealing (SA) and hill climbing (HC) with 

updates that involve simple genetic algorithm (GA) operators in order to find 

solutions to a classroom layout. Previously, we have used these algorithms to simulate 

a 10-by-10 grid size with two types of pedestrian moving inside the space; one 

moving to the left and one moving to the right. In the previous experiments, left and 

right pedestrians kept moving in the same direction until the end of the simulation and 

without any distinctive exit on the layout [2], [3]. In this work, we improved the 

current layout by adding static objects such as walls, distributed on every side of the 

room with two openings on each side, and non-static objects randomly distributed. 

The size of the room was also increased from 10-by-10 to 20-by-20 grid size. We 

added two more types of pedestrian moving inside the space: one moving up-to-down 

and another moving down-to-up based upon the cellular automata model of Yue et al. 

[12]. The existing fitness function was updated to reflect movement from all four 

types of pedestrian. In order to create a realistic simulation, we enhanced the 

pedestrian behaviour by allowing each type of pedestrian to randomly change their 

direction during the simulation.  The aim of the experiments was to compare and 

understand how fast and effective the algorithms can generate automatic solutions to 

the spatial layout problem by using statistics generated from cellular automata 

pedestrian simulations. 

This paper is organised as follows. Section 2.1 introduces Hill Climbing (HC), 

Simulated Annealing (SA) and extended SA using Genetic Algorithm-style operator 

(SA-GAO). Sections 2.2 and 2.3 describe move operator and fitness function. Section 

3 presents experimental results on the classroom layout. Finally we present our 

conclusions in section 4. 

2   Methodology 

The experiments involved applying SA, HC and SA-GAO to solve the spatial layout 

problem. It was not feasible to have a full GA implementation due to the very 

complex fitness function involving several pedestrian simulations. 

2.1   Hill Climbing, Simulated Annealing and SA Genetic Algorithm Operators 

HC is a comparatively simple local search algorithm that works to improve a single 

candidate solution, starting from a randomly selected point. From that position, the 

neighbouring search space is evaluated. If a fitter candidate solution is found, the 

search moves to that point. If no better solution is found in the vicinity, the algorithm 

terminates. The main disadvantage of using HC is that it often gets stuck in local 

maxima during the search [8]. 

SA is an extension to HC, reducing the chance of converging at local optima by 

allowing moves to inferior solutions under the control of a temperature function. This 

solution is followed if a better successive can be found. Otherwise it accepts a worse 

state with a certain probability that decreases with temperature. This is less extreme 

than taking randomised HC each time but still has the ability of escaping from the 
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possible trap of local maximum/minimum or plateau [8]. The pseudocode for our 

implementation of this approach is listed below. 
 

Input: Number of iterations, iteration, and a random 
starting layout, startrep, starting temperature, 
temperature 

oldrep = startrep; 

Apply 10 pedestrian simulations to generate statistics, 
stats 

Fit = fitness(stats) 

bestfit = fit 

for  loop = 1:iteration 

   rep = oldrep; 

   Apply move operator to rep 

   Apply 10 pedestrian simulations to stats 

   newfit = fitness(stats); 

   dscore = newfit-fit 

   if ((bestfit < newfit) OR  

   (rand(0,1) <e
(dscore/temperature)

)) 

      bestfit = newfit 

   oldrep = rep; 

   else 

      rep = oldrep; 

   end if 

  temperature = temperature*0.9 

end for 

In order to set this as a HC, the starting temperature is set to zero. Note that the fitness 

here uses the statistics generated from 10 repeated runs of the CA pedestrian 

simulation. This is done to ensure that one simulation does not result in a ‘lucky’ 

fitness score for one layout based upon the starting positions of the pedestrians. 

Then we extended our work by using GA-style operators [3]. A full GA 

implementation was not feasible due to the very complex fitness function involving 

several pedestrian simulations. The initial ‘parents’ were selected from the best 

solutions generated (selections were made based on more consistent fitness values 

with a fitness higher than the original fitness which was 43.434 or above) from a 

number of SA experiments. We experimented with different styles of combination for 

two ‘parents’ that more or less acted like a uniform crossover. 

2.2   Move Operator 

The move operator is an enhancement from the previous study[2] and takes into 

account the size of the simulation grid, randomly moving one object a fraction of this 

distance (determined by the parameter changedegree). The result of the move is then 
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checked to see if the new coordinates are within the bounds of the grid and do not 

result in the object overlapping with others. In this update, we also checked the result 

did not overlap with the static object (wall). The operator is defined below, where 

unidrnd(min,max) is a uniform discrete random number generator with the limits of 

min and max. The pseudocode for move operator is listed below. 

 

Input: Size of simulation grid, W, size of objects, 
sizobj, current x-coordinate, oldx, current y-
coordinate, oldy 

Set the degree of change to make based upon fraction of 
the grid size: 

Changedegree = W/2; 

Choose a random object in the grid, i 

[oldx, oldy] = current x and y coordinates of object i 

xchange = unidrnd(-changedegree/2, changedegree/2) 

ychange = unidrnd(-changedegree/2, changedegree/2)  

if ((oldy + ychange) and (oldx + xchange) is within 
grid boundary AND new object position does not overlap 
another object taking into account sizobj) 

  newx = oldx + xchange; 

  newy = oldy + ychange; 

end if 

Move object i to position [newx, newy] 

Output: newx newy  
 

2.3   Fitness Function 

The fitness function is calculated based on the statistics that are generated using the 

pedestrian simulation. The statistics take the form of a 3x3 matrix, leftstats, 

representing the sum of decisions for left-moving pedestrians and a similar decision 

matrix for right-moving pedestrians; rightstats, up-moving pedestrians; upstats, and 

down-moving pedestrians; downstats. Therefore, the middle cell in each grid 

represents how many times the pedestrians decided to stay in the same cell as last 

time. As we wish to encourage free flow we wish to increase the fitness for layouts 

that result in many cases of left moving pedestrians moving left, right-moving 

pedestrians moving right, up-moving pedestrians moving up and down-moving 

pedestrians moving down whilst penalising the fitness of any decisions where the left-

moving pedestrians move right, up-moving pedestrians move down and vice-versa. 

For example, consider the four stats matrices for left, right, up and down pedestrians. 

It is clear that the leftstats reflect a ‘good’ result as the pedestrians have generally 

moved in the desired direction more often whereas for rightstats, upstats and 

downstats this is not the case. 
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upstats  downstats 

1 2 1 3 4 0 

3 2 1 1 3 2 

4 3 3 2 1 2 

 

3 1 1  3 3 2 

7 3 0 2 2 2 

3 2 2 2 3 1 

leftstats rightstats 

Fig. 1. Up, Down, Left and Right statistics – describe as 3x3 matrix 

In general, we wish to maximise the first column in leftstats, the third column in 

rightstats, the first row in upstats and the third row in downstats whilst minimising 

the other statistics (shaded in the example, Figure 1). Therefore, we use the following 

fitness function: 

              rightfitness = sum(rightstats(3,1:3))-  sum(rightstats(1,1:3)) . (1) 

                  leftfitness = sum(leftstats(1,1:3))-sum(leftstats(3,1:3)) . (2) 

                   upfitness = sum(upstats(1:3,1))-sum(upstats(1:3,3)) . (3) 

            downfitness = sum(downstats(1:3,3))-sum(downstats(1:3,1)) . (4) 

              fitness = rightfitness+leftfitness+upfitness+downfitness . (5) 

Higher fitnesses should reflect simulations whereby pedestrians have moved in the 

direction that they wish more often. 

3   Results 

The experiments involved running HC, SA and SA-GAO on the problem of trying to 

arrange 15 pre-defined objects in a 20x20 grid with ‘left’ pedestrians, ‘right’ 

pedestrians, ‘up’ pedestrians and ‘down’ pedestrians. Each type of pedestrian 

randomly changes his/her direction during simulation. Each algorithm was run 10 

times and the learning curves were inspected. The final fitnesses and quality of the 

layouts were then investigated. Finally, some inspection of sample simulations on the 

final layouts was carried out in order to find interesting characteristics. 

3.1   Summary Statistics 

Table 1 shows the minimum, maximum, mean values and standard deviation for the 

final fitness of each algorithm over 10 experiments, where SA0.5 represents SA with 

initial temperature of 0.5, SA0.7 represents a temperature of 0.7 and SA0.9 represents 

a temperature of 0.9. The statistical values of SA0.5 show the robustness of the 

solutions with the standard deviation of 3.687. The standard deviation is relatively 

low, which indicates that SA with initial temperature of 0.5 is among the most 

consistent approach in finding a good solution. However, SA0.9 has the maximum 
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value of final fitness (the mean is also the highest). It indicates that at the highest 

temperature, SA can sometimes escape some of the local optima. It even achieves 

higher fitness when compared to the original layout (43.434). Note that also, SA0.9 

generates two fitnesses which are higher than the original value (45.478 and 44.256). 

None of the fitness values achieves better values than the original layout fitness from 

for HC, SA0.5 and SA0.7. 

Table 1. Summary statistics of final fitness 

Method Min. Max. Mean Std. Dev. 

HC 29.170 42.800 36.334 4.165 

SA0.5 31.100 42.506 35.685 3.687 
SA0.7 23.902 40.154 29.764 5.495 

SA0.9 27.380 45.478 36.980 5.743 

 
We then expanded our work to SA-GAO. Based on the result above, ‘parents’ from 

SA0.9 were selected. We ran 100 further simulations on SA0.9 to find more parents 

which have better fitness than the original layout fitness. Eight ‘parents’ with fitness 

higher than the original fitness (43.434) were selected.  

We next tried to experiment with 100 random combinations of mappings. Around 

40 children have fitness better than their ‘parents’. The highest fitness of the children 

was 56.876, as shown in the table below, generated from ‘child2’ with mapping 

‘112121121222111’. Note that the same mapping also generates a better fitness for 

‘child1’ with fitness value of 49.316. The second highest fitness is from ‘child1’ with  
 

Table 2. Children‘s mapping with highest fitness values from parents 

Child1 Fitness Child2 Fitness 

2 2 2 2 1 1 2 1 1 1 1 2 1 1 1 47.466 2 1 1 1 2 2 2 1 1 1 2 2 1 1 1 53.360 

2 1 1 2 1 2 1 1 1 1 2 1 2 1 2 49.330 2 2 2 2 1 1 2 1 1 1 1 2 1 1 1 46.970 

1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 52.972 2 1 2 2 1 2 1 1 2 1 1 1 1 2 1 48.104 

1 2 1 1 1 2 1 2 1 1 1 2 2 1 2 45.756 1 1 2 2 1 2 2 1 2 1 2 1 1 1 2 51.244 

1 2 2 1 2 1 1 2 2 1 1 2 2 2 1 46.770 2 1 1 2 2 2 2 2 2 2 2 1 1 2 1 48.536 

2 1 1 1 1 2 2 1 2 2 1 1 1 2 2 46.266 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 46.710 

1 2 2 2 2 1 2 2 2 1 2 2 2 2 1 49.276 1 1 1 2 2 1 1 1 2 2 2 1 2 1 2 48.540 

1 2 2 1 1 1 2 2 1 1 2 1 1 2 1 52.234 1 1 2 1 1 2 1 2 1 2 2 1 2 1 1 48.838 

1 1 2 1 1 2 1 2 1 2 2 1 2 1 1 48.590 2 2 2 2 2 2 1 1 2 2 1 1 2 1 1 50.092 

2 2 1 1 1 2 2 2 2 2 1 2 1 2 1 45.570 1 1 2 1 2 1 1 2 1 2 2 2 1 1 1 56.876 

1 1 2 1 2 1 1 2 1 2 2 2 1 1 1 49.316 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 46.658 

2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 53.750 1 1 2 2 2 1 2 2 1 1 2 1 2 1 1 46.826 

2 2 1 1 2 1 1 2 1 2 2 1 1 2 1 47.160 2 1 2 2 1 1 1 2 1 1 1 2 1 2 2 45.652 

2 1 1 2 1 1 1 1 1 2 2 2 2 1 1 48.334 1 2 2 1 1 1 2 2 1 2 2 2 2 1 2 51.728 

2 1 2 2 1 1 1 2 2 1 2 2 2 2 1 45.934 2 1 2 2 1 2 2 2 1 2 1 1 1 2 1 50.676 

2 1 2 2 1 1 1 2 1 1 1 2 1 2 2 47.692 1 2 2 2 1 2 1 2 2 1 2 1 2 1 1 46.654 

2 2 1 1 1 1 1 1 2 2 1 1 2 2 1 45.810 1 2 2 1 1 2 2 2 1 2 2 1 2 2 1 47.006 

1 2 2 1 2 1 1 1 1 2 2 2 2 2 1 46.460 1 2 2 2 2 2 1 1 1 2 1 2 1 2 1 45.744 

1 2 2 2 2 2 1 1 1 2 1 2 1 2 1 46.800   

2 2 2 1 2 1 2 1 1 1 2 1 2 2 1 49.642   
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mapping ‘221122211222112’ and its fitness value was 53.75. Note that the same 

mapping generates a good fitness for ‘child2’. Another four mapping breeds both 

‘child1’ and ‘child2’ with fitness better than their ‘parents’. This result shows that it 

may be necessary to run quite a large number of recombinations of parents to ensure 

improved fitness. It may also imply that further mutations are required to fine-tune 

these new solutions. The fitnesses of the ‘children’ scored better compared with the 

‘parents’highest fitness value. This implies that recombining the best of the SA 

solutions can indeed improve the overall layout without having to implement a full 

GA which would not be feasible for such an expensive fitness function. 

3.2   Exploring the Final Layouts with Their Final Pedestrian Statistics 

We now explore some of the characteristics of the final layouts discovered by the 

algorithms. The red square symbols are the permanent walls, the blue squares in 

Figure 2-4 represent the final positions of random objects; 500 iterations using SA, 

HC and SA-GAO algorithm. The black and red arrows represented left, right, up and 

down pedestrians moving in each ways.    

 

upstats 

 

downstats 
1973 6545 2335 131 109 112 

760 102 725 578 52 592 

212 225 123 1916 6111 2199 

 
1484 571 321 

 

148 708 1593 

5955 386 908 38 53 7353 

1490 576 309 153 626 1528 

leftstats rightstats 

Fig. 2. Original classroom layout with up, down, left and right statistics 

The layout from Figure 2 is based on classical distribution of seats in classrooms 

[6]. This configuration produced clogging phenomena near the exit [7]. It shows in 

the layout above where all pedestrians moved and clogged near the exit on the upper 

right of the room. Exits on the top and bottom walls are not separated far enough; an 

average exit throughput becomes even significantly less due to a collective slow-

down that emerges among pedestrians crossing each other’s paths. This disruptive 

interference effect led the ‘up’ and ‘down’ pedestrian to share the same lane [11]. 
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Exits on the left and right room are separated by long walls, thus allow ‘left’ and 

‘right’ pedestrians to choose different lanes. Notice the ‘right’ pedestrians only move 

freely on the upper side of the layout, thus their final statistics, rightstats (7353) is the 

highest among all. 

 

upstats 

 

downstats 
1790 5071 2002 474 248 295 

1103 10 1079 757 35 741 

457 69 119 1904 5767 1979 

 
1359 1557 538 

 

523 1751 2229 

4606 216 854 112 13 3548 

1254 1364 952 613 1925 1286 

leftstats rightstats 

(a) 

upstats 

 

downstats 
1568 4756 1724 98 416 311 

1326 90 1233 584 31 658 

504 306 493 1836 5389 1777 

 

1622 1024 495 

 

367 1327 1889 

5205 221 1032 227 106 4390 

1978 1217 506 585 1363 1246 

leftstats rightstats 

(b) 

 

upstats 

 

downstats 
1562 5716 1724 736 613 671 

941 136 987 1294 125 1473 

352 531 251 1225 4862 1401 

 

1608 1013 341 

 

700 1481 1191 

5284 109 860 257 43 3773 

1536 938 210 703 1577 1375 

leftstats rightstats 

(c) 

upstats 

 

downstats 
2514 5789 1710 100 22 127 

589 16 451 748 21 673 

106 471 154 2212 5298 1999 

 

1363 1764 516 

 

948 2124 1434 

3463 593 881 371 40 2725 

1400 1640 680 1034 1928 1296 

leftstats rightstats 

(d) 

Fig. 3. HC and SA final layouts with the lowest final fitness and their final pedestrians statistic, 

(a) HC (fitness=29.170), (b) SA0.5 (fitness=31.100), (c) SA0.7 (fitness=23.902), (d) SA0.9 

(fitness=27.38) 
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upstats 

 

downstats 
2294 6688 2168 258 104 382 

565 117 490 817 26 704 

341 262 575 2097 5980 1832 

 

1564 450 27 

 

297 1172 1947 

5677 204 614 24 2 6202 

2069 516 179 89 762 2105 

leftstats rightstats 

(a) 

upstats 

 

downstats 
1881 6832 2132 175 204 139 

784 21 755 742 95 933 

413 244 438 2676 6234 2002 

 

2008 536 165 

 

184 715 2102 

5940 343 417 22 9 5461 

1918 705 568 322 852 2533 

leftstats rightstats 

(b) 

 

upstats 

 

downstats 
1975 7082 2471 149 84 166 

445 28 477 896 41 914 

145 367 210 2063 6070 2217 

 

1970 807 289 

 

230 924 1941 

7170 101 411 15 4 5528 

2007 606 39 155 1028 2075 

leftstats rightstats 

(c) 

upstats 

 

downstats 
1900 6704 2043 150 169 285 

601 32 516 621 76 765 

129 90 185 2103 6074 1957 

 

2556 958 208 

 

263 1722 1897 

4904 62 644 55 19 5444 

1932 892 644 407 1894 1699 

leftstats rightstats 

(d) 

Fig. 4. SA-GAO final layouts and their final pedestrians statistic, (a) the highest fitness of 

‘chi1d1’ with fitness of 53.750 and mapping of ‘221122211222112’, (b) ‘child2’ with same 

mapping of (a) and fitness of 46.658, (c) ‘child1’ with the same mapping of (d) and fitness of 

49.316, (d) ‘child2’ with fitness of 56.876 and mapping of ‘112121121222111’ represents the 

highest fitness of all children 
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From Figure 3 (a)-(d), we can see clearly that the bad layouts are generated from 

the series of lowest fitness. Figure 3(a) is the ‘bad’ layout with the lowest fitness from 

10 run of HC. Notice that the objects scattered around in the layout. The objects also 

create lots of enclosed/ cul-de-sac area which caused the pedestrians being trapped 

inside. One of eight exits was totally blocked by the objects. There is no clear escape 

route created. The left and right pedestrians bump to each other because of the narrow 

path which they have to share. Notice a jammed group of ‘left’ and ‘right’ pedestrians 

in the lower layout where it is a high density location. ‘Left’ and ‘right’ have the 

lowest final statistics and the largest middle value for leftstats is 216, In the second 

layout taken from SA0.5, Figure 3(b) there is jam pattern especially among ‘left’ and 

‘right’ pedestrians. Notice the bigger middle values for both of leftstats and rightstats 

(221 and 106). The third layout, Figure 3(c) shows more than one cul-de-sac that 

encircled and trapped the pedestrian. This is no surprise since it has the lowest fitness 

compared to the other three layouts. Notice that ‘right’ pedestrian stuck in both cul-

de-sac resulted their rightstats is the lowest compare to the others with only 3773. 

Around three cul-de-sacs were created in the final layout, Figure 3(d), where the 

biggest cul-de-sac is in the middle of the layout. One exit on the bottom right of the 

layout is completely blocked. Clogging among pedestrians can be seen clearly at the 

high densities region. 

The higher the fitness, the better the layout produced as in Figure 4 (a)-(d). All four 

layouts were generated from SA-GAO simulations. Most of the objects are shifted 

aside to the walls creating bigger major lanes in the upper side of every layout. The 

first layout, Figure 4(a) shows the objects move creating a group in one side, giving 

free spaces near the exits. Therefore, all the pedestrians can move easily without 

being blocked is shown by the ‘right’ pedestrians where their rightstats middle value 

reflects it by having the smallest value of 2. Some of the layouts created escape routes 

that surround the clustered objects as in Figure 4(b). It appears that the ‘up’ 

pedestrian leave the virtual trace (chemotaxis) for the behind pedestrian to follow. 

Figure 4(c) has a bigger lane in the upper layout, allowing pedestrians to move left 

and right freely. Notice the ‘left’ and ‘right’ pedestrians used the straight and bigger 

path in the upper side of the room that brings out the highest leftstats value at 7170 

and a small middle value for rightstats at 4 (means less pedestrian getting stuck). The 

fourth layout Figure 4(d), with the highest fitness of all, creates more paths (some zig-

zag shape) when compare to other layout. It seems that all the pedestrians move freely 

and have alternatives to choose any path they prefer. The final statistics for all 

pedestrians spread averagely even. 

4   Conclusions 

In this paper we proposed pedestrian flow simulations combined with heuristic 

searches to assist in the automatic design of classroom layout. Using pedestrian 

simulations, the activity of crowds can be used to study the consequences of different 

spatial layouts. Based on the results that have been observed in this paper, we have 

demonstrated that simple heuristic searches appear to deal with the NP-hard spatial 

layout design problem to some degree, at least on the very much simplified problem 

addressed here. The solution is further improved when we paired ‘parents’ and apply 
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a GA style operator using our method SA-GAO. Whilst it is not guaranteed that the 

optimal solution will be found, this does not mean that useful and unexpected designs 

cannot be discovered using these types of approaches.  

Exploring the final pedestrian statistics we found a few characteristics for a 

feasible layout design. We found that a feasible layout with higher fitness value has 

better characteristics as zigzag-shaped path, bigger lane and more alternative paths. A 

zigzag-shaped path can reduces the pressure in panicking crowds and ease the 

pedestrian movement. A wider lane and several different escape paths help avoid a 

long waiting lane and clogging effect. It shows in the final statistic where a smooth 

flow pedestrians has a small middle value of statistics means less waiting or stucking 

phenomena. Also, we found that where the exits are not separated widely enough, a 

disruptive interference effect can happen. This scenario results in pedestrians sharing 

the same path and they have lower statistics when compared to where pedestrians do 

not share the same path. Indeed, the real positive outcome of the experiments here is 

that we found certain characteristics that may not have been immediately expected. 

Future work will be directed towards the gathering of real world data sets and 

complex systems in order to validate the model equations. The fitness function that 

will be based on time-to-escape is also a distinct possibility for future study. 
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