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Abstract

Thispaperpresenta new methodfor matding individ-
ual line sgmentsbetweenimages. The methodusesboth
greylevelinformationandthe multipleview geometricrela-
tionsbetweertheimages. For image pairs epipolargeome-
try facilitatesthe computatiorof a cross-corelationbased
matding scoee for putativeline correspondenced-or im-
age triplets cross-corelation matding scoes are usedin
conjunctionwith line transferbasedon thetrifocal geome-
try. Algorithmsare developedor bothshortandlongrange
motion. In the caseof long range motionthe algorithmin-
volvesevaluatinga oneparameterfamily of planeinduced
homaraphies.Thealgorithmsare robustto deficienciesn
theline sggmentextractionand partial occlusion.

Experimentalresults are given for image pairs and
triplets, for varying motionsbetweerviews, and for differ-
ent scenetypes. The three view algorithm eliminatesall
mismattes.

1. Intr oduction

The goal of this paperis the automaticmatchingof line
segmentshetweerimagesof scenesnainly containingpla-
nar surfaces. A typical exampleis an urbanscene. Line
matchingis oftenthefirst stepin thereconstructiorof such
scenes.

Line matchingis a difficult problemfor severalreasons.

Thefirstis dueto thedeficienciesn extractinglines[6] and
their connecwity: althoughthe orientationof a line seg-
mentcanberecoveredaccuratelytheendpointsarenotre-
liable,andfurthermorethetopologicalconnectiondetween
line sggmentsareoftenlostduringsegmentation Somesey-
mentationalgorithmsare more successfuthanothers[13]
but the problemremains. The secondreasonis thatthere
is no strongdisambiguatingeometricconstraintavailable:
In the caseof points(corners),correspondencasnustsat-
isfy the epipolarconstraint. For infinite lines thereis no
geometricconstraintwhilst for lines of finite lengththere
is only a weakoverlapconstraintarisingfrom applyingthe
epipolarconstrainto endpoints.

Existingapproacheto line matchingin theliteratureare
of two types: thosethat matchindividual line segments;
andthosethat matchgroupsof line seggments. Individual
line sgmentsaregenerallymatchedon their geometricat-
tributes— orientationJength,extentof overlap[1, 12, 20].
Somesuchas[4, 5, 10] usea nearesiine stratgy which
is bettersuitedto imagetrackingwheretheimagesandex-
tractedsegmentsaresimilar.

The adwantageof matchinggroupsof line sggmentsis
that more geometricinformation is available for disam-
biguation,the disadwantages the increasecompleity. A
numberof methodshave beendevelopedaroundtheideaof
graph-matching2, 7, 9, 19]. The graphcaptureselation-
shipssuchasleft of, right of, cycles,collinearwith etc,as
well astopologicalconnectednes#lthough suchmethods
cancopewith moresignificantcameramotion, they often
have a high complity andagainthey aresensitveto error
in the sggmentationprocess. Thesemethodsare comple-
mentaryto theapproachn this papemwhichis for matching
individualline seggments.

The approachin this paperis built on two novel ideas.
The first is to exploit the intensity neighbourhoodf the
line. Theuseof affinity measurebasedncross-correlation
of intensityneighbourhoodkasbeenvery successfuh dis-
ambiguatingcornermatcheq21]. However, therearetwo
problemswith applying correlationdirectly to line neigh-
bourhoods:first, the point to point correspondencis un-
known; and second,correspondingneighbourhoodsnay
well have a very differentshapeand orientation,and this
is alsounknovn. For example, supposea squareneigh-
bourhoodin oneimageback-projectdo a planarfaceton
onesideof theline. The imageof this region in the sec-
ondimageis a quadrilateralput its shapedepend®ntirely
on therelative positioningof the camerasandplane. Even
a (significant) rotation or scalingwill defeatnaive cross-
correlationbasedon squareneighbourhood®f the same
orientation. The secondnovel part of our approactsolves
theseproblems:Theepipolargeometrybetweertheimages
canbeusedto provide pointto pointcorrespondencesong
theline sgments.Further the epipolargeometrytogether
with the matchedines, restrictsthe possiblehomographies



(projective transformationspetweenthe imagesto a one-
parametefamily, andthis family canbe usedto solve for
the neighbourhoodnapping.The algorithmthusdeliversa
correlationscorebetweerline sggmentswhich canbe used
to discriminatebetweercorrectandfalsematchesTheim-
plementatioris robustto the instabilitiesof the extraction
processandto partialocclusion.

1.1 Overview

The paperis organisedasfollows. Two algorithmsare
developedfor automatidine matching.Thefirst, described
in section2, is applicableto “short rangemotion”. This
is the imagemotion that arisesin imagesequences/here
simplenearesheighbourrackingwould almostwork. The
seconddescribedn section3, is applicableto “long range
motion”. Thisis theimagemotionthatarisesbetweerviews
from a stereorig, wherethe baselineis significant(com-
paredto thedistancdo thescene) Theremaybesignificant
rotationof the line betweenthe images,and, moreimpor-
tantly, planarsurfacesmayhave significantlydifferentfore-
shorteningdn the two images. The performanceof both
algorithmsarediscussed@ndexampleggivenusingrealim-
agepairs.

Sectiond describesheextensionof thealgorithmswhen
morethantwo views are available. With threeviews there
is a stronggeometricconstraintavailable for line match-
ing. The trifocal tensor[8, 16, 17] enabledines matched
in two views to be transferredo a third, andthis process
canbe usedto verify two view matches.An alternatve is
to treatthethreeviews symmetricallyandmatchsimultane-
ouslyoverthethree.Resultsaregivenfor atriplet of aerial
imageswhich shav thatall mismatcheganbe eliminated
for imagetriplets.

1.2 Implementation details

Line sgmentsare extracted by applying a local im-
plementationof the Canry edgedetectorwith hysteresis.
Edgelsarethenlinkedinto chainsjumpingupto aonepixel
gap. Tangendiscontinuitiesn thechainarelocatedusinga
worm, andline sggmentsarethenfitted betweerthediscon-
tinuitiesusingorthogonategression A verytight threshold
is usedfor the line fitting so that curvesare not piecavise
linearapproximated.

The geometricrelationsbetweenthe imagesrequireda
priori herearethe fundamentamatrix for imagepairs,and
the trifocal tensorfor imagetriplets. Theserelationsare
eithercalculatedindirectly from known cameraprojection
matricesfor eachview, or directly, andautomaticallyfrom
point(corner)correspondencds, 18, 21].

2 Short range motion

In the caseof shortrangemotion, line sggmentscanbe
comparedising(uncorrectedgorrelation.Thebasicideais

to treateachsegmentasallist of pointsto which neighbour

hoodcorrelationis appliedasa measuref similarity. Only

the point to point correspondencis required. In the ab-

senceof ary otherknowledgecorrespondingpoints could

be obtainedby searchingalong eachline segmentwith a

winnertakesall matchingstrateyy, similar to thatusedfor

matchingcornerson epipolarlines. However, knowing the

epipolargeometrydetermineshepointcorrespondencess
will now bedescribedAlso, theepipolargeometryreduces
theoverallsearclcompleity becausd restrictswhichline

segmentseedto be consideredor matching.

2.1 F-guided matching

Correspondingmage points, representedais homoge-
neous3-vectorsx and x’, satisfy the epipolar constraint
x'"Fx = 0. F is the fundamentalmatrix, which is a
3 x 3 matrix of rank 2. The epipolarline corresponding
tox is1'® = Fx, andtheepipolarline correspondingo x’
isl® = F'x'. Note, lines arealsorepresentedy homo-
geneous3-vectors,and’ in all casesindicatesthe second
image.

Supposdwo imagelines,1 andl’ correspondi.e. have
the samepre-imagen 3-space}henthe epipolargeometry
generates point-wise correspondencbetweenthe lines.
A pointx on1 correspondso the pointx’ whichis thein-
tersectionof 1’ and the epipolarline I'’* of x: The point
x' =1 x ' = I' x (Fx). This constructioris valid pro-
videdl is notanepipolarline.

Thematchingscorefor a pair of line segmentd andl’ is
computedastheaverageof theindividual correlationscores
for the points(pixels) of theline. The only pointsincluded
in this averagearethosethatarecommonto bothline sey-
ments,i.e. the correlationis not extendedpastthe endsof
themeasuredegments.

For eachseggmentin one image, a matchingscoreis
computedor all sgmentsof the secondmage(within the
searclspaceseebelon). Thepairof sggmentswith thebest
scoreis retainedasthecorrectmatch,i.e. awinnertakesall
scheme.

The epipolargeometrycan also be usedto reducethe
searclspace.Thetwo end-pointof asegmentgeneratéwo
epipolarlinesin the otherimage. Thesetwo lines definea
region, calledthe epipolar‘beam”, which necessarilynter-
sectsor containsthe correspondingeggment[20]. Givena
segmentin oneimage,this reduceshe complexity of the
searchor correspondingeggments.

2.2 Experimental results

Resultsare given for aerialimagesof an urbanscene
andfor imagesof atoy house.At presenthe ground-truth
matchesare assessetty hand. A correlationwindow of
15 x 15 is used,andonly linesof length15 pixelsor more
areconsidered.
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Figure 1. Upperpair: extractedlines segmentssuperim-
posedon the left/right images;Lower pair: matchedsey-
mentsusingthe shortrangemotionalgorithm.97.5%of the
122matcheshavn arecorrect.

Figure 1 (upper)shows the line sgmentsextractedon
the aerialimagesusingthe methoddescribedn the intro-
duction.248and236 sggmentsareobtainedor theleft and
right images,respectiely. The shortrangemotion algo-
rithm produceshe matchedisplayedin the lower figure.
97.5%o0f the 122 matche®btainedarecorrect.

For the toy houseexample,the numberof segmentsex-
tracteds 120and135for theleft andrightimages Matches
obtainedby theshortrangealgorithmareshavnin figure2.
94.5%o0f the 73 matchesrecorrect.

As anexampleof thematchingscoresthecorrectmatch
betweenrinesa in figure 2 hasa correlationscoreof 0.92,
comparedo the incorrectmatchof a to b with a scoreof
-0.67,i.e. a significantdifference.Note alsothat sgments
b are matchedcorrectly despitetheir different sgmented
lengthsin thetwo images.

On averagethe epipolarbeamreduceshe searchcom-
plexity to aboutathird, i.e.only athird of theline segments
needbe considered. The beamconstraintis also usedin
thelong rangemotionalgorithmdescribedn thefollowing
section.

Theexamplesdemonstratéhatvery goodresultsareob-
tainedin the caseof shortrangemotion. Neverthelessthe
methodasimplementedill fail whenthecorrelationmea-
sureis no longer sufficiently discriminatingto distinguish
correctfrom falsematches.Imaginethat the motion con-
sistsof asmalllateralmotion(asabove)followedby alarge
rotationaboutthe optical centre(cyclo-rotation). Suchan
imagemotionwill defeatthe cross-correlatioaffinity mea-

Figure 2. Matchedline segmentsusingthe shortrange
motion algorithm. 94.5% of the 73 segmentsshavn are
matchedcorrectly

surebecausat is not invariantto rotations. Thereare (at
least)two solutionsto this: first, the useof a rotationally
invariantcorrelationmeasure— sucha measuréhasbeen
developedby [15] in the caseof cornermatching;second,
usingthe orientationof the epipolarlinesto determinean
in planerotationto compensatéor the cyclo-rotation. We

have notinvestigatedhesesolutionsyet. However, neither
solutioncanovercomethefailure of cross-correlatiomhen
therearesignificantforeshorteningffectsbetweerthetwo

imagesandthisis the subjectof thelong rangemotion al-

gorithmdescribedext.

3 Long range motion

In the caseof large deformationbetweenimages,cor-
relationwill fail if the correlationpatchis not corrected.
This correctionis achieved by a projective warpingusinga
homographycomputedirom the fundamentamatrix. The
geometrichasisfor thisis now introduced.

Thecorrespondenceaf linesbetweerimagesdetermines
a one parameteffamily of homographiesvhich map the
line in oneimageto theline in the otherimage,andwhich
arealso consistentith the epipolargeometryi.e. are ho-
mographieghat could have arisenfrom imagesof planes
in 3-space: Given the fundamentalmatrix betweentwo
views, 3D structurecan be determinedrom imagecorre-
spondencesip to a projective ambiguity of 3-space. The
correspondencef two imagelines determinesa line in 3-
spaceandaline in 3-spacdies on a oneparametefamily
(apencil) of planes seefigure 3. This pencil of planesin-
ducesa pencil of homographiebetweenthe two images
which mapthe correspondindinesto eachothet

Theassumptionsinderpinninghe useof homographies
hereis thatthe scends approximatedocally by a planeor
junctionsof planes. This approximatioris generallyvalid
andin the caseof imagesof roomsor aerialimagesthe ho-
mographyis oftenexact.

3.1 Computing the planar homography

LuongandVieville [11] shawv thatthehomography(pla-
narprojectivetransformationpetweertwo imagesnduced



Figure 3. Imagelines1 andl’ determinea line L in 3-
spaceTheline L is containedn a oneparametefamily of
planesr (). Thisfamily of planesnducesaoneparameter
family of homographiebetweertheimages.

by aworld planer is givenby
H(a) = [¢]F +e'a’ (1)

suchthattheimagesof pointson 7 arerelatedby x' = Hx;
= indicatesequalityupto scaleH is the3 x 3 homogeneous
matrix representinghehomographye’ is theepipolein the
secondview (FTe' = 0); [e'] is the skew 3 x 3 matrix
representinghe vectorproduct(i.e. [e']xx = €' x x); and
a is a 3-vectorwhich parameterisethe 3-parametefamily
of planesn 3-space.

If the3 x 4 cameraprojectionmatrix for the first view
hasthecanonicaform P = [I| 0], i.e.theworld coordinate
frameis alignedwith the first camerathentheworld plane
is representetly thefour vectorr ™ = (a',1).

Giventhecorrespondenagf imagelines,l, I, thehomo-
graphiesinducedby planescontainingthe line in 3-space
arereducedrom a 3-parameteto a one-parametefiamily.
Undera homographya line transformsasl = H'I'. Im-
posingthisrelationonthehomographiesf equation(1) we
obtain,aftera shortcalculation[14],

H(u) = [U]<F + pe'l” )

wherey is the singlescalarparameteof the pencil.
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Figure 4. As p varies,apointx, whichis notontheline
1, is mappedby H(u) to a pointx’(u) which movesalong
the epipolarline (Fx) correspondingo x. However, the
point y, which lies on 1, is mappedo a fixed pointy’ for
all valuesof .

The behaiour of H(u) asu variesis illustratedin fig-
ure 4. Since H(u) is compatiblewith the epipolarge-

ometry all membersof the family map the epipolesto
eachother i.e. ¢’ = H(u)e) andcorrespondingpipolar
lines are mappedto eachotheri.e. if x and x’ are cor
respondingpoints — not necessarilylying on the plane
m(pu) — andl’®, 1¢ their correspondingpipolarlines, then
Ie=HT(pl'°.

Pointson1 andl’ are mappedto a point on the line in
the otherimageunderthe onedimensionahomographyn-
ducedby theepipolarlines,i.e. y' = H(u)y =1' x (Fy).
Pointswhich arenot on1 andl’ are mappedto pointson
their correspondingpipolarlinesasillustratedin figure 4.

Oncethevalueof theparametey is known, a matching
scorecanbe computedusing pixel basedcross-correlation
with the point correspondencgsovidedby H(u).

3.2 H-correlation score

Givenaputativeline matchtheaimisto computeacross-
correlationscoreusingH (). A singlescoreis obtainedoy
computingthe value p*, with correspondindhomography
H*, for whichthe cross-correlatiots highestoverall p. In
the following we first describethe computationof the H-
correlationscore andthenthe estimationof p*.

As straightline sgmentsoften occurat the junction of
planarfacetsthe homographiesirein generaldifferentfor
thetwo sidesof theline. It is thereforenecessaryo process
thetwo sidesseparatelyThe maximumof thetwo correla-
tion scoreds usedasthe matchingscorefor theline.

The cross-correlatiotis evaluatedfor a rectangulastrip
ononesideof theline sggmentby usingH () to associate
correspondingoints. Thelengthof thestripis thecommon
overlap of the lines determinedby the epipolargeometry
The areaof the strip must be sufiicient to include neigh-
bouringtexture, otherwisethe cross-correlatiomwill not be
discriminating. In the implementatiora strip of width 14
pixelswasfoundto be sufficient. The computationis car
ried out to sub-pixel resolutionusingbilinearinterpolation.

The homography H* which maximizes the cross-
correlationmustthenbe estimated.This involvesestimat-
ing u*. However y is a projective parameteandis not di-
rectly measurabler meaningfulin theimage.Insteadof u
thehomographys parametrizedby the mappingof a single
point (which in turn determineg:). The cornerof therect-
angularcorrelationstrip is idealfor this purpose Thesetof
possiblecorrespondencés theotherimagex’ (i) lie onthe
epipolarline of x (cf. figure4). Thevaluep* is obtainedoy
searchingheepipolarline for thex’ (u*) which maximizes
the cross-correlationConsiderthe point x’ which hasthe
samedistanceto theline I’ asx hasto 1. This corresponds
to a scale/foreshorteninf@ctorof onebetweertheimages.
To restrictthe searchwe limit the possiblescalefactorsto
the range1/3 to 3. This rangedefinesan interval on the
epipolarline in the secondmage. The correlationscoreis
thenevaluatedat 10 equi-spacegointsonthisinterval,and



thebestscoredetermineg.*.
3.3 Experimental results

Figure5 shavs experimentatesultsusingthelongrange
motion algorithm. For this pair of aerialimagesthereis
a significantrotation betweenthe images. 93% of the 55
matchesbtainedarecorrect.In the secondexample there

motion algorithm. Thereis a significantrotation between
theimages.93%of the 55 matcheshawn arecorrect.

are significantforeshorteningeffects betweenthe two im-
ages. Figure 6 displaysthe 53 matchesobtained. 77% of
themarecorrectlymatched.

Figure 6. Matchedline segmentsusing the long range
motionalgorithm. Thereis significantlydifferentforeshort-
ening betweenthe planesof the housein the two images.
77%of the53linesshavn arecorrectlymatched.

4 Threeview matching

The trifocal geometryprovides a geometricconstraint
for correspondindines over threeviews. Linesly, 1, and
13 in threeviews are correspondingdf they arethe image
of the sameline in 3-space.Given the trifocal tensorand
correspondindinesin two images,the correspondingdine
in the third imageis determined.This constraintprovides
a methodfor verifying the two imagematchesdetermined
by the shortor long rangealgorithms.This “two plusone”
methodproceedssfollows: Theputatvetwo view matches
predicta line in the third image (via the trifocal tensor).
Therearethentwo stagef verification. First, a geomet-
ric verification, a line segmentshould be detectedat the
predictedpositionin the third image. Second,an inten-
sity neighbourhooderification,the pairwisecorrelational-

gorithmsshouldsupportthis match. In practicethesetwo
stagef verificationeliminateall mismatches.

An alternatve matching procedureis to compute
matchessimultaneouslover threeviews and then verify.
This procedureis outlinedin the following section. It is
demonstratedn [14] that this proceduregeneratesnore
correctmatchesthan the two plus one approach without
addingarny mismatches.

4.1 Matching over thr eeimagessimultaneously

All line triplet combinationsare consideredsubjectto
theepipolarbeamconstraint).Therearethenthreestage of
verification.Firstit is verifiedthatthe (infinite) linessatisfy
thetrifocal constraint.If this geometricconstraintis satis-
fied, thenthetrifocal tensor(or equivalently, thethreepair-
wise fundamentamatrices)determinegshe commonparts
of thethreesggments.Thesecondstageexamineshis com-
monsegment.If thereis no commonpartthenthe matchis
rejected. Otherwise,we have now verified that the match
is geometricallycorrectfor the finite sggments. The third
stageis to computeline correlationscoresasdescribedn
section and3 betweerine pairsl; /1, andl,/15. If these
two scorearesufficiently largethenthetripletis a potential
match.Casesvheretherearemultiple matchegpossiblefor
a particularline sgmentareresohed by a winnertakesall
scheme.

It might be thoughtthat the three view methodwould
have a significantlyhighercompleity, but this costcanbe
largely avoided by aninitial correlationbasedpre-filteron
view pairsto remove ridiculous matchesand thus restrict
putative matchedor eachline to a small number Details
aregivenin [14].

Thereasorthatthethreeview matchingmethodncludes
more matcheghanthe two plus one methodis thatin the
lattermethodawinnertakesall schemas appliedafteronly
two view matching.This earlierapplicationof winnertakes
all may eliminatesomecorrectmatcheswhich could have
beenverifiedin thethird view.

4.2 Experimental Results

The resultfor threeaerialimagesusing matchingover
three views with short rangemotion correlationis given
in figure 7. All of the 89 matchesobtainedare correct.
Figure8 shaws the 3D reconstructiorobtainedusingthese
matches.The positionof the line in 3D is determinedus-
ing a bundleadjustmentvhich minimisesthe re-projection
erroroverthethreeimages.

5 Conclusionand Extensions

We have demonstratedtwo algorithmic approaches
which significantlyimprove on the stateof the art for line
matchingacrosgwo or moreimages.Thealgorithmscover
the casesof both shortandlong rangemotion. The long
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Figure 7. Matchingacrosghreeviews usingbothline transferanda shortrangematchingcorrelationscore All of the89 matches
obtainedarecorrect.

Figure 8. Two views of the 3D reconstructiorof theline
matchedrom figure7.

rangealgorithmwill work equallywell in the shortrange
case,of course but is moreexpensve. Althoughwe have
notinvestigatedhe choice,it is likely thatthe procesghat
generatethefundamentaandtrifocal tensorswill havesuf-
ficient information to choosewhich of the short or long
rangealgorithmsis appropriate.

Finally, we mentionthreeextensionswhich we are cur
rently investigating.Thefirst is the useof vanishingpoints
to reducematchingcompleity. Theseconds to usep asa
line groupingconstraint— sincecoplanatineslie onplanes
with thesamevalueof u. Thethird extensionis to applythe
sameideas(intensity neighbourhoodandlocal homogra-
phies)to curve matching,both for planecurvesandspace
curves.
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