
Automatic Learning of Pushing Strategy for Delivery of
Irregular-Shaped Objects

Manfred Lau, Jun Mitani, Takeo Igarashi

Abstract— Object delivery by pushing objects with mobile
robots on a flat surface has been successfully demonstrated.
However, existing methods can push objects that have a circular
or rectangular shape. In this paper, we introduce a learning-
based approach for pushing objects of any irregular shape to
user-specified goal locations. We first automatically collect a
set of data on how an irregular-shaped object moves given
the robot’s relative position and pushing direction. We collect
this data with a randomized approach, and we demonstrate
that this approach can successfully collect useful data. Object
delivery is achieved by using the collected data with a non-
parametric regression method. We demonstrate our approach
with a number of irregular-shaped objects.

I. INTRODUCTION

The use of mobile robots has increased greatly over the
past decade as they can be found in practical use in factories,
hospitals, and people’s homes. This paper focuses on the use
of mobile robots for pushing objects. Pushing is useful for
object delivery, bulldozing/construction operations, cleaning
tasks, and robot soccer. However, many existing approaches
[1], [2], [3], [4], [5] push objects with regular shapes such
as circles, squares, and rectangles.

Pushing an irregular-shaped object is challenging as it
is difficult to accurately measure or specify the shape and
physical parameters of the object by hand. Applying auto-
matic methods for recognizing the parameters can be noisy
and inaccurate. In addition, it is difficult to geometrically
compute how such an object moves as it gets pushed, and
to incorporate its motion into an algorithm for pushing it
towards a goal location.

Fig. 1. We automatically collect a pushing strategy (left) for this irregular-
shaped object, and use the data to control the robot to push the object
towards user-specified goals.

This paper introduces a learning-based approach for push-
ing objects of any irregular shape (Fig. 1). Instead of
explicitly measuring or specifying the object’s shape and

All authors are with JST ERATO Igarashi Design Interface Project,
Tokyo, Japan (contact: manfred.lau@gmail.com). Jun Mitani is also with
University of Tsukuba. Takeo Igarashi is also with The University of Tokyo.

parameters, the idea is to first collect data on how the object
moves based on the robot’s relative position and pushing
direction. We call such a set of data a pushing strategy. The
pushing strategy is collected automatically. The user does
not need to manually specify or provide it. We then use this
pushing strategy to push the object towards a user-specified
goal. The strength of our approach is that we can use the
same algorithm for objects of different shapes and sizes.
The object’s shape is never explicitly specified or recorded,
but is implicitly represented in the data. In addition, the
data implicitly stores relevant physical parameters such as
the weight distribution and the friction between the robot,
object, and pushing surface. The learning-based method is
also robust to slight inaccuracies in the data.

There are two main problems that we solve: how to collect
the pushing strategy, and how to use the pushing strategy to
deliver an object to a goal. For the first problem, we present
an initial data collection method where we collect data by
having the robot push the object from different positions
and directions. We use a simple randomized approach to
decide the robot’s pushing position and direction. We can
then experimentally evaluate the existing data by using them
to solve random goal queries. This is an optional step. The
motivation is that if the existing data can successfully solve
random queries, then we can stop collecting data. For the
second problem, we use a non-parametric regression tech-
nique to decide where to move the robot and which direction
it should push in, given the final goal and the robot/object
relative locations. We do not model the data parametrically,
as it allows us to keep collecting data as the robot pushing
is executed. Although we apply an existing non-parametric
technique in our algorithm, our contributions are: (i) we solve
the object-delivery-by-pushing problem for irregular-shaped
objects, and (ii) we use the idea of automatically learning a
pushing strategy to solve this problem.

We demonstrate that our algorithms are shape indepen-
dent: they work with irregular-shaped objects of various
shapes and weight distributions. Since our focus is on the
pushing algorithm, we do not have obstacles in most of our
test environments. For environments with obstacles, we first
use a global planner to generate a high-level path and then
use our method to push the object towards sub-goals along
this path. We empirically compare our approach with an
existing method for pushing circular objects [5].

II. RELATED WORK

The idea of using the memory of past pushes to predict
future pushes has been previously studied [6], [7]. However,



their pushing models are much simpler and they do not
show results of real mobile robots pushing different types
of irregular-shaped objects. Salganicoff et al. [6] uses a very
simple push model where the point of contact between the
robot and object is a single notched point on the object.
There is only one rotational degree of freedom at the contact
point. Walker et al. [7] also builds a mapping between pushes
and object motion. However, they explicitly measure the
object’s shape by using a proximity sensor on a robot finger
to detect a point cloud of the object, and then fit a shape
to these points. Our method avoids potential measurement
inaccuracies by not explicitly finding the object’s shape.
Furthermore, their objects are restricted to those with low
curvature and without corners due to sensor issues. Their
pushes are limited to be only at specific discretized points
on the object, along the object’s surface normal, and at single
contact points with the object. In contrast, our objects can
be of any shape. Our pushes can be at any point around the
object, at any direction, and be in contact with the object at
multiple points.

There exists much work in pushing objects for various
tasks, but these methods handle objects of a circular/spherical
or rectangular shape. Mobile robots for playing robot soccer
can push a spherical ball or a rectangular-shaped box [8]. A
watcher robot can lead a team of pusher robots to push a
rectangular-shaped box [1]. Push plans for circular objects
are computed that allow the object to touch and move along
the wall/obstacles [2], [3], [4], or allow for multiple pushes of
the object [4]. A method that computes a dipole field [5] can
push circular objects for object delivery tasks. Our method
differs in that we can handle objects of any irregular shape.

The mechanics of pushing objects on a surface has been
studied [9]. This work uses knowledge about the mechanical
properties of objects to generate stable pushing plans. On the
other hand, our method is empirical and based on observing
actual robot pushes of objects. Lynch et al. [10] perform
experimental pushes of objects and observe the resulting
motion to estimate the friction parameters. While we also
perform empirical pushes of objects, we neither model the
friction explicitly nor recognize the object geometry directly.

Our approach is related to work in the learning community.
Reinforcement learning and vision methods have been used
to allow mobile robots to learn to shoot a ball into a
goal [11], and to learn behaviors such as obstacle avoidance
and target pursuit [12]. Our work applies a different learning
technique for the robot to learn a different task. Learning
from demonstration methods [13], [14] allow the human to
demonstrate a task to a robot, and a policy to perform the
task is learned from the human data. Our method of using
the example data to control the robot pushing is similar,
although we collect the data automatically and there is no
human demonstration of the task.

III. ALGORITHM
A. Problem Definition

There are two problems that we solve to achieve our
pushing task. We assume that our system can continuously

track the global position/orientation of the robot, object, and
goal. We also assume that the object does not roll on the
flat pushing surface. The first problem is to collect data on
the object’s movement based on the robot’s position and
push direction. We collect and store this pushing strategy
beforehand so that it can be used for future goal queries.
The inputs are the boundary of the workspace where the
robot and object can move in, the radius of the circular
robot, and the radius of the bounding circle of the object.
We bound the object by a circle so that the robot can move
around it regardless of its orientation. The output is a pushing
strategy: a set of data where each sample is for one robot
push and the corresponding object movement. We describe
an initial data collection approach (Section III-C) where we
start from no data, and we collect samples by having the
robot push from a variety of positions and directions. We
then present an experimental evaluation method (Section III-
D) that can optionally be used to test if we should collect
more data. This may be the case if the existing data cannot be
used to successfully solve goal queries. We can also collect
supplemental data with this method and immediately use
them as the robot is solving goal queries.

The second problem is to use the pushing strategy for
controlling the robot to deliver the object to any goal position
(ie. we do not use goal orientation). We present a non-
parametric regression algorithm (Section III-E) that takes as
input the pushing strategy, the position/orientation of the
robot, object, and goal, and returns as output the robot
instantaneous push direction and in some cases the position
that the robot should push from.

Fig. 2. We collect one data sample for each robot push. (px, py) is the
position of the robot’s center. (rx,ry) is the change in position of the robot’s
center. (sx,sy) is the change in position of the object. All values are in the
object’s coordinate frame (black axes).

B. Notation

Let the robot be R, the object be O, and the pushing
strategy (or set of data) be D. Each sample of D contains
the data for one robot push and the corresponding object
movement: (px, py,rx,ry,sx,sy,θ) (Fig. 2). θ represents the
change in orientation of the object and is not drawn in the
figure. We only allow forward robot pushes in our current im-
plementation, although the approach accepts general pushes
such as moving forward and turning at the same time. The
object’s trajectory is not necessarily a straight line, although
we only record its change in position and orientation. For



Algorithm 1: Data Collection
Initial Data Collection:
for k = 1 to K do1

if dist(prev O pos,O.pos())< ε then2
reset robot();3

if ob j outside boundary() then4
reset robot ob j boundary();5

prev O pos = O.pos();6
R.spin(random angle());7
R. f orward(random dist());8
D.save sample();9

Experimental Evaluation of Existing Data:
reset robot();10
while true do11

if ob ject not move() or over time limit() then12
reset robot();13

if ob j outside boundary() then14
reset robot ob j boundary();15

solve query(random goal());16
if good success rate() then17

break;18

the purpose of collecting data samples, the robot can be
positioned anywhere as long as it is in contact with the
object. The robot can be in contact with the object at multiple
points. The robot’s push direction can be in any direction
such that it moves the object by at least a small distance.

C. Initial Data Collection

The objective of the initial data collection process is to
start with no data, and collect a variety of robot pushes and
object movement as quickly as possible. Although we can
use more sophisticated methods to decide where and how the
robot should push the object, we choose to use a randomized
strategy that is simple but effective. The idea is to place the
robot and object on a flat workspace (ie. a table) with a pre-
defined boundary, and automatically run the data collection
process without human intervention. The basic strategy is
to choose a random direction and distance (within certain
limits) for the robot to push with from its current position.

Algorithm 1 (Initial) collects K samples of data.
reset robot() is executed if a robot push does not move
the object (ie. robot is not in contact with the object). In
this case, we spin the robot to face the position of the
marker attached to the object and move the robot forward
until a small change in the object’s position is detected.
reset robot ob j boundary() is executed if the robot pushes
the object outside the boundary. In this case, we move the
robot around the object so that it can push the object back
inside the boundary (Fig. 3). The collected data can be used
immediately.

D. Experimental Evaluation of Existing Data

After we collect some data with the above method, we can
experimentally evaluate this data (Algorithm 1 Experimental
Evaluation) to test whether or not it has enough samples
for successfully solving goal queries (ie. pushing object to
goal). This is an optional process. The idea is to choose

Fig. 3. The operations in reset robot ob j boundary() in Algorithm 1. Let
the bound-all circle’s center be the object’s center, and radius be the sum of
the robot’s radius, the object’s bounding circle’s radius and a small amount
of extra space. (a to b) The robot pushed the object outside the boundary,
and we spin and move the robot to the closest point on the bound-all circle.
Let the push-point be the point on the bound-all circle such that the vector
from that point to the object’s center is perpendicular to the boundary. (c-
1,2,3) We keep spinning and moving the robot along points on the bound-all
circle until it reaches the push-point. (d) We then spin and move the robot
towards the object until it pushes the object inside the boundary (not shown).

random goal queries, and try to use the current pushing
strategy (with the non-parametric method in the next section)
to solve them. If we can solve these goal queries with a good
success rate, we have enough samples and can stop collecting
data. Otherwise, this process keeps collecting supplemental
data even if the goal queries are not successfully solved.
We add the supplemental samples to the pushing strategy
interactively and use them immediately.

In Algorithm 1 (Experimental Evaluation),
ob ject not move() is true if the robot pushes forward
but the object does not move (ie. the robot has moved away
from the object). reset robot(), ob j outside boundary(),
and reset robot ob j boundary() are the same as in the
initial data collection process. over time limit() is true
if an execution of solve query() is not solved before a
certain time limit. solve query() drives the robot to deliver
the object towards the goal. It uses the data and the
non-parametric method in the next section. The query fails
if any of the conditions in lines 12 and 14 are true. New
supplemental data is stored and used immediately during
each query. good success rate() is true if the previous ten
queries succeeded. The number of previous queries is a
parameter.

E. Object Delivery by Using Collected Data

We describe how to use the collected pushing strategy to
control the robot to push the object towards the goal. In
the general case (Algorithm 2), we find the goal direction
(from object to goal) and the robot position, and use the
pushing strategy and non-parametric kernel regression to
compute the robot push direction that results in that goal
direction. We continuously perform this computation and
execute the appropriate robot push until the object reaches
the goal. Although pushing can be unstable, the continuous
computation and execution of small pushes help to adjust for
the noise and errors from pushing.

In Algorithm 2 (General Case), the values are in the



Algorithm 2: Object Delivery by Using Collected Data
General Case:
(px, py) = R.pos;1
(sx,sy) = o f f set ∗ normalize(Goal.pos−O.pos);2
foreach samplei ∈ D do3

disti = dist(samplei,(px, py,sx,sy));4
K = set o f indices o f k smallest disti;5
for k ∈ K do6

weightk = exp
(
−dist2

k
K2

w

)
;

7

(rx,ry) =
∑k∈K (weightk ∗ (rxk ,ryk))

∑k∈K weightk
;8

Special Case (if last robot push moves object away from goal):
(sx,sy) = o f f set ∗ normalize(Goal.pos−O.pos);9
foreach samplei ∈ D do10

disti = dist(samplei,(sx,sy));11
K = set o f indices o f k smallest disti;12
for k ∈ K do13

weightk = exp
(
−dist2

k
K2

w

)
;

14

(px, py,rx,ry) =
∑k∈K (weightk ∗ (pxk ,pyk ,rxk ,ryk))

∑k∈K weightk
;15

object’s coordinate frame. o f f set adjusts the length of
(sx,sy) such that it is near the range of the corresponding
vectors in the pushing strategy. The dist() function com-
putes the Euclidean distance between (px, py,sx,sy) and the
corresponding values in each samplei. We take the nearest k
samples for the kernel regression. Kw is the kernel width. We
use k = 5 and Kw = 8 pixels (or about 1.8cm) in our tests.
We execute the robot push direction given by (rx,ry).

The regression method described above only allows the
robot to push the object from its current position. As the
robot pushes the object towards the goal, it may deviate
from the goal because it can only adjust its push direction.
It may be possible that the best robot push direction pushes
the object away from the goal (Fig. 4a). If this happens,
we execute a special regression case to re-position the robot
(Fig. 4b and Algorithm 2 Special Case). The idea is to first
find the goal direction (from object to goal), and then use
the pushing strategy to find both the robot position and
push direction that results in that goal direction. We move
the robot to the computed position, execute a push in the
computed direction, and then return to the general case (or
until a special case is needed again).

Fig. 4. (a) The “best” robot push direction may push the object away from
the goal. (b) If this happens, we perform a special regression step where we
use the pushing strategy to find both the robot position and push direction.

In Algorithm 2 (Special Case), the dist() function uses
only (sx,sy) and not the robot position. Instead the position
(px, py) is computed. The robot moves to (px, py) by moving
around the object similar to the way it does in Fig. 3. It then

executes a push in the computed direction (rx,ry).
The runtime and storage space for Algorithm 2 are both

in the order of the size of the pushing strategy. As there
are about hundreds of samples in the pushing strategy, the
runtime and storage space are not practical concerns.

As our focus is on local pushing algorithms, we focus on
cases where there are no obstacles. If there are obstacles,
we first compute a global collison-free path with existing
planning techniques [15], and then execute the robot to push
the object along sub-goals of this path.

IV. IMPLEMENTATION

Hardware. Our system (Fig. 5) consists of a robot, a
ceiling-mounted USB web camera (Logicool Qcam Pro for
Notebook, 2M pixels), and a host computer (Dell Latitude
E6400, Intel Core2 Duo T9800 2.93GHz processor running
Windows XP). The host computer continuously tracks the
position/orientation of the robot, object and goal with the
camera, and wirelessly sends control signals to the robot.
We use a small custom-made differential drive robot with
a circular bumper. We use unique markers [16] to identify
the robot, object, and goal. These markers provide a simple
method for recognition, but other methods can also be used.

Fig. 5. Hardware configuration.

Software. The tracking and control program was written
in JavaTM. It uses a 2D tracking system with proprietary
visual markers, similar to the AR ToolKit [16]. The markers
have a 3x3 black-and-white pattern enclosed in a black
frame, and size of 5x5 cm. The system can uniquely detect
the identity, position, and orientation of each marker. The
camera resolution is 960x720 at 30 fps, with a delay of
approximately 30 ms.

The control program continuously receives the markers’
positions/orientations. Based on this information, it computes
the desired robot movement using the algorithms described
in the previous section. It then sends low-level control com-
mands (move forward/backward, spin left/right, and stop) to
the robot to execute the desired movement. To move the
robot forward by a specific amount, the robot starts to move
forward and stop when it has travelled within a small value
of that amount. If the robot moves forward (or backward) by
too much, we allow it to move backward (or forward). This
resolves issues of noise in the captured positions/orientations.
We use a two-level movement scheme: we first move the
robot at a coarser level (by larger distances), and then move
it at a finer level (by smaller distances). The coarser level is



useful for speed, while the finer level is useful for accuracy.
The spin commands are executed in a similar way.

V. EMPIRICAL EVALUATION

Fig. 6 shows the robot and irregular-shaped objects that we
used. The irregular shape with two markers are two separate
cases. We cover one of the markers during our experiments.
We intentionally put one marker near the middle of the shape
and one marker near the corner to test the robustness of
our approach. We only used the goal position (and not the
orientation) in our experiments. We empirically show that
our pushing strategy collection and robot control algorithms
work well and, most importantly, are independent of the
shape and weight distribution of the object.

Fig. 6. Sizes of robot and irregular-shaped objects.

Pushing Strategy. Fig. 7 shows the pushing strategy for
each object. In each case, we first collect samples with the
initial method. We then performed the experimental evalu-
ation process until we can successfully solve ten previous
queries. This process also collects supplemental samples.
Fig. 7 shows the total number of samples and total time.
About a quarter of the total number and time is for the sup-
plemental data. In our experiments, the initial data collection
method already gives us good pushing strategies. Hence the
evaluation process is mainly for verification purposes, and
having the supplemental data was not a necessity. However,
having more data can only help the algorithm.

An advantage of the initial method is that we can easily
collect a variety of robot pushes with different positions and
directions. The variety comes automatically from pushing
with a random direction from the robot’s current position,
and from the robot turning around the object due to the
boundary. An interesting observation is that the robot posi-
tions that are more likely to be encountered in practice (due
to the overall shape of the object) are more likely to have
more sample points in the pushing strategies. A disadvantage
is that it can take a long time to collect a good variety
of data. However, the data can be collected without human
intervention and this is not a practical concern.

The advantages of the experimental evaluation method are
that we can test if we have enough data with the current
pushing strategy, and we can collect supplemental data at
the same time. A disadvantage is that the additional samples
are a weighted combination of existing samples and hence
are not “new” samples. To resolve this issue, we can collect
data by alternating the initial and experimental evaluation

Fig. 7. Pushing strategy for (from top left) irregular, irregular-corner, L-
shape, wire-cutter, scissors, and snake-shape. Each data sample (ie. change
in robot position and corresponding change in object position) has its own
color. There are 423, 217, 680, 245, 329, and 219 samples respectively.
Collection times are 116, 99, 180, 56, 73, and 85 minutes respectively.

methods several times, and stopping when the evaluation
method can successfully solve the previous ten queries.
We found that this is not necessary in our experiments,
as the initial data collection already gives us good pushing
strategies.
Shape Independence. We use the same data collection and
object delivery algorithms, independent of the object’s shape.
Fig. 8 shows example trajectories of the robot and object.
Please see the accompanying video for more examples.

Fig. 8. Robot (blue) and object (red) trajectories for four trials. The robot
and object are at the end of the trajectory in each case. In (a), (b), and (d),
the robot re-positions itself around the object once at the beginning and
once more before reaching the goal. A strength of the algorithm is that we
do not need to specify when and the number of times to re-position the
robot.

Parameters. We use k = 5 and Kw = 8 pixels. In general,
we can use a larger Kw value if the environment is larger.
We experimented with slightly different values of these
parameters and found no significant influence on the result.
Learning Rate. Fig. 9 shows examples of the learning
rate from our experiments. A trial succeeds if the distance
between the goal and the object’s marker position is less than
10 pixels in the camera view (or about 2.2cm). A trial fails if
the robot or object goes outside the boundary, or the system



goes into an infinite loop (in which case we terminate the
execution after 8 minutes).

Fig. 9. Each point on the plots are for the same ten goal queries. In
general, a larger number of samples in the pushing strategy leads to a higher
success rate. The rate of increase (of the success rate) tends to decrease as
the number of samples is large.

Comparison with Dipole Method. We compared our
method with the dipole field method [5] (Fig. 10 and 11).
Our method has a better success ratio than the dipole method
in all cases. There are cases where the dipole method works
by coincidence depending on the object’s shape and initial
configuration. For the L-shape, our method fails for two
trials because the object went outside of the boundary. If
the boundary were bigger (ie. our table was bigger), we
believe that our method would have succeeded, as the L-
shape required more space to maneuver.

Fig. 10. Layout of test environment.

Fig. 11. Comparison between dipole field method and our method. We
show the success percentage out of 10 trials.

VI. LIMITATIONS AND FUTURE WORK
Our approach requires collecting a pushing strategy for

each object. It is possible to scale an existing pushing

strategy for objects of the same shape but different scale.
We may further use existing strategies and generalize them
for different shaped objects in the future. In addition, some
pushing strategies may contain more data than we need, and
we can explore the idea of pruning the samples that do not
improve the result significantly. We can also more formally
analyze the relationships between the number of samples
needed, the object shape, the location of the marker, and
the success rate.

Our algorithm is not optimal and not complete. We also
currently do not analyze the quality of the solution. These
limitations are because our approach is greedy and learning-
based. The tradeoff is that our approach works for any
irregular-shaped object and is easy to understand.

Our current method for handling obstacles is simple and
may fail. For example, we may ask the robot to push left (or
push from the right) when there is an obstacle to the right.
In the future, we can take into account such cases with our
pushing approach.

For future work, we can define a formal measure of
the variety of samples in a pushing strategy based on the
robot positions and push directions. The idea is that if there
are regions of the object without samples (or without as
many samples), we should detect this automatically and
explicitly instruct the robot to collect more samples in those
regions. This can also improve the current runtime of the
data collection process.

REFERENCES

[1] B. P. Gerkey and M. J. Mataric, “Pusher-watcher: An approach to fault-
tolerant tightly-coupled robot coordination,” in Int’l Conf. on Robotics
and Automation (ICRA), May 2002, pp. 464–469.

[2] D. Nieuwenhuisen, A. Frank, and H. Overmars, “Path planning for
pushing a disk using compliance,” in In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2005, pp. 4061–4067.

[3] D. Nieuwenhuisen, A. van der Stappen, and M. Overmars, “Pushing
using compliance,” in ICRA, 2006, pp. 2010–2016.

[4] M. de Berg and D. Gerrits, “Computing push plans for disk-shaped
robots,” in Int’l Conf. on Robotics and Automation (ICRA), May 2010.

[5] T. Igarashi, Y. Kamiyama, and M. Inami, “A dipole field for object
delivery by pushing on a flat surface,” in ICRA, 2010.

[6] M. Salganicoff, G. Metta, A. Oddera, and G. Sandini, “A vision-based
learning method for pushing manipulation,” in AAAI Fall Symposium
on Machine Learning in Computer Vision, 1993.

[7] S. Walker and J. K. Salisbury, “Pushing using learned manipulation
maps,” in ICRA, 2008, pp. 3808–3813.

[8] R. Emery and T. Balch, “Behavior-based control of a non-holonomic
robot in pushing tasks,” in ICRA, 2001.

[9] K. Lynch and M. T. Mason, “Stable pushing: Mechanics, controllabil-
ity, and planning,” vol. 15, no. 1, December 1996, pp. 533–556.

[10] K. Lynch, “Estimating the friction parameters of pushed objects,” in
IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, 1993, pp.
186–193.

[11] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda, “Vision-based
reinforcement learning for purposive behavior acquisition,” in Int.
Conf. on Robotics and Automation, 1995, pp. 146–153.

[12] T. Nakamura and M. Asada, “Motion sketch: Acquisition of visual
motion guided behaviors,” in IJCAI, 1995, pp. 126–132.

[13] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,”
in International Conference on Machine Learning, 1997, pp. 12–20.

[14] D. C. Bentivegna and C. G. Atkeson, “Learning from observation using
primitives,” in ICRA, 2001, pp. 1988–1993.

[15] S. M. LaValle, Planning Algorithms. Cambridge University Press
(also available at http://planning.cs.uiuc.edu/), 2006.

[16] H. Kato, M. Billinghurst, B. Blanding, and R. May, “AR ToolKit,” in
Technical Report, Hiroshima City University, Dec 1999.


