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Abstract. Automatic segmentation of the liver and its lesion is an
important step towards deriving quantitative biomarkers for accurate
clinical diagnosis and computer-aided decision support systems. This
paper presents a method to automatically segment liver and lesions in
CT abdomen images using cascaded fully convolutional neural networks
(CFCNs) and dense 3D conditional random fields (CRFs). We train and
cascade two FCNs for a combined segmentation of the liver and its
lesions. In the first step, we train a FCN to segment the liver as ROI
input for a second FCN. The second FCN solely segments lesions from
the predicted liver ROIs of step 1. We refine the segmentations of the
CFCN using a dense 3D CRF that accounts for both spatial coherence
and appearance. CFCN models were trained in a 2-fold cross-validation
on the abdominal CT dataset 3DIRCAD comprising 15 hepatic tumor
volumes. Our results show that CFCN-based semantic liver and lesion
segmentation achieves Dice scores over 94 % for liver with computa-
tion times below 100 s per volume. We experimentally demonstrate the
robustness of the proposed method as a decision support system with a
high accuracy and speed for usage in daily clinical routine.
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1 Introduction

Anomalies in the shape and texture of the liver and visible lesions in CT are
important biomarkers for disease progression in primary and secondary hepatic
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tumor disease [9]. In clinical routine, manual or semi-manual techniques are
applied. These, however, are subjective, operator-dependent and very time-
consuming. In order to improve the productivity of radiologists, computer-aided
methods have been developed in the past, but the challenges in automatic seg-
mentation of combined liver and lesion remain, such as low-contrast between
liver and lesion, different types of contrast levels (hyper-/hypo-intense tumors),
abnormalities in tissues (metastasectomie), size and varying amount of lesions.

Nevertheless, several interactive and automatic methods have been devel-
oped to segment the liver and liver lesions in CT volumes. In 2007 and 2008,
two Grand Challenges benchmarks on liver and liver lesion segmentation have
been conducted [4,9]. Methods presented at the challenges were mostly based
on statistical shape models. Furthermore, grey level and texture based methods
have been developed [9]. Recent work on liver and lesion segmentation employs
graph cut and level set techniques [15–17], sigmoid edge modeling [5] or manifold
and machine learning [6,11]. However, these methods are not widely applied in
clinics, due to their speed and robustness on heterogeneous, low-contrast real-
life CT data. Hence, interactive methods were still developed [1,7] to overcome
these weaknesses, which yet involve user interaction.

Deep Convolutional Neural Networks CNN have gained new attention in the
scientific community for solving computer vision tasks such as object recogni-
tion, classification and segmentation [14,18], often out-competing state-of-the art
methods. Most importantly, CNN methods have proven to be highly robust to
varying image appearance, which motivates us to apply them to fully automatic
liver and lesions segmentation in CT volumes.

Semantic image segmentation methods based on fully convolutional neural
networks FCN were developed in [18], with impressive results in natural image
segmentation competitions [3,24]. Likewise, new segmentation methods based
on CNN and FCNs were developed for medical image analysis, with highly com-
petitive results compared to state-of-the-art. [8,12,19–21,23].

In this work, we demonstrate the combined automatic segmentation of the
liver and its lesions in low-contrast heterogeneous CT volumes. Our contributions
are three-fold. First, we train and apply fully convolutional CNN on CT volumes
of the liver for the first time, demonstrating the adaptability to challenging seg-
mentation of hepatic liver lesions. Second, we propose to use a cascaded fully
convolutional neural network (CFCN) on CT slices, which segments liver and
lesions sequentially, leading to significantly higher segmentation quality. Third,
we propose to combine the cascaded CNN in 2D with a 3D dense conditional
random field approach (3DCRF) as a post-processing step, to achieve higher
segmentation accuracy while preserving low computational cost and memory
consumption. In the following sections, we will describe our proposed pipeline
(Sect. 2.2) including CFCN (Sect. 2.3) and 3D CRF (Sect. 2.4), illustrate exper-
iments on the 3DIRCADb dataset (Sect. 2) and summarize the results (Sect. 4).
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2 Methods

In the following section, we denote the 3D image volume as I, the total number
of voxels as N and the set of possible labels as L = {0, 1, . . . , l}. For each voxel
i, we define a variable xi ∈ L that denotes the assigned label. The probability
of a voxel i belonging to label k given the image I is described by P (xi = k|I)
and will be modelled by the FCN. In our particular study, we use L = {0, 1, 2}
for background, liver and lesion, respectively.

2.1 3DIRCADb Dataset

For clinical routine usage, methods and algorithms have to be developed, trained
and evaluated on heterogeneous real-life data. Therefore, we evaluated our pro-
posed method on the 3DIRCADb dataset1[22]. In comparison to the grand chal-
lenge datasets, the 3DIRCADb dataset offers a higher variety and complex-
ity of livers and its lesions and is publicly available. The 3DIRCADb dataset

Fig. 1. Automatic liver and lesion segmentation with cascaded fully convolutional net-
works (CFCN) and dense conditional random fields (CRF). Green depicts correctly
predicted liver segmentation, yellow for liver false negative and false positive pixels (all
wrong predictions), blue shows correctly predicted lesion segmentation and red lesion
false negative and false positive pixels (all wrong predictions). In the first row, the false
positive lesion prediction in B of a single UNet as proposed by [20] were eliminated
in C by CFCN as a result of restricting lesion segmentation to the liver ROI region.
In the second row, applying the 3DCRF to CFCN in F increases both liver and lesion
segmentation accuracy further, resulting in a lesion Dice score of 82.3 %.

1 The dataset is available on http://ircad.fr/research/3d-ircadb-01.

http://ircad.fr/research/3d-ircadb-01
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includes 20 venous phase enhanced CT volumes from various European hospi-
tals with different CT scanners. For our study, we trained and evaluated our
models using the 15 volumes containing hepatic tumors in the liver with 2-fold
cross validation. The analyzed CT volumes differ substantially in the level of
contrast-enhancement, size and number of tumor lesions (1 to 42). We assessed
the performance of our proposed method using the quality metrics introduced
in the grand challenges for liver and lesion segmentation by [4,9].

2.2 Data Preparation, Processing and Pipeline

Pre-processing was carried out in a slice-wise fashion. First, the Hounsfield unit
values were windowed in the range [−100, 400] to exclude irrelevant organs and
objects, then we increased contrast through histogram equalization. As in [20],
to teach the network the desired invariance properties, we augmented the data
by applying translation, rotation and addition of gaussian noise. Thereby result-
ing in an increased training dataset of 22,693 image slices, which were used to
train two cascaded FCNs based on the UNet architecture [20]. The predicted
segmentations are then refined using dense 3D Conditional Random Fields. The
entire pipeline is depicted in Fig. 2.

2.3 Cascaded Fully Convolutional Neural Networks (CFCN)

We used the UNet architecture [20] to compute the soft label probability maps
P (xi|I). The UNet architecture enables accurate pixel-wise prediction by com-
bining spatial and contextual information in a network architecture comprising
19 convolutional layers. In our method, we trained one network to segment the
liver in abdomen slices (step 1), and another network to segment the lesions,
given an image of the liver (step 2). The segmented liver from step 1 is cropped
and resampled to the required input size for the cascaded UNet in step 2, which
further segments the lesions.

The motivation behind the cascade approach is that it has been shown that
UNets and other forms of CNNs learn a hierarchical representation of the pro-
vided data. The stacked layers of convolutional filters are tailored towards the
desired classification in a data-driven manner, as opposed to designing hand-
crafted features for separation of different tissue types. By cascading two UNets,
we ensure that the UNet in step 1 learns filters that are specific for the detection
and segmentation of the liver from an overall abdominal CT scan, while the
UNet in step 2 arranges a set of filters for separation of lesions from the liver
tissue. Furthermore, the liver ROI helps in reducing false positives for lesions.

A crucial step in training FCNs is appropriate class balancing according
to the pixel-wise frequency of each class in the data. In contrast to [18], we
observed that training the network to segment small structures such as lesions is
not possible without class balancing, due to the high class imbalance. Therefore
we introduced an additional weighting factor ωclass in the cross entropy loss



Automatic Liver and Lesion Segmentation in CT using CFCNs and 3DCRFs 419

Fig. 2. Overview of the proposed image segmentation pipeline. In the training phase,
the CT volumes are trained after pre-processing and data augmentation in a cascaded
fully convolutional neural network (CFCN). To gain the final segmented volume, the
test volume is fed-forward in the (CFCN) and refined afterwards using a 3D conditional
random field 3DCRF.

function L of the FCN.

L = − 1
n

N∑

i=1

ωclass
i

[
P̂i log Pi + (1 − P̂i) log(1 − Pi)

]
(1)

Pi denotes the probability of voxel i belonging to the foreground, P̂i represents
the ground truth. We chose ωclass

i to be 1
|Pixels of Class xi=k| .

The CFCNs were trained on a NVIDIA Titan X GPU, using the deep learning
framework caffe [10], at a learning rate of 0.001, a momentum of 0.8 and a weight
decay of 0.0005.

2.4 3D Conditional Random Field (3DCRF)

Volumetric FCN implementation with 3D convolutions is strongly limited by
GPU hardware and available VRAM [19]. In addition, the anisotropic resolution
of medical volumes (e.g. 0.57−0.8 mm in xy and 1.25−4 mm in z voxel dimension
in 3DIRCADb) complicates the training of discriminative 3D filters. Instead, to
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capitalise on the locality information across slices within the dataset, we utilize
3D dense conditional random fields CRFs as proposed by [13]. To account for
3D information, we consider all slice-wise predictions of the FCN together in the
CRF applied to the entire volume at once.

We formulate the final label assignment given the soft predictions (probability
maps) from the FCN as maximum a posteriori (MAP) inference in a dense CRF,
allowing us to consider both spatial coherence and appearance.

We specify the dense CRF following [13] on the complete graph G = (V, E)
with vertices i ∈ V for each voxel in the image and edges eij ∈ E = {(i, j) ∀i, j ∈
V s.t. i < j} between all vertices. The variable vector x ∈ LN describes the label
of each vertex i ∈ V. The energy function that induces the according Gibbs
distribution is then given as:

E(x) =
∑

i∈V
φi(xi) +

∑

(i,j)∈E
φij(xi, xj), (2)

where φi(xi) = − log P (xi|I) are the unary potentials that are derived from
the FCNs probabilistic output, P (xi|I). φij(xi, xj) are the pairwise potentials,
which we set to:

φij(xi, xj) = μ(xi, xj)
(

wpos exp
(
− |pi−pj |2

2σ2
pos

)

+wbil exp
(
− |pi−pj |2

2σ2
bil

− |Ii−Ij |2
2σ2

int

) )
, (3)

where μ(xi, xj) = 1(xi �= xj) is the Potts function, |pi−pj | is the spatial distance
between voxels i and j and |Ii − Ij | is their intensity difference in the original
image. The influence of the pairwise terms can be adjusted with their weights
wpos and wbil and their effective range is tuned with the kernel widths σpos, σbil

and σint.
We estimate the best labelling x∗ = arg minx∈LN E(x) using the efficient

mean field approximation algorithm of [13]. The weights and kernels of the CRF
were chosen using a random search algorithm.

3 Results and Discussion

The qualitative results of the automatic segmentation are presented in Fig. 1. The
complex and heterogeneous structure of the liver and all lesions were detected
in the shown images. The cascaded FCN approach yielded an enhancement for
lesions with respect to segmentation accuracy compared to a single FCN as can
be seen in Fig. 1. In general, we observe significant2 additional improvements for
slice-wise Dice overlaps of liver segmentations, from mean Dice 93.1% to 94.3%
after applying the 3D dense CRF.

Quantitative results of the proposed method are reported in Table 1. The
CFCN achieves higher scores as the single FCN architecture. Applying the 3D
2 Two-sided paired t-test with p-value < 4 · 10−19.



Automatic Liver and Lesion Segmentation in CT using CFCNs and 3DCRFs 421

Table 1. Quantitative segmentation results of the liver on the 3DIRCADb dataset.
Scores are reported as presented in the original papers.

Approach VOE RVD ASD MSD DICE

[%] [%] [mm] [mm] [%]

UNET as in [20] 39 87 19.4 119 72.9

Cascaded UNET 12.8 −3.3 2.3 46.7 93.1

Cascaded UNET + 3D CRF 10.7 −1.4 1.5 24.0 94.3

Li et al. [16] (liver-only) 9.2 −11.2 1.6 28.2

Chartrand et al. [2] (semi-automatic) 6.8 1.7 1.6 24

Li et al. [15] (liver-only) 94.5

CRF improved the segmentations results of calculated metrics further. The run-
time per slice in the CFCN is 2 · 0.2 s = 0.4 s without and 0.8 s with CRF.

In comparison to state-of-the-art, such as [2,5,15,16], we presented a frame-
work, which is capable of a combined segmentation of the liver and its lesion.

4 Conclusion

Cascaded FCNs and dense 3D CRFs trained on CT volumes are suitable for
automatic localization and combined volumetric segmentation of the liver and
its lesions. Our proposed method competes with state-of-the-art. We provide our
trained models under open-source license allowing fine-tuning for other medical
applications in CT data3. Additionally, we introduced and evaluated dense 3D
CRF as a post-processing step for deep learning-based medical image analy-
sis. Furthermore, and in contrast to prior work such as [5,15,16], our proposed
method could be generalized to segment multiple organs in medical data using
multiple cascaded FCNs. All in all, heterogeneous CT volumes from different
scanners and protocols as present in the 3DIRCADb dataset and in clinical
trials can be segmented in under 100 s each with the proposed approach. We
conclude that CFCNs and dense 3D CRFs are promising tools for automatic
analysis of liver and its lesions in clinical routine.
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