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Abstract—Automatic linguistic indexing of pictures is an important but highly challenging problem for researchers in computer vision

and content-based image retrieval. In this paper, we introduce a statistical modeling approach to this problem. Categorized images are

used to train a dictionary of hundreds of statistical models each representing a concept. Images of any given concept are regarded as

instances of a stochastic process that characterizes the concept. To measure the extent of association between an image and the

textual description of a concept, the likelihood of the occurrence of the image based on the characterizing stochastic process is

computed. A high likelihood indicates a strong association. In our experimental implementation, we focus on a particular group of

stochastic processes, that is, the two-dimensional multiresolution hidden Markov models (2D MHMMs). We implemented and tested

our ALIP (Automatic Linguistic Indexing of Pictures) system on a photographic image database of 600 different concepts, each with

about 40 training images. The system is evaluated quantitatively using more than 4,600 images outside the training database and

compared with a random annotation scheme. Experiments have demonstrated the good accuracy of the system and its high potential

in linguistic indexing of photographic images.

Index Terms—Content-based image retrieval, image classification, hidden Markov model, computer vision, statistical learning,

wavelets.
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1 INTRODUCTION

A picture is worth a thousand words. As human beings,
we are able to tell a story from a picture based on what

we have seen and what we have been taught. A 3-year old
child is capable of buildingmodels of a substantial number of
concepts and recognizing them using the learned models
stored in her brain. Can a computer program learn a large
collection of semantic concepts from 2D or 3D images, build
models about these concepts, and recognize them based on
these models? This is the question we attempt to address in
this work.

Automatic linguistic indexing of pictures is essentially

important to content-based image retrieval and computer

object recognition. It canpotentially be applied tomanyareas,

including biomedicine, commerce, the military, education,

digital libraries, andWebsearching.Decadesof researchhave

shown that designing a generic computer algorithm that can

learn concepts from images and automatically translate the

content of images to linguistic terms is highly difficult.
Much success has been achieved in recognizing a

relatively small set of objects or concepts within specific

domains. There is a rich resource of priorwork in the fields of

computer vision, pattern recognition, and their applications

[9]. Space limitation does not allow us to present a broad

survey. Instead,we try to emphasize someworkmost related

to what we propose. The references below are to be taken as

examples of related work, not as the complete list of work in
the cited areas.

1.1 Related Work on Indexing Images

Many content-based image retrieval (CBIR) systems have
been developed since the early 1990s. A recent article
published by Smeulders et al. reviewed more than 200
references in this ever changing field [20]. Readers are
referred to that article and some additional references [2],
[17], [18], [25], [23], [4], [11], [26] for more information.

Most of the CBIR projects aimed at general-purpose image
indexing and retrieval systems focus on searching images
visually similar to the query image or a query sketch. They do
not have the capability of assigning comprehensive textual
description automatically to pictures, i.e., linguistic indexing,
because of the great difficulty in recognizing a large number
of objects. However, this function is essential for linking
images to text and consequently broadening the possible
usages of an image database.

Many researchershaveattempted tousemachine-learning
techniques for image indexing and retrieval [16], [24]. In 1997,
a systemdeveloped byMinka and Picard included a learning
component. The system internally generated many segmen-
tations or groupings of each image’s regions based on
different combinations of features, then learned which
combinations best represented the semantic categories given
as examples by the user. The system requires the supervised
training of various parts of the image.

A growing trend in the field of image retrieval is to
automate linguistic indexing of images by statistical classifi-
cation methods. The Stanford SIMPLIcity system [22] uses
statistical classification methods to group images into rough
semantic classes, suchas textured-nontextured,graph-photo-
graph. Potentially, the categorization enhances retrieval by
permitting semantically adaptive searching methods and by
narrowing down the searching range in a database. The
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approach is limited because these classification methods are
problem specific and do not extend straightforwardly.

Recent work in associating images explicitly with words
was done at the University of California at Berkeley by
Barnard and Forsyth [1] and Duygulu et al. [8]. Using region
segmentation, Barnard and Forsyth [1] explored automati-
cally annotating entire images and Duygulu et al. [8] focused
on annotating specific regions. The work has achieved some
success for certain image types. But, as pointed out by the
authors in [1], onemajor limitation is that the algorithm relies
on semantically meaningful segmentation which is, in
general, unavailable to image databases. Automatic segmen-
tation is still an open problem in computer vision [27], [19].

1.2 Our Approach

In our work, categories of images, each corresponding to a
concept, are profiled by statistical models, in particular, the
two-dimensional multiresolution hidden Markov model
(2D MHMM) [13]. The pictorial information of each image
is summarized by a collection of feature vectors extracted at
multiple resolutions and spatially arranged on a pyramid
grid. The 2DMHMM fitted to each image category plays the
role of extracting representative information about the
category. In particular, a 2D MHMM summarizes two types
of information: clusters of feature vectors at multiple
resolutions and the spatial relation between the clusters, both
across and within resolutions. As a 2D MHMM is estimated
separately for each category, a new category of images added
to the database can be profiled without repeating computa-
tion involvedwith learning fromthe existingcategories. Since
each image category in the training set ismanually annotated,
a mapping between profiling 2DMHMMs and sets of words
can be established. For a test image, feature vectors on the
pyramid grid are computed. Consider the collection of the
featurevectors asan instanceof a spatial statisticalmodel. The
likelihood of this instance being generated by each profiling
2D MHMM is computed. To annotate the image, words are
selected from those in the text description of the categories
yielding highest likelihoods.

Readers are referred to Li and Gray [14] for details on
2D MHMM. Many other statistical image models have been
developed for various tasks in image processing and
computer vision. Theories and methodologies related to
Markov random fields (MRFs) [6], [10], [12], [3] have played
important roles in the construction of many statistical image
models. For a thorough introduction to MRFs and their
applications, see Kindermann and Snell [12] and Chellappa
and Jain [3]. Given itsmodeling efficiency and computational
convenience, we consider 2D MHMMs an appropriate
starting point for exploring the statistical modeling approach
to linguistic indexing.

1.3 Outline of the Paper

The remainder of the paper is organized as follows: The
architecture of the ALIP (Automatic Linguistic Indexing of
Pictures) system is introduced in Section 2. The model-
learning algorithm is described in Section 3. Linguistic
indexing methods are described in Section 4. In Section 5,
experiments and results are presented. We conclude and
suggest future research in Section 6.

2 SYSTEM ARCHITECTURE

The system has three major components, the feature
extraction process, the multiresolution statistical modeling
process, and the statistical linguistic indexing process. In
this section, we introduce the basics about these individual
components and their relationships.

2.1 Feature Extraction

Thesystemcharacterizes localized featuresof training images
using wavelets. In this process, an image is partitioned into
small pixel blocks. For our experiments, the block size is
chosen to be 4� 4 as a compromise between the texture detail
and the computation time. Other similar block sizes can also
beused.Thesystemextractsa featurevectorof sixdimensions
for each block. Three of these features are the average color
components of pixels in the block. The other three are texture
features representing energy in high-frequency bands of
wavelet transforms [5]. Specifically, each of the three features
is the square root of the second order moment of wavelet
coefficients in one of the three high-frequency bands. The
features are extracted using the LUV color space, where
L encodes luminance and U and V encode color information
(chrominance). The LUV color space is chosen because of its
good perception correlation properties.

To extract the three texture features, we apply either the
Daubechies-4wavelet transform or theHaar transform to the
L component of the image. These two wavelet transforms
have better localization properties and require less computa-
tion compared to Daubechies’ wavelets with longer filters.
After a one-level wavelet transform, a 4� 4 block is
decomposed into four frequency bands, as shown in Fig. 1.
Each band contains 2� 2 coefficients. Without loss of
generality, suppose the coefficients in the HL band are
fck;l; ck;lþ1; ckþ1;l; ckþ1;lþ1g. One feature is then computed as

f ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
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i¼0
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j¼0

c2kþi;lþj

v

u

u

t :

The other two texture features are computed in a similar

manner using the LH and HH bands, respectively.
These wavelet-based texture features provide a good

compromise between computational complexity and effec-
tiveness. Unser [21] has shown that moments of wavelet
coefficients in various frequency bands can effectively
discern local texture. Wavelet coefficients in different
frequency bands signal variation in different directions. For
example, the HL band reflects activities in the horizontal
direction. A local texture of vertical strips thus has high
energy in the HL band and low energy in the LH band.
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Fig. 1. Decomposition of images into frequency bands by wavelet
transforms.



2.2 Multiresolution Statistical Modeling

Fig. 2 illustrates the flow of the statisticalmodeling process of
the system.We first manually develop a series of concepts to
be trained for inclusion in the dictionary of concepts. For each
concept in this dictionary, we prepare a training set contain-
ing images capturing the concept. Hence, at the data level, a
concept corresponds to aparticular category of images. These
images do not have to be visually similar. We also manually
prepare a short but informative description about any given
concept in this dictionary. Therefore, our approach has the
potential to train a large collection of concepts becausewe do
not need tomanually create adescription about each image in
the training database.

Block-based features are extracted from each training
image at several resolutions. The statistical modeling process
does not depend on a specific feature extraction algorithm.
The same feature dimensionality is assumed for all blocks of
pixels. A cross-scale statistical model about a concept is built
using training images belonging to this concept, each
characterized by a collection ofmultiresolution features. This
model is then associated with the textual description of the
concept and stored in the concept dictionary.

In thecurrentwork,we focusonbuildingstatisticalmodels
using images that are precategorized and annotated at a
categorical level.Many databases contain images not initially
categorized, for example, those discussed in [7], [8]. If each
image is annotated separately, there are a number of possible
approaches to generating profiling models. A clustering
procedure can be applied to the collection of annotation
words. A cluster of words can be considered as a concept.
Images annotated with words in the same cluster will be
pooled to train a model. A detailed discussion on word
clustering for the purpose of autoannotation is provided in
[8]. A more sophisticated approach involves clustering
images and estimating a model using images in the same
cluster. The clusteringof images and the estimationofmodels
can be optimized in an overall manner based on a certain

higher-level statisticalmodel ofwhich the image clusters and
profiling 2D MHMMs are components. We have not experi-
mented with these approaches.

2.3 Statistical Linguistic Indexing

The system automatically indexes images with linguistic
terms based on statisticalmodel comparison. Fig. 3 shows the
statistical linguistic indexing process of the system. For a
given image to be indexed, we first extract multiresolution
block-based features by the same procedure used to extract
features for the training images.

To quantify the statistical similarity between an image
and a concept, the likelihood of the collection of feature
vectors extracted from the image is computed under the
trained model for the concept. All the likelihoods, along
with the stored textual descriptions about the concepts, are
analyzed by the significance processor to find a small set of
statistically significant index terms about the image. These
index terms are then stored with the image in the image
database for future keyword-based query processing.

2.4 Major Advantages

Our system architecture has several major advantages:

1. If images representing new concepts or new images
in existing concepts are added into the training
database, only the statistical models for the involved
concepts need to be trained or retrained. Hence, the
system naturally has good scalability without invok-
ing any extra mechanism to address the issue. The
scalability enables us to train a relatively large
number of concepts at once.

2. In our statistical model, spatial relations among
image pixels and across image resolutions are both
taken into consideration. This property is especially
useful for images with special texture patterns.
Moreover, the modeling approach enables us to
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Fig. 2. The architecture of the statistical modeling process.



avoid segmenting images and defining a similarity
distance for any particular set of features. Likelihood
can be used as a universal measure of similarity.

3 THE MODEL-BASED LEARNING OF CONCEPTS

In this section, we present in detail a statistical image
modeling process that learns a dictionary of a large number
of concepts automatically. We describe here assumptions of
the 2D MHMM modified from a model originally devel-
oped for the purpose of image segmentation [13]. The
model is aimed at characterizing the collection of training
images, each in their entireties, within a concept.

3.1 Image Modeling

For the purpose of training the multiresolution model,
multiple versions of an image at different resolutions are
obtained first. The original image corresponds to the highest
resolution. Lower resolutions are generated by successively
filtering out high-frequency information.Wavelet transforms
[5] naturally provide low-resolution images in the low-
frequency band (the LL band).

To save computation, features are often extracted from
nonoverlappingblocks inan image.Anelement inan image is
therefore a block rather than a pixel. Features computed from
one block at a particular resolution form a feature vector and
are treated as multivariate data in the 2D MHMM. The
2D MHMM aims at describing statistical properties of the
feature vectors and their spatial dependence. The numbers of
blocks in both rows and columns reduce by half successively
at each lower resolution. Obviously, a block at a lower
resolution covers a spatially more global region of the image.
As indicated by Fig. 4, a block at a lower resolution is referred
to as a parent block and the four blocks at the same spatial

locationat thehigher resolutionare referred toas childblocks.
Wewill always assume such a “quad-tree” split in the sequel
since the extension to other hierarchical structures is
straightforward.

We first review the basic assumptions of the single
resolution 2D HMM as presented in [15]. In the 2D HMM,
feature vectors are generated by a Markov model that may
change state once every block. Suppose there are M states,
the state of block ði; jÞ being denoted by si;j. The feature
vector of block ði; jÞ is ui;j. We use P ð�Þ to represent the
probability of an event. We denote ðI 0; j0Þ < ði; jÞ if i0 < i or
i0 ¼ i; j0 < j, in which case we say that block ði0; j0Þ is before
block ði; jÞ. The first assumption is that

P ðsi;j j contextÞ ¼ am;n;l;

context ¼ fsi0;j0 ; ui0 ;j0 : ði
0; j0Þ < ði; jÞg;

wherem ¼ si�1;j, n ¼ si;j�1, and l ¼ si;j. The second assump-

tion is that, given every state, the feature vectors follow a

Gaussian distribution. Once the state of a block is known, the

feature vector is conditionally independent of information on

otherblocks.Thecovariancematrix�s and themeanvector�s

of the Gaussian distribution vary with state s.
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Fig. 3. The architecture of the statistical linguistic indexing process.

Fig. 4. The image hierarchy across resolutions.



The fact that only feature vectors are observable in a
given image accounts for the name “Hidden” Markov
Model. The state of a feature vector is conceptually similar
to the cluster identity of a vector in unsupervised clustering.
As with clustering, the state of a vector is not provided
directly by the training data and, hence, needs to be
estimated. In clustering, feature vectors are considered as
independent samples from a given distribution. In the 2D
HMM, feature vectors are statistically dependent through
the underlying states modeled by a Markov chain.

For the MHMM, denote the set of resolutions by
R ¼ f1; . . . ; Rg, with r ¼ R being the finest resolution. Let
the collection of block indices at resolution r be

INðrÞ ¼ ði; jÞ : 0 � i < w=2R�r; 0 � j < z=2R�r
� �

:

Images are represented by feature vectors at all the resolu-
tions, denoted by u

ðrÞ
i;j , r 2 R, ði; jÞ 2 INðrÞ. The underlying

state of a feature vector is s
ðrÞ
i;j . At each resolution r, the set of

states is f1ðrÞ; 2ðrÞ; . . . ;MðrÞ
r g. Note that, as states vary across

resolutions, different resolutions do not share states.
To structure statistical dependence among resolutions, a

first-order Markov chain is assumed across the resolutions.
In particular, given the states at the parent resolution, the
states at the current resolution are conditionally indepen-
dent of the other preceding resolutions, so that

P s
ðrÞ
i;j : r 2 R; ði; jÞ 2 INðrÞ

n o

¼ P
n

s
ð1Þ
i;j : ði; jÞ 2 INð1Þ

o

Y

R

r¼2

P
n

s
ðrÞ
i;j : ði; jÞ 2 INðrÞ j s

ðr�1Þ
k;l : ðk; lÞ 2 INðr�1Þ

o

:

In addition, given its state s
ðrÞ
i;j , a feature vector u

ðrÞ
i;j at any

resolution is conditionally independent of any other
states and feature vectors. As the states are unobservable,
during model estimation, different combinations of states
need to be considered. An important quantity to compute
is the joint probability of a particular set of states and the
feature vectors. Based on the assumptions, we can
compute this probability by the following chain rule:

P s
ðrÞ
i;j ; u

ðrÞ
i;j : r 2 R; ði; jÞ 2 INðrÞ

n o

¼

P
n

s
ð1Þ
i;j ; u

ð1Þ
i;j : ði; jÞ 2 INð1Þ

o

�

P
n

s
ð2Þ
i;j ; u

ð2Þ
i;j : ði; jÞ 2 INð2Þj s

ð1Þ
k;l : ðk; lÞ 2 INð1Þ

o

� � � � �

P
n

s
ðRÞ
i;j ; u

ðRÞ
i;j : ði; jÞ 2 INðRÞj s

ðR�1Þ
k;l : ðk; lÞ 2 INðR�1Þ

o

:

ð1Þ

At the coarsest resolution, r ¼ 1, feature vectors are
assumed to be generated by a single resolution 2D HMM.
At a higher resolution, the conditional distribution of a
feature vector given its state is assumed to be Gaussian. The
parameters of the Gaussian distribution depend upon the
state at the particular resolution.

Given the states at resolution r� 1, statistical dependence
amongblocks at the finer resolution r is constrained to sibling
blocks (child blocks descended from the same parent block).
Specifically, child blocks descended from different parent
blocks are conditionally independent. In addition, given the
state of a parent block, the states of its child blocks are
independent of the states of their “uncle” blocks (nonparent
blocks at the parent resolution). State transitions among
sibling blocks are governed by the sameMarkovian property

assumed for a single resolution 2DHMM.The state transition
probabilities, however, depend on the state of their parent
block. To formulate these assumptions, denote the child
blocks at resolution r of block ðk; lÞ at resolution r� 1 by

DDðk; lÞ ¼ fð2k; 2lÞ; ð2kþ 1; 2lÞ; ð2k; 2lþ 1Þ; ð2kþ 1; 2lþ 1Þg :

According to the assumptions,

P s
ðrÞ
i;j : ði; jÞ 2 INðrÞ j s

ðr�1Þ
k;l : ðk; lÞ 2 INðr�1Þ

n o

¼
Y

ðk;lÞ2IN
ðr�1Þ

P
n

s
ðrÞ
i;j : ði; jÞ 2 DDðk; lÞ j s

ðr�1Þ
k;l

o

;

where Pfs
ðrÞ
i;j : ði; jÞ 2 DDðk; lÞj s

ðr�1Þ
k;l g can be evaluated by

transition probabilities conditioned on s
ðr�1Þ
k;l , denoted by

am;n;lðs
ðr�1Þ
k;l Þ. We thus have a different set of transition

probabilities am;n;l for every possible state in the parent
resolution. The influence of previous resolutions is exerted
hierarchically through the probabilities of the states, which
can be visualized in Fig. 5. The joint probability of states and
feature vectors at all the resolutions in (1) is then derived as

P s
ðrÞ
i;j ; u

ðrÞ
i;j : r 2 R; ði; jÞ 2 INðrÞ

n o

¼

P
n

s
ð1Þ
i;j ; u

ð1Þ
i;j : ði; jÞ 2 INð1Þ

o

�
Y

R

r¼2

Y

ðk;lÞ2IN
ðr�1Þ

P
n

s
ðrÞ
i;j : ði; jÞ 2 DDðk; lÞ j s

ðr�1Þ
k;l

o

Y

ði;jÞ2DDðk;lÞ

P
n

u
ðrÞ
i;j j s

ðrÞ
i;j

o

0

@

1

A:

To summarize, a 2D MHMM captures both the interscale
and intrascale statistical dependence. The interscale depen-
dence is modeled by the Markov chain over resolutions. The
intra-scale dependence is modeled by the HMM. At the
coarsest resolution, feature vectors are assumed to be
generated by an 2D HMM. Fig. 6 illustrates the interscale
and intrascale dependencies modeled. At all the higher
resolutions, feature vectors of sibling blocks are also
assumed to be generated by 2D HMMs. The HMMs vary
according to the states of parent blocks. Therefore, if the
next coarser resolution has M states, then there are,
correspondingly, M HMMs at the current resolution.

The 2D MHMM can be estimated by the maximum
likelihood criterion using the EM algorithm. The computa-
tional complexity of estimating the model depends on the
number of states at each resolution and the size of the
pyramid grid. In our experiments, the number of resolutions

LI AND WANG: AUTOMATIC LINGUISTIC INDEXING OF PICTURES BY A STATISTICAL MODELING APPROACH 1079

Fig. 5. The hierarchical statistical dependence across resolutions.



is 3; the number of states at the lowest resolution is 3; and
those at the two higher resolutions are 4. Details about the
estimation algorithm, the computation of the likelihood of an
imagegivena 2DMHMM,andcomputational complexity are
referred to [13].

4 THE AUTOMATIC LINGUISTIC INDEXING OF

PICTURES

In this section, we describe the component of the system
that automatically indexes pictures with linguistic terms.
For a given image, the system compares the image
statistically with the trained models in the concept
dictionary and extracts the most statistically significant
index terms to describe the image. For any given image, a
collection of feature vectors at multiple resolutions fu

ðrÞ
i;j ; r 2

R; ði; jÞ 2 INðrÞg is computed as described in Section 3. We
regard fu

ðrÞ
i;j ; r 2 R; ði; jÞ 2 INðrÞg as an instance of a stochas-

tic process defined on a multiresolution grid. The similarity
between the image and a category of images in the database
is assessed by the log likelihood of this instance under the
model M trained from images in the category, that is,

logP u
ðrÞ
i;j ; r 2 R; ði; jÞ 2 INðrÞ j M

n o

:

A recursive algorithm [13] is used to compute the above log
likelihood. After determining the log likelihood of the image
belonging to any category, we sort the log likelihoods to find
the fewcategorieswith thehighest likelihoods.Supposek top-
ranked categories are used to generate annotation words for
the query. The selection of k is somewhat arbitrary. An
adaptive way to decide k is to use categories with likelihoods
exceeding a threshold. However, it is found that the range of
likelihoods computed from a query image varies greatly
depending on the category the image belongs to. A fixed
threshold is not useful. When there are a large number of
categories in the database, it is observed that choosing a fixed
number of top-ranked categories tends to yield relatively
robust annotation.

Words in the description of the selected k categories are
candidates for annotating the query image. If a short
description for the query is desired, a certain mechanism

needs to be used to choose a subset of words. There aremany
possibilities. A system can provide multiple choices for
selecting words with only negligible increase of computa-
tional load, especially in comparison with the amount of
computation needed to obtain likelihoods and rank them.
Inspired by hypothesis testing, we explore in detail a
particular scheme to choose words. Suppose, in the annota-
tionof the k categories, awordappears j times. Ifwe can reject
the hypothesis that the k categories are chosen randomly
based on the number of times the word arises, we gain
confidence in that the k categories are chosen because of
similarity with the query. To reject the hypothesis, we
compute the probability of the word appearing at least j
times in the annotation of k randomly selected categories. A
small probability indicates it is unlikely that the word has
appeared simply by chance. Denote this probability by
P ðj; kÞ. It is given by

P ðj; kÞ ¼
X

k

i¼j

Iði � mÞ
m
i

� �

n�m
k�i

� �

n
k

� �

¼
X

k

i¼j

Iði � mÞ
m! ðn�mÞ! k! ðn� kÞ!

i! ðm� iÞ! ðk� iÞ! ðn�m� kþ iÞ! n!
;

where Ið�Þ is the indicator function that equals 1 when the
argument is true and 0 otherwise, n is the total number of
image categories in the database, and m is the number of
image categories that are annotated with the given word.
The probability P ðj; kÞ can be approximated as follows,
using the binomial distribution if n;m >> k:

P ðj; kÞ ¼
X

k

i¼j

k

i

� �

pið1� pÞk�i ¼
X

k

i¼j

k!

i!ðk� iÞ!
pið1� pÞk�i;

where p ¼ m=n is the percentage of image categories in the
database that are annotated with this word or, equivalently,
the frequency of the word being used in annotation. A small
value of P ðj; kÞ indicates a high level of significance for a
given word. We rank the words within the description of the
most likely categories according to their statistical signifi-
cance. Most significant words are used to index the image.

Intuitively, assessing the significance of a word by P ðj; kÞ
is attempting to quantify how surprising it is to see the
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Fig. 6. In the statistical modeling process, spatial relations among image pixels and across image resolutions are both taken into consideration.
Arrows, not all drawn, indicate the transition probabilities captured in the statistical model.



word. Words may have vastly different frequencies of being
used to annotate image categories in a database. For
instance, many more categories may be described by
“landscape” than by “dessert.” Therefore, obtaining the
word “dessert” in the top ranked categories matched to an
image is in a sense more surprising than obtaining “land-
scape” since the word “landscape” may have a good chance
of being selected even by random matching.

The proposed scheme of choosing words favors “rare”
words. Hence, if the annotation is correct, it tends to
provide relatively specific or interesting information about
the query. On the other hand, the scheme is risky since it
avoids, to a certain extent, using words that fit a large
number of image categories.

5 EXPERIMENTS

To validate themethodswehave described,we implemented
the components of theALIP systemand testedwith a general-
purpose imagedatabase includingabout60,000photographs.

These images are stored in JPEG formatwith size 384� 256 or
256� 384. The system was written in the C programming
language and compiled on two Unix platforms: Linux and
Solaris. In this section, we describe the training concepts and
show indexing results.

5.1 Training Concepts

We conducted experiments on learning-based linguistic
indexing with a large number of concepts. The system was
trained using a subset of 60,000 photographs based on
600 CD-ROMs published by COREL Corporation. Typically,
each COREL CD-ROM of about 100 images represents one
distinct topic of interest. Images in the same CD-ROM are
often not all visually similar. Fig. 7 shows the those images
used to train the concept of Paris/Francewith the description:
“Paris, European, historical building, beach, landscape,
water.” Images used to train the concept male are shown in
Fig. 8. For our experiment, the dictionary of concepts contains
all 600 concepts, each associated with one CD-ROM of
images.
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Fig. 7. Training images used to learn a given concept are not necessarily all visually similar. For example, these 40 images were used to train the

concept of Paris/France with the category description: “Paris, European, historical building, beach, landscape, water.”

Fig. 8. Training images used to learn the concept of male with the category description: “man, male, people, cloth, face.”



Wemanually assigned a set of keywords to describe each

CD-ROM collection of 100 photographs. The descriptions of

these image collections range from as simple or low-level as

“mushrooms” and “flowers” to as complex or high-level as

“England, landscape, mountain, lake, European, people,

historical building” and “battle, rural, people, guard, fight,

grass.” On average, 3.6 keywords are used to describe the

content of each of the 600 image categories. It took the authors

approximately 10 hours to annotate these categories. In

Tables 1 and 2, example category descriptions are provided.
While manually annotating categories, the authors made

efforts to use words that properly describe nearly all if not all

images in one category. It is possible that a small number of

images are not described accurately by all words assigned to

their category. We view them as “outliers” introduced into

training for the purpose of estimating the 2D MHMM. In

practice, outliers often exist for various reasons. There are

ample statistical methods to suppress the adverse effect of

them. On the other hand, keeping outliers in training will

testify to the robustness of a method. For the model we use,

the number of parameters is small relative to the amount of

training data. Hence, the model estimation is not anticipated

to be affected considerably by inaccurately annotated images.

We therefore simply use those images as normal ones.

5.2 Categorization Performance in a Controlled
Database

To provide numerical results on the performance, we
evaluated the system based on a controlled subset of the
COREL database, formed by 10 image categories (African
people and villages, beach, buildings, buses, dinosaurs,
elephants, flowers, horses, mountains and glaciers, food),
each containing 100 pictures. In the next section, we provide
categorization and annotation results with 600 categories.
Because many of the 600 categories share semantic mean-
ings, the categorization accuracy is conservative for
evaluating the annotation performance. For example, if an
image of the category with scenes in France is categorized
wrongly into the category with European scenes, the system
is still useful in many applications. Within this controlled
database, we can assess annotation performance reliably by
categorization accuracy because the tested categories are
distinct and share no description words.

We trained each concept using 40 images and tested the
models using 500 images outside the training set. Instead of
annotating the images, the program was used to select the
category with the highest likelihood for each test image. That
is, we use the classification power of the system as an
indicationof the annotation accuracy.An image is considered
to be annotated correctly if the computer predicts the true
category the image belongs to. Although these image
categories do not share annotation words, they may be

1082 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 9, SEPTEMBER 2003

TABLE 1
Examples of the 600 Categories and Their Descriptions

Every category has 40 training images.



semantically related. For example, both the “beach” and the

“mountains and glaciers” categories contain images with

rocks, sky, and trees. Therefore, the evaluation method we

use here only provides a lower bound for the annotation

accuracy of the system. Table 3 shows the automatic

classification result. Each row lists the percentage of images

in one category classified to each of the 10 categories by the

computer. Numbers on the diagonal show the classification

accuracy for every category.

5.3 Categorization and Annotation Results

A statistical model is trained for each of the 600 categories of
images. Depending on the complexity of a category, the
training process takes 15 to 40 minutes of CPU time, with an
average of 30 minutes, on an 800 MHz Pentium III PC to
converge to a model. These models are stored in a fashion
similar to adictionaryor encyclopedia.The trainingprocess is
entirely parallelizable because the model for each concept is
estimated separately.

We randomly selected 4,630 test images outside the
training image database and processed these images by the
linguistic indexing component of the system. For each of
these test images, the computer program selected five
concepts in the dictionary with the highest likelihoods of
generating the image. For every word in the annotation of
the five concepts, the value indicating its significance, as
described in Section 4, is computed. The median of all these
values is 0.0649. We use the median as a threshold to select
annotation words from those assigned to the five matched
concepts. Recall that a small value implies high significance.
Hence, a word with a value below the threshold is selected.

Thehistogramof thenumbers ofwords assigned to the test
images is provided in Fig. 9. These numbers range from 1 to
14 with median 6. The unique image with only one word
assigned to it is shown in Fig. 10a. This image is automatically
annotated by “fractal,” while the manual description of its
category contains two words: “fractal” and “texture.” There
are two images annotated with as many as 14 words, which
are shown in Figs. 10b and10c. For the first image, themanual
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TABLE 2
Examples of the 600 Categories and Their Descriptions (cont.)

Every category has 40 training images.

TABLE 3
Results of the Automatic Image Categorization Experiments

Each row lists the percentage of images in one category classified to each of the 10 categories by the computer. Numbers on the diagonal show the
classification accuracy for each category.

Fig. 9. The histogramof the numbers of words assigned to the test images
by our system. For each word in the annotation of the five matched
categories, a value indicating its significance is computedand thresholded
by 0.0649. A word with a value below the threshold is selected.



annotation contains “mountain,” “snow,” “landscape,” and
the automatically assignedwords are “mountain,” “rockies,”
“snow,” “ice,” “glacier,” “sky,” “ski,” “winter,” “water,”
“surf,” “up,” “boat,” “ship,” and “no-fear.” The only word
discarded by thresholding is “cloud,”whichwould be a good
description of the image although not included in themanual
annotation. The value indicating its significance is 0.073,
quite close to the threshold. Several words outside the
manual annotation in fact describe the image quite accu-
rately, e.g., “rockies,” “glacier,” “sky.” This example shows
that the computer annotation can sometimes bemore specific
than the manual annotation that tends to stay at a general
level in order to summarize all the images in the category. For
the second image, the manual annotation includes “season,”
“landscape,” “autumn,” “people,” and “plant.” The word
“autumn” used to annotate the category is not very
appropriate for this particular image. The automatically
annotated words have no overlap with the manual annota-
tion. The word “people” is marginally discarded by thresh-
olding. Other words assigned to this image include “sport,”
“fitness,” and “fight.”

Toquantitativelyassess theperformance,we first compute
the accuracy of categorization for the randomly selected test
images and then compare the annotation system with a
random annotation scheme. Although the ultimate goal of
ALIP is to annotate images linguistically, presenting the
accuracy of image categorization helps to understand how
the categorization supports this goal. Due to the overlap of
semantics among categories, it is important to evaluate the
linguistic indexing capability. Because ALIP’s linguistic
indexing capability depends on a categorized training
database and a categorization process, the choice of annota-
tionwords for the training image categoriesmay improve the
usefulness of the training database. The experimental results
we are to present here show that both ALIP’s image

categorization process and linguistic indexing process are
of good accuracy.

The accuracy of categorization is evaluated in the same
manner as described in Section 5.2. In particular, for each test
image, the category yielding the highest likelihood is
identified. If the test image is included in this category, we
call it a “match.”The total numberofmatches for the 4,630 test
images is 550. That is, anaccuracyof 11.88percent is achieved.
In contrast, if random drawing is used to categorize the
images, the accuracy is only 0.17 percent. If the condition of a
“match” is relaxed to having the true category covered by the
highest ranked two categories, the accuracy ofALIP increases
to 17.06 percent, while the accuracy for the random scheme
increases to 0.34 percent.

In Table 4, we list the percentage of images whose true
categories are included in their corresponding top-ranked k
(k ¼ 1; 2; . . . ; 5) categories in terms of likelihoods computed
by ALIP. As a comparison, we computed the number of
categories required to cover the true category at the same
accuracy using random selection. When m categories are
randomly selected from 600 categories, the probability that
the true category is included in the m categories is m

600

(derived from sampling without replacement). Therefore, to
achieve an accuracy of 11.88 percent by the random scheme,
72 categories must be selected. Table 4 shows details about
the comparison.

To compare with the random annotation scheme, all the

words in the annotation of the 600 categories are pooled to
compute their frequencies of beingused. The randomscheme
selects words independently according to the marginal
distribution specified by the frequencies. To compare with
words selected by our system using the 0.0649 threshold, six

words are randomly generated for each image. The number 6
is the median of the numbers of words selected for all the
images by our system, hence considered as a fair value to use.
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Fig. 10. Three test images. (a) This image is annotated with one word by ALIP. (b) and (c) These two images are annotated with 14 words by ALIP.

TABLE 4
Comparison between the Image Categorization Performance of ALIP and that of a Random Selection Scheme

Accuracy is the percentage of test images whose true categories are included in top-ranked categories. ALIP requires substantially fewer categories
to achieve the same accuracy.



The quality of a set of annotationwords for a particular image
is evaluated by the percentage of manually annotated words
that are included in the set, referred to as the coverage
percentage. It isworthpointingout that thiswayof evaluating
the annotation performance is “pessimistic” because the
system may provide accurate words that are not included in
the manual annotation, as shown by previous examples. An
intelligent system tends to be punishedmore by the criterion
in comparison with a random scheme because, among the
words not matched with manually assigned ones, some may
well beproper annotation. For our system, themean coverage
percentage is21.63percent,while thatof therandomschemeis
9.93 percent. If all the words in the annotation of the five
matched concepts are assigned to a query image, the median
of the numbers ofwords assigned to the test images is 12. The
mean coverage percentage is 47.48 percent, while that
obtained from assigning 12 words by the random scheme is
17.67 percent. The histograms of the coverage percentages
obtained by our system with and without thresholding and
the random scheme are compared in Fig. 11.

One may suspect that the 4,630 test images, despite being
outside the training set, are rather similar to training images
in the same categories and, hence, are unrealistically well
annotated. We thus examine the annotation of 250 images
taken from five categories in the COREL database using only
models trained from the other 595 categories, i.e., no image in
the same category as any of the 250 images is used in training.
Themean coverage percentages obtained for these images by
our system with and without thresholding at 0.0649 are
23.20 percent and 48.50 percent, both slightly higher than the
corresponding average values for the previous 4,630 test
images. The mean coverage percentages achieved by ran-
domly assigning six and 12 words to each image are
10.67 percent and 17.27 percent. It is thus demonstrated that,

for these 250 images, relying merely on models trained for
other categories, the annotation result is at least as good as
that of the large test set.

It takes an average of 20 minutes of CPU time to compute
all the likelihoods of a test image under the models of the
600 concepts. The computation is highly parallelizable
because processes to evaluate likelihoods given different
models are independent. The average amount of CPU time
to compute the likelihood under one model is only two
seconds. We are planning to implement the algorithms on
massively parallel computers and provide real-time online
demonstrations in the future.

Automatic and manual annotation of the over 4,600 test
images can be viewed on the Web.1 Fig. 12 shows some
computer indexing results of 21 randomly selected images
outside the training database. Annotation results on four
photos taken by the authors and hence not in the COREL
database are reported in Fig. 13. The method appears to be
highly promising for automatic learning and linguistic
indexing of images. Some of the computer predictions seem
to suggest that one can control what is to be learned andwhat
is not by adjusting the training database of individual
concepts.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated our statistical modeling
approach to the problem of automatic linguistic indexing of
pictures for the purpose of image retrieval. We used
categorized images to train a dictionary of hundreds of
concepts automatically. Wavelet-based features are used to
describe local color and texture in the images.After analyzing
all training images for a concept, a two-dimensional multi-
resolutionhiddenMarkovmodel (2DMHMM) is created and
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Fig. 11. The histograms of the coverage percentages obtained by the ALIP system with and without thresholding and the random scheme based on a

test set of 4,630 images.

1. http://wang.ist.psu.edu/IMAGE/alip.html.
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Fig. 12. Some annotations automatically generated by our computer-based linguistic indexing algorithm. The dictionary with 600 concepts was
created automatically using statistical modeling and learning. Test images were randomly selected outside the training database.

Fig. 13. Test results using photos not in the COREL collection. Statistical models learned from the COREL collection can be used to index other
photographic images. These photos were taken by the authors. P: Photographer annotation. Words appeared in the annotation of the five matched
categories are underlined. Words that in parentheses are not included in the annotation of any of the 600 training categories.



stored in a concept dictionary. Images in one category are
regarded as instances of a stochastic process that charac-
terizes the category. To measure the extent of association
between an image and the textual description of an image
category, we compute the likelihood of the occurrence of the
image based on the stochastic process derived from the
category. We have demonstrated that the proposed methods
can be used to train models for 600 different semantic
concepts and these models can be used to index images
linguistically.

The major advantages of our approach are 1) models for
different concepts can be independently trained and
retrained, 2) a relatively large number of concepts can be
trained and stored, and 3) spatial relation among image
pixels within and across resolutions is taken into considera-
tion with probabilistic likelihood as a universal measure.

The current system implementation and the evaluation
methodology have several limitations.

. We train the concept dictionary using only 2D images
without a sense of object size. It is believed that the
object recognizer of human beings is usually trained
using 3D stereo with motion and a sense of object
sizes. Training with 2D still images potentially limits
the ability of accurately learning concepts.

. As pointed out by one of the anonymous reviewers,
theCOREL imagedatabase is not ideal for training the
system because of its biases. For instance, images in
some categories, e.g., “tigers,” are much more alike
than a general sampling of photographs depicting the
concept. On the other hand, images in some cate-
gories, e.g., “Asia,” are widely distributed visually,
making it impossible to train such a concept using
only a small collection of such images. Until this
limitation is thoroughly investigated, the evaluation
results reported should be interpreted cautiously.

. For a very complex concept, i.e., when images
representing it are visually diverse, it seems that
40 training images are insufficient for the computer
program to build a reliable model. The more complex
the concept is, themore training images andCPU time
are needed. This is similar to the learning process of a
person, who, in general, needs more experience and
longer time to comprehend more complex concepts.

In future work, we may improve the indexing speed of
the system by using approximation in the likelihood
computation. A rule-based system may be used to process
the words annotated automatically to eliminate conflicting
semantics. Moreover, besides assigning words to an image,
weights can be given to the words in the mean time to
indicate the believed extent of description appropriateness.
Experiments with different applications such as biomedi-
cine and art could be interesting.
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