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Abstract

Thispaperpresentsa new methodfor matching individ-
ual line segmentsbetweenimages. Themethodusesboth
greylevel informationandthemultipleview geometricrela-
tionsbetweentheimages.For imagepairsepipolargeome-
try facilitatesthecomputationof a cross-correlationbased
matching score for putativeline correspondences.For im-
age triplets cross-correlation matching scoresare usedin
conjunctionwith line transferbasedon thetrifocal geome-
try. Algorithmsaredevelopedfor bothshortandlongrange
motion. In thecaseof long range motionthealgorithmin-
volvesevaluatinga oneparameterfamily of planeinduced
homographies.Thealgorithmsare robustto deficienciesin
theline segmentextractionandpartial occlusion.

Experimentalresults are given for image pairs and
triplets, for varyingmotionsbetweenviews,andfor differ-
ent scenetypes. The three view algorithm eliminatesall
mismatches.

1. Intr oduction

Thegoalof this paperis theautomaticmatchingof line
segmentsbetweenimagesof scenesmainly containingpla-
nar surfaces. A typical exampleis an urbanscene. Line
matchingis oftenthefirst stepin thereconstructionof such
scenes.

Line matchingis a difficult problemfor severalreasons.
Thefirst is dueto thedeficienciesin extractinglines[6] and
their connectivity: althoughthe orientationof a line seg-
mentcanberecoveredaccurately, theendpointsarenot re-
liable,andfurthermorethetopologicalconnectionsbetween
linesegmentsareoftenlostduringsegmentation.Someseg-
mentationalgorithmsaremoresuccessfulthanothers[13]
but the problemremains. The secondreasonis that there
is no strongdisambiguatinggeometricconstraintavailable:
In the caseof points (corners),correspondencesmustsat-
isfy the epipolarconstraint. For infinite lines thereis no
geometricconstraint,whilst for lines of finite lengththere
is only a weakoverlapconstraintarisingfrom applyingthe
epipolarconstraintto endpoints.

Existingapproachesto line matchingin theliteratureare
of two types: thosethat match individual line segments;
andthosethat matchgroupsof line segments. Individual
line segmentsaregenerallymatchedon their geometricat-
tributes— orientation,length,extentof overlap[1, 12, 20].
Somesuchas [4, 5, 10] usea nearestline strategy which
is bettersuitedto imagetrackingwheretheimagesandex-
tractedsegmentsaresimilar.

The advantageof matchinggroupsof line segmentsis
that more geometricinformation is available for disam-
biguation,thedisadvantageis the increasedcomplexity. A
numberof methodshavebeendevelopedaroundtheideaof
graph-matching[2, 7, 9, 19]. Thegraphcapturesrelation-
shipssuchasleft of, right of, cycles,collinearwith etc,as
well astopologicalconnectedness.Althoughsuchmethods
cancopewith moresignificantcameramotion, they often
haveahighcomplexity andagainthey aresensitive to error
in the segmentationprocess.Thesemethodsarecomple-
mentaryto theapproachin thispaperwhichis for matching
individual line segments.

The approachin this paperis built on two novel ideas.
The first is to exploit the intensity neighbourhoodof the
line. Theuseof affinity measuresbasedoncross-correlation
of intensityneighbourhoodshasbeenverysuccessfulin dis-
ambiguatingcornermatches[21]. However, therearetwo
problemswith applyingcorrelationdirectly to line neigh-
bourhoods:first, the point to point correspondenceis un-
known; and second,correspondingneighbourhoodsmay
well have a very differentshapeandorientation,and this
is also unknown. For example,supposea squareneigh-
bourhoodin one imageback-projectsto a planarfaceton
onesideof the line. The imageof this region in the sec-
ondimageis a quadrilateral,but its shapedependsentirely
on therelative positioningof thecamerasandplane.Even
a (significant)rotation or scalingwill defeatnaive cross-
correlationbasedon squareneighbourhoodsof the same
orientation.Thesecondnovel part of our approachsolves
theseproblems:Theepipolargeometrybetweentheimages
canbeusedto providepointto pointcorrespondencesalong
theline segments.Further, theepipolargeometry, together
with thematchedlines,restrictsthepossiblehomographies



(projective transformations)betweenthe imagesto a one-
parameterfamily, andthis family canbe usedto solve for
theneighbourhoodmapping.Thealgorithmthusdeliversa
correlationscorebetweenline segmentswhichcanbeused
to discriminatebetweencorrectandfalsematches.Theim-
plementationis robust to the instabilitiesof the extraction
process,andto partialocclusion.

1.1. Overview

The paperis organisedasfollows. Two algorithmsare
developedfor automaticline matching.Thefirst, described
in section2, is applicableto “short rangemotion”. This
is the imagemotion that arisesin imagesequenceswhere
simplenearestneighbourtrackingwouldalmostwork. The
second,describedin section3, is applicableto “long range
motion”. Thisis theimagemotionthatarisesbetweenviews
from a stereorig, wherethe baselineis significant(com-
paredto thedistanceto thescene).Theremaybesignificant
rotationof the line betweenthe images,and,moreimpor-
tantly, planarsurfacesmayhavesignificantlydifferentfore-
shorteningsin the two images. The performanceof both
algorithmsarediscussedandexamplesgivenusingrealim-
agepairs.

Section4 describestheextensionof thealgorithmswhen
morethantwo views areavailable. With threeviews there
is a stronggeometricconstraintavailable for line match-
ing. The trifocal tensor[8, 16, 17] enableslines matched
in two views to be transferredto a third, andthis process
canbe usedto verify two view matches.An alternative is
to treatthethreeviewssymmetricallyandmatchsimultane-
ouslyover thethree.Resultsaregivenfor a triplet of aerial
imageswhich show that all mismatchescanbe eliminated
for imagetriplets.

1.2. Implementation details

Line segmentsare extractedby applying a local im-
plementationof the Canny edgedetectorwith hysteresis.
Edgelsarethenlinkedinto chains,jumpingupto aonepixel
gap.Tangentdiscontinuitiesin thechainarelocatedusinga
worm,andline segmentsarethenfittedbetweenthediscon-
tinuitiesusingorthogonalregression.A verytight threshold
is usedfor the line fitting so that curvesarenot piecewise
linearapproximated.

The geometricrelationsbetweenthe imagesrequireda
priori herearethefundamentalmatrix for imagepairs,and
the trifocal tensorfor imagetriplets. Theserelationsare
eithercalculatedindirectly from known cameraprojection
matricesfor eachview, or directly, andautomatically, from
point (corner)correspondences[3, 18, 21].

2 Short rangemotion

In thecaseof shortrangemotion, line segmentscanbe
comparedusing(uncorrected)correlation.Thebasicideais

to treateachsegmentasa list of pointsto whichneighbour-
hoodcorrelationis appliedasa measureof similarity. Only
the point to point correspondenceis required. In the ab-
senceof any otherknowledgecorrespondingpointscould
be obtainedby searchingalong eachline segmentwith a
winner takesall matchingstrategy, similar to thatusedfor
matchingcornerson epipolarlines. However, knowing the
epipolargeometrydeterminesthepointcorrespondences,as
will now bedescribed.Also, theepipolargeometryreduces
theoverallsearchcomplexity becauseit restrictswhichline
segmentsneedto beconsideredfor matching.

2.1.
�

-guidedmatching

Correspondingimage points, representedas homoge-
neous3-vectors � and ��� , satisfy the epipolarconstraint
��� � � ����� . �

is the fundamentalmatrix, which is a	�
�	
matrix of rank 2. The epipolarline corresponding

to � is ������ � � , andtheepipolarline correspondingto ���
is  � � � � ��� . Note, lines arealsorepresentedby homo-
geneous3-vectors,and � in all casesindicatesthe second
image.

Supposetwo imagelines,  and �� correspond(i.e. have
thesamepre-imagein 3-space)thentheepipolargeometry
generatesa point-wisecorrespondencebetweenthe lines.
A point � on  correspondsto thepoint ��� which is the in-
tersectionof �� and the epipolar line �� � of � : The point�������� 
 �� � ���� 
�� � ��� . This constructionis valid pro-
vided  is notanepipolarline.

Thematchingscorefor apairof line segments and �� is
computedastheaverageof theindividualcorrelationscores
for thepoints(pixels)of theline. Theonly pointsincluded
in this averagearethosethatarecommonto bothline seg-
ments,i.e. the correlationis not extendedpastthe endsof
themeasuredsegments.

For eachsegment in one image, a matchingscore is
computedfor all segmentsof thesecondimage(within the
searchspace,seebelow). Thepairof segmentswith thebest
scoreis retainedasthecorrectmatch,i.e.awinnertakesall
scheme.

The epipolargeometrycan also be usedto reducethe
searchspace.Thetwo end-pointsof asegmentgeneratetwo
epipolarlines in theotherimage. Thesetwo linesdefinea
region,calledtheepipolar“beam”,whichnecessarilyinter-
sectsor containsthecorrespondingsegment[20]. Givena
segmentin one image,this reducesthe complexity of the
searchfor correspondingsegments.

2.2 Experimental results

Resultsare given for aerial imagesof an urbanscene
andfor imagesof a toy house.At presenttheground-truth
matchesare assessedby hand. A correlationwindow of����
����

is used,andonly linesof length15 pixelsor more
areconsidered.



Figure 1. Upperpair: extractedlinessegmentssuperim-
posedon the left/right images;Lower pair: matchedseg-
mentsusingtheshortrangemotionalgorithm.97.5%of the
122matchesshown arecorrect.

Figure1 (upper)shows the line segmentsextractedon
the aerial imagesusingthe methoddescribedin the intro-
duction.248and236segmentsareobtainedfor theleft and
right images,respectively. The short rangemotion algo-
rithm producesthe matchesdisplayedin the lower figure.
97.5%of the122matchesobtainedarecorrect.

For the toy houseexample,thenumberof segmentsex-
tractedis 120and135for theleft andright images.Matches
obtainedby theshortrangealgorithmareshown in figure2.
94.5%of the73matchesarecorrect.

As anexampleof thematchingscores,thecorrectmatch
betweenlines � in figure2 hasa correlationscoreof 0.92,
comparedto the incorrectmatchof � to  with a scoreof
-0.67,i.e. a significantdifference.Notealsothatsegments are matchedcorrectly despitetheir different segmented
lengthsin thetwo images.

On averagethe epipolarbeamreducesthe searchcom-
plexity to abouta third, i.e.only a third of theline segments
needbe considered.The beamconstraintis also usedin
thelong rangemotionalgorithmdescribedin thefollowing
section.

Theexamplesdemonstratethatverygoodresultsareob-
tainedin thecaseof shortrangemotion. Nevertheless,the
methodasimplementedwill fail whenthecorrelationmea-
sureis no longersufficiently discriminatingto distinguish
correctfrom falsematches.Imaginethat the motion con-
sistsof asmalllateralmotion(asabove)followedby alarge
rotationaboutthe optical centre(cyclo-rotation). Suchan
imagemotionwill defeatthecross-correlationaffinity mea-
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Figure 2. Matchedline segmentsusingthe short range
motion algorithm. 94.5%of the 73 segmentsshown are
matchedcorrectly.

surebecauseit is not invariantto rotations. Thereare(at
least)two solutionsto this: first, the useof a rotationally
invariantcorrelationmeasure— sucha measurehasbeen
developedby [15] in the caseof cornermatching;second,
usingthe orientationof the epipolarlines to determinean
in planerotationto compensatefor thecyclo-rotation. We
have not investigatedthesesolutionsyet. However, neither
solutioncanovercomethefailureof cross-correlationwhen
therearesignificantforeshorteningeffectsbetweenthetwo
images,andthis is thesubjectof thelong rangemotional-
gorithmdescribednext.

3 Long rangemotion

In the caseof large deformationbetweenimages,cor-
relation will fail if the correlationpatchis not corrected.
This correctionis achievedby a projectivewarpingusinga
homographycomputedfrom the fundamentalmatrix. The
geometricbasisfor this is now introduced.

Thecorrespondenceof linesbetweenimagesdetermines
a one parameterfamily of homographieswhich map the
line in oneimageto theline in theotherimage,andwhich
arealsoconsistentwith the epipolargeometryi.e. areho-
mographiesthat could have arisenfrom imagesof planes
in 3-space: Given the fundamentalmatrix betweentwo
views, 3D structurecanbe determinedfrom imagecorre-
spondencesup to a projective ambiguityof 3-space.The
correspondenceof two imagelines determinesa line in 3-
space,anda line in 3-spacelies on a oneparameterfamily
(a pencil)of planes,seefigure3. This pencilof planesin-
ducesa pencil of homographiesbetweenthe two images
whichmapthecorrespondinglinesto eachother.

Theassumptionsunderpinningtheuseof homographies
hereis that thesceneis approximatedlocally by a planeor
junctionsof planes.This approximationis generallyvalid
andin thecaseof imagesof roomsor aerialimagestheho-
mographyis oftenexact.

3.1 Computing the planar homography

LuongandVieville [11] show thatthehomography(pla-
narprojectivetransformation)betweentwo imagesinduced
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Figure 3. Imagelines ! and !#" determinea line $ in 3-
space.Theline $ is containedin aoneparameterfamily of
planes%'&�(*) . Thisfamily of planesinducesaoneparameter
family of homographiesbetweentheimages.

by a world plane+ is givenby, ��- ����. / �1032 �54 / � - � (1)

suchthattheimagesof pointson + arerelatedby ���*� , � ;� indicatesequalityuptoscale;
,

is the
	�
6	

homogeneous
matrixrepresentingthehomography;/7� is theepipolein the
secondview (

� � /7�8�:9 ); . /7� 032 is the skew
	;
�	

matrix
representingthevectorproduct(i.e. . /7� 032 �5�</7� 
 � ); and-

is a 3-vectorwhich parameterisesthe3-parameterfamily
of planesin 3-space.

If the
	=
?>

cameraprojectionmatrix for the first view
hasthecanonicalform @A�B. C8DE9 0 , i.e. theworld coordinate
frameis alignedwith thefirst camera,thentheworld plane
is representedby thefour vector + � � ��- �'F � � .

Giventhecorrespondenceof imagelines,  , �� , thehomo-
graphiesinducedby planescontainingthe line in 3-space
arereducedfrom a 3-parameterto a one-parameterfamily.
Undera homographya line transformsas �� , � �� . Im-
posingthisrelationonthehomographiesof equation(1) we
obtain,afterashortcalculation[14],, �HG �6�B.  �10 2 �54 G / �  � (2)

where
G

is thesinglescalarparameterof thepencil.
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Figure 4. As ( varies,a point I , which is not on theline! , is mappedby J=&�(*) to a point IK"�&�(L) which movesalong
the epipolarline &HMNI*) correspondingto I . However, the
point O , which lies on ! , is mappedto a fixed point O " for
all valuesof ( .

The behaviour of
, ��G � as

G
variesis illustratedin fig-

ure 4. Since
, ��G � is compatiblewith the epipolar ge-

ometry, all membersof the family map the epipolesto
eachother, i.e. /7�P� , �HG �Q/ ) andcorrespondingepipolar
lines are mappedto eachother i.e. if � and ��� are cor-
respondingpoints — not necessarilylying on the plane+ �HG � — and  � � F  � their correspondingepipolarlines,then � � , � ��G �Q�� � .

Pointson  and  � aremappedto a point on the line in
theotherimageundertheonedimensionalhomographyin-
ducedby theepipolarlines,i.e. RS�*� , �HG �TRU�V�� 
U� � RW� .
Pointswhich arenot on  and �� aremappedto pointson
their correspondingepipolarlinesasillustratedin figure4.

Oncethevalueof theparameter
G

is known, a matching
scorecanbecomputedusingpixel basedcross-correlation
with thepoint correspondencesprovidedby

, �HG � .
3.2

,
-correlation score

Givenaputativelinematchtheaimis tocomputeacross-
correlationscoreusing

, �HG � . A singlescoreis obtainedby
computingthe value

GSX
, with correspondinghomography, X

, for which thecross-correlationis highestoverall
G

. In
the following we first describethe computationof the

,
-

correlationscore,andthentheestimationof
GSX

.
As straightline segmentsoften occurat the junctionof

planarfacets,thehomographiesarein generaldifferentfor
thetwo sidesof theline. It is thereforenecessaryto process
thetwo sidesseparately. Themaximumof thetwo correla-
tion scoresis usedasthematchingscorefor theline.

Thecross-correlationis evaluatedfor a rectangularstrip
on onesideof theline segmentby using

, �HG � to associate
correspondingpoints.Thelengthof thestripis thecommon
overlapof the lines determinedby the epipolargeometry.
The areaof the strip must be sufficient to includeneigh-
bouringtexture,otherwisethecross-correlationwill not be
discriminating. In the implementationa strip of width 14
pixelswasfound to be sufficient. Thecomputationis car-
riedout to sub-pixel resolutionusingbilinearinterpolation.

The homography
, X

which maximizes the cross-
correlationmustthenbeestimated.This involvesestimat-
ing

GSX
. However

G
is a projective parameterandis not di-

rectly measurableor meaningfulin theimage.Insteadof
G

thehomographyis parametrizedby themappingof asingle
point (which in turn determines

G
). Thecornerof therect-

angularcorrelationstrip is idealfor thispurpose.Thesetof
possiblecorrespondencesin theotherimage��� ��G � lie onthe
epipolarline of � (cf. figure4). Thevalue

GSX
is obtainedby

searchingtheepipolarline for the � � ��G X � whichmaximizes
the cross-correlation.Considerthe point ��� which hasthe
samedistanceto theline �� as � hasto  . This corresponds
to a scale/foreshorteningfactorof onebetweentheimages.
To restrictthesearchwe limit thepossiblescalefactorsto
the range1/3 to 3. This rangedefinesan interval on the
epipolarline in thesecondimage.Thecorrelationscoreis
thenevaluatedat10equi-spacedpointson this interval, and



thebestscoredetermines
GSX

.

3.3 Experimental results

Figure5 showsexperimentalresultsusingthelongrange
motion algorithm. For this pair of aerial imagesthereis
a significantrotationbetweenthe images. 93% of the 55
matchesobtainedarecorrect.In thesecondexample,there

Figure 5. Matchedline segmentsusing the long range
motion algorithm. Thereis a significantrotationbetween
theimages.93%of the55 matchesshown arecorrect.

aresignificantforeshorteningeffectsbetweenthe two im-
ages.Figure6 displaysthe 53 matchesobtained.77% of
themarecorrectlymatched.

Figure 6. Matchedline segmentsusing the long range
motionalgorithm.Thereis significantlydifferentforeshort-
eningbetweenthe planesof the housein the two images.
77%of the53 linesshown arecorrectlymatched.

4 Threeview matching

The trifocal geometryprovides a geometricconstraint
for correspondinglines over threeviews. Lines ZY , �[ and�\ in threeviews arecorrespondingif they are the image
of the sameline in 3-space.Given the trifocal tensorand
correspondinglines in two images,the correspondingline
in the third imageis determined.This constraintprovides
a methodfor verifying the two imagematchesdetermined
by theshortor long rangealgorithms.This “two plusone”
methodproceedsasfollows: Theputativetwo view matches
predict a line in the third image(via the trifocal tensor).
Therearethentwo stagesof verification. First, a geomet-
ric verification, a line segmentshouldbe detectedat the
predictedposition in the third image. Second,an inten-
sity neighbourhoodverification,thepairwisecorrelational-

gorithmsshouldsupportthis match. In practicethesetwo
stagesof verificationeliminateall mismatches.

An alternative matching procedure is to compute
matchessimultaneouslyover threeviews and then verify.
This procedureis outlined in the following section. It is
demonstratedin [14] that this proceduregeneratesmore
correctmatchesthan the two plus one approach,without
addingany mismatches.

4.1 Matching over thr eeimagessimultaneously

All line triplet combinationsareconsidered(subjectto
theepipolarbeamconstraint).Therearethenthreestagesof
verification.First it is verifiedthatthe(infinite) linessatisfy
the trifocal constraint.If this geometricconstraintis satis-
fied, thenthetrifocal tensor(or equivalently, thethreepair-
wise fundamentalmatrices)determinesthe commonparts
of thethreesegments.Thesecondstageexaminesthiscom-
monsegment.If thereis no commonpartthenthematchis
rejected. Otherwise,we have now verified that the match
is geometricallycorrectfor the finite segments.The third
stageis to computeline correlationscoresasdescribedin
sections2 and3 betweenline pairs ZYE]^�[ and �[_]^�\ . If these
two scorearesufficiently largethenthetriplet is a potential
match.Caseswheretherearemultiplematchespossiblefor
a particularline segmentareresolvedby a winnertakesall
scheme.

It might be thoughtthat the threeview methodwould
have a significantlyhighercomplexity, but this costcanbe
largely avoidedby an initial correlationbasedpre-filteron
view pairs to remove ridiculousmatchesand thus restrict
putative matchesfor eachline to a small number. Details
aregivenin [14].

Thereasonthatthethreeview matchingmethodincludes
morematchesthanthe two plus onemethodis that in the
lattermethodawinnertakesall schemeis appliedafteronly
two view matching.Thisearlierapplicationof winnertakes
all may eliminatesomecorrectmatcheswhich could have
beenverifiedin thethird view.

4.2 Experimental Results

The result for threeaerial imagesusingmatchingover
threeviews with short rangemotion correlationis given
in figure 7. All of the 89 matchesobtainedare correct.
Figure8 shows the3D reconstructionobtainedusingthese
matches.The positionof the line in 3D is determinedus-
ing a bundleadjustmentwhich minimisesthere-projection
errorover thethreeimages.

5 Conclusionand Extensions

We have demonstratedtwo algorithmic approaches
which significantlyimprove on the stateof the art for line
matchingacrosstwo or moreimages.Thealgorithmscover
the casesof both shortand long rangemotion. The long



Figure 7. Matchingacrossthreeviewsusingbothline transferandashortrangematchingcorrelationscore.All of the89matches
obtainedarecorrect.

Figure 8. Two views of the3D reconstructionof theline
matchesfrom figure7.

rangealgorithmwill work equallywell in the short range
case,of course,but is moreexpensive. Althoughwe have
not investigatedthechoice,it is likely that theprocessthat
generatesthefundamentalandtrifocal tensorswill havesuf-
ficient information to choosewhich of the short or long
rangealgorithmsis appropriate.

Finally, we mentionthreeextensionswhich we arecur-
rently investigating.Thefirst is theuseof vanishingpoints
to reducematchingcomplexity. Thesecondis to use

G
asa

linegroupingconstraint— sincecoplanarlineslie onplanes
with thesamevalueof

G
. Thethird extensionis to applythe

sameideas(intensityneighbourhoodsand local homogra-
phies)to curve matching,both for planecurvesandspace
curves.
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