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Automatic liver tumor 
segmentation in CT with fully 
convolutional neural networks and 
object-based postprocessing
Grzegorz Chlebus  1, Andrea Schenk1, Jan Hendrik Moltz1, Bram van Ginneken1,2, 

Horst Karl Hahn1,3 & Hans Meine1,4

Automatic liver tumor segmentation would have a big impact on liver therapy planning procedures 

and follow-up assessment, thanks to standardization and incorporation of full volumetric information. 

In this work, we develop a fully automatic method for liver tumor segmentation in CT images based 

on a 2D fully convolutional neural network with an object-based postprocessing step. We describe 
our experiments on the LiTS challenge training data set and evaluate segmentation and detection 

performance. Our proposed design cascading two models working on voxel- and object-level allowed 

for a significant reduction of false positive findings by 85% when compared with the raw neural network 
output. In comparison with the human performance, our approach achieves a similar segmentation 

quality for detected tumors (mean Dice 0.69 vs. 0.72), but is inferior in the detection performance (recall 
63% vs. 92%). Finally, we describe how we participated in the LiTS challenge and achieved state-of-the-
art performance.

According to the World Health Organization, liver cancer was the second most common cause of cancer-induced 
deaths in 2015. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer which is the 
sixth most prevalent cancer1. In addition, the liver is also a common site for secondary tumors. Liver therapy 
planning procedures would pro�t from an accurate and fast lesion segmentation that allows for subsequent deter-
mination of volume- and texture-based information. Moreover, having a standardized and automatic segmenta-
tion method would facilitate a more reliable therapy response classi�cation2.

Liver tumors show a high variability in their shape, appearance and localization. �ey can be either hypo-
dense (appearing darker than the surrounding healthy liver parenchyma) or hyperdense (appearing brighter), 
and can additionally have a rim due to the contrast agent accumulation, calci�cation or necrosis3. �e individual 
appearance depends on lesion type, state, imaging (equipment, settings, contrast method and timing), and can 
vary substantially from patient to patient. �is high variability makes liver lesion segmentation a challenging task 
in practice.

�e problem of liver tumor segmentation has received a great interest in the medical image computing com-
munity. In 2008, the MICCAI 3D Liver Tumor Segmentation Challenge4 was organized where both manual and 
automatic methods were accepted. Among the automatic ones, the best method applied an ensemble segmenta-
tion algorithm using AdaBoost5. Other submitted methods employed adaptive thresholding, region growing or 
level set methods6–9. In more recent years, methods using Grassmannian manifolds10 and shape parameteriza-
tion11 were proposed.

Given the variability of liver lesions, a manual design of powerful features is not trivial. Fully convolutional 
neural networks (FCNs) gained rapidly growing attention in the computer vision community over the last years, 
because of their ability to learn features automatically from the data. Christ et al.12 applied two cascaded U-net 
models13 to the problem of liver and liver tumor segmentation. �e approach employed one model solely for the 
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liver segmentation and a separate one for the tumor segmentation within a liver bounding box. �e �nal output 
was re�ned using a 3D conditional random �eld.

More recently, the Liver Tumor Segmentation (LiTS) challenge was organized14. All top-scoring automatic 
methods submitted to the two rounds organized in 2017 used FCNs. Han15, the winner of the �rst round, used 
two U-net like models with long and short skip connections, where the �rst model was used only for coarse liver 
segmentation allowing the second network to focus on the liver region. �e second model was trained to seg-
ment both liver and tumors in one step. �e two models worked in 2.5D, i.e., they received �ve adjacent slices to 
segment the middle one, which provided the network with the 3D context information. �e best method in the 
second LiTS round was developed by a group from Lenovo Research, China. �eir approach employed two neural 
network ensembles for the liver and tumor segmentation, respectively. �e ensembles consisted of 2D and 2.5D 
U-net models trained with di�erent hyperparameter settings. Other successful methods proposed to train jointly 
two networks for liver and tumor segmentation16 and to exploit 3D information by training a 3D H-DenseUNet 
architecture using original image data as well as features coming from a 2D network17.

�is paper focuses on the tumor segmentation task, which follows a separate liver segmentation step that is 
brie�y sketched in the description of the challenge submission. Our contribution on the tumor segmentation 
task is twofold. First, we show that cascading of a 2D FCN working on a voxel-level with a model trained using 
hand-cra�ed features extracted on an object-level leads to a signi�cant reduction of false positive �ndings and 
improves the segmentation quality for detected tumors. We provide a detailed description and evaluation of our 
method, which achieved state-of-the-art results in the LiTS challenge. Second, we report human performance 
on a subset of the LiTS training data set to put the segmentation quality of automatic methods into perspective.

Materials and Methods
Data. In the following, we ran the experiments using the training dataset from the LiTS challenge containing 
131 contrast-enhanced abdominal CT scans coming from 7 clinical institutions. �e CT scans come with refer-
ence annotations of the liver and tumors done by trained radiologists. �e in-plane resolution ranges from 0.5 to 
1.0 mm and the slice thickness ranges from 0.7 to 5.0 mm. �e dataset contains 908 lesions (63% with the longest 
axial diameter ≥10 mm).

We divided the cases randomly into 3 non-overlapping groups for training, validation and testing containing 
93, 6 and 30 cases, respectively. We removed 2 �awed cases due to missing reference tumor segmentation.

Neural network. Architecture. We employed a U-net13 like fully convolutional network architecture 
(Fig. 1). Our model works on four resolution levels allowing for learning of local and global features. In the 
contracting (expanding) path convolutions (transposed convolutions) are used to decrease (increase) the spa-
tial resolution and the feature map count is doubled (halved) with each transition. �e network contains long 
skip connections passing feature maps from the contracting path to the expanding path allowing to recover �ne 
details which are lost in the spatial downsampling. We also added short skip connections to have well-distributed 
parameter updates and to speed up the training18. Each convolutional layer uses 3 × 3 �lter size and is followed by 
a batch normalization and a ReLU activation function. We used dropout (p = 0.5) before each convolution in the 
upscaling path to prevent the network from over�tting.

Training. We trained the network using whole axial image slices in the original resolution (size 512 × 512 vox-
els) and their corresponding labels. Since our architecture is fully convolutional13, this is mathematically equiv-
alent to training with many overlapping patches of the receptive �eld size (here, 92 × 92 voxels), but much more 
e�cient. We used the so� dice coe�cient as the loss function computed on the pixelwise so�max of the network 
�nal feature map19. �e loss computation is restrained to a LiTS reference liver mask dilated by 10 mm in order 
to focus the model on the liver region. To deal with the high class imbalance, we ensured that each mini-batch 
contains patches where both classes (tumor and background) are present. We computed the parameter updates 
using the Adam optimizer with 5e-5 learning rate. �e model was trained for 10 epochs (approx. 50 k iterations, 
mini-batch size 6). We re�ectively padded the input images with 44 pixels on each side, because we used no 
zero-padding in the convolutions.

Figure 1. Overview of the neural network architecture. �e numbers denote the feature map count.
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Output. �e output of the neural network was limited to a liver mask in order to remove false positives found 
outside of the organ. For the LiTS training dataset we used liver masks provided by the challenge organizers in 
order to avoid the dependency of the tumor segmentation on the liver segmentation quality. For cases, where a 
liver mask is not given, the tumor segmentation is preceded by a liver segmentation step (see subsection describ-
ing the challenge submission).

Object-based postprocessing. Based on the training data we observed that some neural network outputs corre-
sponded to false positives, which could easily be identi�ed by their shape and location (e.g. liver/gallbladder boundary). 
�erefore, we added a post-processing step, which employs a model classifying tumor objects (computed as 3D con-
nected components of the FCN output) into true (TP) and false positives (FP). For that, we trained a conventional ran-
dom forest classi�er (RF) with 256 trees using 36 hand-cra�ed features carrying information about underlying image 
statistics, tumor shape and its distance to the liver boundary (the full list of features can be found in the supplementary 
material). Random forests were chosen for this task because they work well with moderate numbers of training samples 
and varying feature value distributions. �is approach does not allow end-to-end training, because we designed the 
second model to work on higher level entities (tumor objects instead of voxels) and features that are extracted by an 
image analysis pipeline from the neural network output20. We see this as an advantage, as employment of two separate 
steps for tumor candidate detection and false positive �ltering increases the explainability of the whole system. Whether 
a tumor is TP or FP was determined using the evaluation code described in Sec. Evaluation.

Expert performance. In order to put the performance of our automatic method into a perspective, we asked 
a medical-technical radiology assistant (MTRA) with over 10 years of segmentation experience to manually seg-
ment tumors in cases used for the algorithm evaluation. �is means that we have two reference annotation sets, 
which we refer to in the following as “MTRA” and “LiTS”.

Evaluation. Detection. We evaluate the detection performance using metrics based on the Free-Response 
ROC analysis, which is suitable for experiments involving zero or more decisions per image21:

•	 Recall: Ratio of TP detections to the count of positives in the reference.
•	 FPs/case: Average count of FPs per case.

Additionally, we compute a ratio of detected tumors with the longest axial diameter ≥10 mm to all such 
lesions in reference (Recall ≥ 10 mm). �e threshold value was derived from the RECIST 1.1 guidelines, where it 
is used to classify tumor lesions into measurable and non-measurable types22.

We de�ne a hit as a situation when the overlap (measured with the Dice index) between output and reference 
is above a threshold θ:

θ>DICE M T M T( [ ], [ ])out out ref ref

Figure 2. Non-trivial output (dashed)/reference (solid) correspondences. (a) Reference tumor corresponds to 
two output tumors (b) �ree reference tumors correspond to one output tumor (c) Output tumor corresponds 
only to the smaller reference tumor.

Recall Recall ≥ 10 mm
FP per 
case

Dice per 
case

Dice per 
correspondence

Merge 
error

Split 
error

Human vs. Human

MTRA (LiTS) 0.92 0.94 2.6 0.70 ± 0.27 0.72 ± 0.11 11 5

LiTS (MTRA) 0.62 0.85 0.3 0.70 ± 0.27 0.72 ± 0.11 5 12

Computer vs. Human

FCN (MTRA) 0.47 0.75 4.7 0.53 ± 0.37 0.72 ± 0.11 7 13

FCN (LiTS) 0.72 0.86 4.6 0.51 ± 0.37 0.65 ± 0.16 12 14

FCN + RF (LiTS) 0.63 0.77 0.7 0.58 ± 0.36 0.69 ± 0.18 11 10

Table 1. Mean metric values for human vs. human and computer vs. human comparisons. �e parentheses 
denote the dataset used as a reference for the computation of evaluation metrics.
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Figure 3. MTRA (dashed) vs. LiTS (solid) annotations. (a) Case with low dice/correspondence (b) Case where 
a LiTS reference tumor was missed (c) Case where MTRA found a lesion in a case with no tumors according to 
LiTS reference (d) Case where small additional tumors were found by the MTRA.

Figure 4. Box plots showing dice per case (a) an dice per correspondence (b) computed for expert and 
automatically generated segmentations on 30 test cases.

Figure 5. Neural network (black) compared with the LiTS (white) annotations. (a) Case with 0.85 dice/
case (b,c) Cases with 19 and 16 FPs (d) Case where a small tumor was not detected (e,f) Case where tumor 
segmentation strongly di�ered on consecutive slices.
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Mout and Mref denote output and reference label images where each tumor has a unique label, Tout and Tref are 
sets of output and reference tumor labels corresponding to each other. Notation M[T] selects tumors with labels T 
from M. �e parameter θ enables a trade-o� between high recall (low θ) and high Dice for corresponding tumors 
(high θ). We set θ = 0.2 in order to require a signi�cant, but not exact overlap.

Determining output/reference tumor correspondence is not trivial, since situations as in Fig. 2 can occur. 
In Fig. 2a two output tumors =T l l{ , }out

1
out

2
out  correspond to one reference tumor =T l{ }ref

1
ref  and if their Dice 

index > θ, then such situation should be counted as one TP. In Fig. 2b one output tumor =T l{ }out
1
out  corre-

sponds to three reference tumors =T l l l{ , , }ref
1
ref

2
ref

3
ref  and if their overlap is above θ, then such situation 

counts as three TP.
An algorithm for correspondence establishment of output/reference lesions should aim at maximizing the 

output/reference overlap. For example, consider Fig. 2c, where the output tumor should correspond only to the 
smaller reference tumor, since the overlap would decrease if both reference tumors would be considered. To 
account for n : m correspondence situations where ≠n m, we count merge and split errors for each correspond-
ence. Merge error is de�ned as | | −T 1ref , split error as | | − | |T Tmax(0, )out ref .

Segmentation. �e segmentation quality was evaluated using the following measures:

•	 Dice/case: Computed by taking into account the whole output and reference tumor mask. When both masks 
are empty, a score of 1 is assigned.

•	 Dice/correspondence: Computed for each output/reference correspondence.
•	 Merge error: Sum of per correspondence merge errors.
•	 Split error: Sum of per correspondence split errors.

Algorithm 1. Establishing correspondences between output and reference tumors.
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Algorithm 1 sketches the code we employed for establishing of correspondences between output and reference 
tumors.

Results and Discussion
Expert performance. �e MTRA needed 30–45 min. per case (the segmentation was done without time 
constraints). �e comparison of MTRA with LiTS annotations and vice versa is shown in Table 1. �e MTRA 
missed 11 of the LiTS lesions and found 78 additional ones, which accounts for 0.92 recall and 2.6 FP/case. �e 
LiTS annotations identi�ed correctly only 62% of tumors found by the MTRA. Smaller recall di�erence was 
observed for tumors ≥10 mm, meaning that most of the lesions not included by the LiTS reference were small. 
�e segmentation quality was 0.72 dice/correspondence and 0.7 dice/case. Figure 3 shows example cases with 
major di�erences between MTRA and LiTS segmentations. �ere were two cases, where MTRA segmentation 
got 0 dice/case when compared with the LiTS reference: (i) a tumor was found in a case with no tumors, Fig. 3c, 
(ii) none of reference tumors were found.

Neural network. �e neural network was able to detect 47% and 72% of all tumors present in the MTRA 
and LiTS annotations, respectively. Tumors with the longest diameter ≥10 mm were detected more reliably than 
smaller ones. Potentially measurable tumor lesions according to RECIST 1.1 had a recall of 75% and 86%, respec-
tively. �e false positive count was similar when comparing with MTRA and LiTS annotations (142 and 138, 
respectively). �e dice/case and dice/correspondence was 0.53 and 0.72 for the MTRA reference and 0.51 and 0.65 
for LiTS (see Table 1 and Fig. 4 for details). 7 cases received 0 dice/case score (3 with no reference lesions and 4 
where none of small reference lesions was found). Interestingly, the neural network, similar to the MTRA, found 
a lesion in the case with no tumors in the LiTS reference (Fig. 3c). Figure 5 presents one example of a good seg-
mentation produced by the neural network, as well as examples of di�erent kinds of deviations from the reference.

Object-based postprocessing. We trained a random forest classi�er on features computed for each tumor 
produced by the neural network from training and validation cases, where only LiTS annotations were available. 
�erefore, Table 1 reports results only for the LiTS reference. �e classi�er allowed for a 85% reduction of false 
positives and had 87% accuracy on test cases: 117 FPs were identi�ed correctly, whereas 13 TPs (9 of which were 
≥10 mm) were wrongly rejected. �is led to a signi�cant change in FPs, TPs and FNs (all signi�cance tests were 
done using the Wilcoxon signed-rank test at 0.05 level). �e improvement for Dice per correspondence was sig-
ni�cant, as opposed to Dice per case, whose increase was achieved by removing all FPs in two cases with no refer-
ence tumors. Among �ve most discriminative features four were shape-based (�rst eigenvalue, eccentricity, extent 
along z axis, voxel count). �e remaining one described the std. deviation of the distance to the liver boundary 
(plot showing features sorted according to their importance can be found in the supplementary material).

�e main motivation for choosing the random forest classi�er was moderate number of training samples. 
Assuming that a bigger dataset was available, other strategies for object-based post-processing could be investi-
gated. One of possible alternative approaches for false positive reduction would be a multi-view neural network, 
which learns discriminative features directly from the found tumor candidates23.

Challenge submission and results. Before submission to the LiTS challenge, we trained the neural network 
further using all cases from the LiTS training dataset. Since the tumor segmentation makes use of liver masks, 
which were not given for the challenge test cases, we used our own liver segmentation method. For automatic 
liver segmentation, we trained 3 orthogonal (axial, sagittal, coronal) U-net models with 4 resolution levels on our 
in-house liver dataset from liver surgery planning containing 179 CTs24. We computed segmentations for the 70 
challenge test cases ranking third at the MICCAI 2017 LiTS round (leaderboard user name hans.meine). Our sub-
mission scored 0.68 and 0.96 dice/case for tumor and liver segmentation, respectively. �e tumor dice/case di�er-
ence between our approach and the best submissions from MICCAI 2017 (IeHealth) and Open leaderboard (xjqi to 
date) is 0.02 and 0.04, respectively. Our method needs on average 67 s for one case: 43, 16 and 8 s for liver segmen-
tation, tumor segmentation and FP �ltering, respectively (Intel Core i7-4770K, 32 GB RAM, GeForce GTX 1080).

Conclusions
In this work, we described our method for automatic liver tumor segmentation in abdominal CT scans employing 
a 2D deep neural network with an object-based postprocessing, which ranked third in the second LiTS round 
at MICCAI 2017. Our tumor segmentation employs a preceding liver segmentation step in order to constrain 
operation to the liver region and to be able to compute distances from the liver boundary. �e object-based 
analysis step using hand-cra�ed features allowed for a signi�cant reduction of false positive �ndings. �e fact 
that the most discriminative features in the postprocessing step were shape-based indicates the importance of 3D 
information in distinguishing true from false positives. Our method achieves segmentation quality for detected 
tumors comparable to a human expert and is able to detect 77% of potentially measurable tumor lesions in the 
LiTS reference according to the RECIST 1.1 guidelines. We observed that the neural network is capable of detect-
ing bigger lesions (the longest axial diameter ≥10 mm) more reliably than smaller ones (<10 mm). We presume, 
based on the performed comparison of LiTS annotations with those done by an experienced MTRA, that this can 
be attributed to a bigger inter-observer variability with respect to detection of smaller lesions. We think that the 
LiTS challenge data collection from multiple sites is a great initiative, that shows not only the variability in imag-
ing, but also some variability in the annotations. �is is probably due to the fact that liver tumor segmentation is 
not part of the daily routine, and that there are no universally agreed on clinical guidelines for this task.

We see the method described in this paper as promising, but it is clear that more work needs to be done to 
match the human detection performance. Moreover, an evaluation in a clinical setting will be required to assess 
the clinical utility of automatic liver tumor segmentation methods. Future research directions include evaluation 
of 3D networks and automation of reporting schemes for the liver.
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