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Automati
 Lo
al Smoothing for Spe
tral DensityEstimationJianqing Fan Eva KreutzbergerDepartment of Statisti
s Department of Mathemati
sUniversity of North Carolina University of KaiserslauternChapel Hill, N.C. 27599-3260 67653 Kaiserslautern, GermanyAbstra
tThis arti
le uses lo
al polynomial te
hniques to �t Whittle's likelihood for spe
tral den-sity estimation. Asymptoti
 sampling properties of the proposed estimators are derived,and adaptation of the proposed estimator to the boundary e�e
t is noted. We show thatthe Whittle likelihood based estimator has advantages over the least-squares based log-periodogram. The bandwidth for the Whittle likelihood-based method is 
hosen by a simpleadjustment of a bandwidth sele
tor proposed in Fan and Gijbels (1995). The e�e
tivenessof the proposed pro
edure is demonstrated by a few simulated and real numeri
al examples.Our simulation results support the asymptoti
 theory that the likelihood based spe
traldensity and log-spe
tral density estimators are the most appealing among their peers.KEY WORDS: Bandwidth sele
tion, lo
al polynomial �t, periodogram, spe
tral densityestimation, Whittle likelihood.1 Introdu
tionSpe
tral density estimation is useful for studying stationary time series, in
luding periodi
ity.The raw material used to 
onstru
t a spe
tral density estimate is periodogram. Let Xt; t =0;�1;�2; : : : denote a zero mean stationary pro
ess with the auto
ovarian
e fun
tion
(u) = E(XsXs+u); u = 0;�1;�2; : : : :Then, the periodogram for an observed time series X1; � � � ;Xn is given byI(n)(�) = 12�n j nXt=1 e�i�tXtj2; � 2 [0; �℄:It is well known that the periodogram is approximately an unbiased estimator of the spe
traldensity f(�) = 12� 1Xu=�1 
(u) exp(�iu�); � 2 [0; �℄:But, it is not a 
onsistent estimator of f(�). See for example Brillinger (1981), Priestley (1981)and Bro
kwell and Davis (1991).Consistent estimators of f(�) 
an be obtained by smoothing the periodogram. Let �k =2�k=n be a Fourier frequen
y. There are three possible ways to obtain a 
onsistent estimate.The �rst approa
h is to dire
tly smooth on the data f(�k; I(n)(�k)); k = 1; � � � ; [(n � 1)=2℄g1



via a weighted lo
al average. Most of the earlier literature used this approa
h. See Chapter5 of Brillinger (1981) and referen
es therein. The se
ond approa
h is to smooth over the log-periodogram f(�k; log I(n)(�k))g via a least-squares method. See for example Wahba (1980) whoused a smoothing spline minimizing penalized square errors. The third approa
h is based on theWhittle (1962) likelihood of the periodogram. See for example, Pawitan and O'Sullivan (1994)and Kooperberg, Stone and Truong (1995a, b) where spline te
hniques are employed. As inall nonparametri
 smoothing problems, an important issue is to 
hoose appropriate smoothingparameters. Extensive e�orts have been made in the literature. See for example Swanepoeland van Wyk (1986), Beltr~ao and Bloom�eld (1987), Hurvi
h and Beltr~ao (1990), Franke andH�ardle (1992) and Politis and Romano (1992). Estimation of lo
ations of peaks was studied byNewton and Pagano (1983) and M�uller and Prewitt (1992).There is also a large literature on spe
tral density estimation based on ARMA or otherparametri
 models. See for example x10.6 of Blo
kwell and Davis (1991). The basi
 idea isto �t an ARMA model with orders sele
ted adaptively by some 
riterion su
h as the BayesianInformation Criterion. These methods 
an be very useful for many appli
ations. However, the
omputation 
ost 
an be expensive and not all spe
tral densities 
an eÆ
iently be approximatedby ARMA models.Among the three possible smoothing s
hemes mentioned above, whi
h one is more appeal-ing? This problem has not been 
onvin
ingly answered yet. It is also not easy to 
ompare theabove approa
hes sin
e they are based on di�erent smoothing pro
edures. In this paper, westudy the theoreti
al and numeri
al properties of the above three approa
hes to spe
tral densityestimation using lo
al polynomial �tting as a 
ommon smoother. This smoothing method isasymptoti
ally equivalent to kernel method (M�uller, 1987) ex
ept at boundary regions, whendesigns are equispa
ed. Re
ent developments on the lo
al polynomial approa
h 
an be foundin Fan (1992), Hastie and Loader (1993), Ruppert and Wand (1994), Fan, He
kman and Wand(1995), Jones (1997), among others.We show that the Whittle likelihood based estimator has a smaller asymptoti
 varian
ethan the least-squares smoothed log-periodogram, while their asymptoti
 biases are the same.We also demonstrate that the likelihood based estimator has a smaller bias than the smoothedperiodogram at regions where the log-spe
tral density is 
onvex (the biases are not 
ompa-rable at 
on
ave regions), while maintaining the same asymptoti
 varian
e as the smoothedperiodogram. Hen
e, the Whittle likelihood based method is re
ommended.The bandwidth of the Whittle likelihood based lo
al polynomial �tting is sele
ted via asimple adjustment of a pre-asymptoti
 substitutionmethod developed in Fan and Gijbels (1995).The e�e
tiveness of this method is 
onvin
ingly demonstrated via intensive simulations. For
omparisons with least-squares based approa
hes, we also give data-driven bandwidth sele
tors,based on the methods of Fan and Gijbels (1995), for the least-squares smoothed periodogram2



and log-periodogram. Three data-driven methods for spe
tral density estimation are then
ompared via intensive simulations. It is shown in Se
tion 3 that for the simulation models
onsidered the likelihood based method are the best among three pro
edures 
onsidered. Thisis 
onsistent with our asymptoti
 theory.We begin by des
ribing the Whittle likelihood based spe
tral density estimation in Se
tion2. Finite sample 
omparisons of three spe
tral density estimators are presented in Se
tion 3.The asymptoti
 properties of the likelihood based estimator is summarized in Se
tion 4 and theproofs are given in Se
tion 5.2 Estimation of spe
tral densityLet �k = 2�k=n(k = 0; 1; � � � ; [(n� 1)=2℄) be Fourier frequen
ies and let N = [(n� 1)=2℄. Givena stationary linear pro
ess fXtg, it is known (see, for example, Theorem 10.3.2 of Bro
kwelland Davis, 1991) that fI(n)(�k)g are asymptoti
ally exponentially distributed with mean f(�k)and that they are approximately independent. That is, with Rn;k denoting an asymptoti
allynegligible term, I(n)(�k) = f(�k) � Vk +Rn;k; (2.1)where the random variables V 0ks are independent having the standard exponential distributionfor k = 1; � � � ; N . Moreover, V0 and V[n=2℄ (if n is even) have a �21-distribution. For 
onvenien
e,we will only 
onsider the periodogram I(n)(�k) at frequen
ies �k, k = 1; � � � ; N .Thus the logarithm of the periodogram exhibits the following regression model:8<: Yk = log I(n)(�k) = m(�k) + "k + rk; k = 1; : : : ; N;"k = log(Vk) has a density f"(x) = exp(� exp(x) + x) ; (2.2)wherem(�k) = log f(�k) and rk = log[1+Rn;k=ff(�k)Vkg℄ is an asymptoti
ally negligible term.It is known that E("k) = C0 = �:57721, an Euler 
onstant, and var("k) = �2=6. See Davis andJones (1968).Regarding (2.2) as a nonparametri
 regression model and applying the lo
al linear smoother,we obtain the smoothed log-periodogramm̂LS(�) = â = NXk=1wk(�)(Yk � C0);where wk(�) is the lo
al linear weight. See for example Fan (1992). We 
an also apply a higherorder lo
al polynomial regression (Stone 1977, and Cleveland 1979) to estimate the log-spe
traldensity m, but de
ide not to use it for the sake of simpli
ity.It 
an be shown under Conditions (i) { (iv) in Se
tion 4 that asymptoti
allym̂LS(�)�m(�) � N�h2m00(�)�2(K)=2; (�2=6)�0(K)�=(nh)�; (2.3)3



where �2(K) = R u2K(u) du and �0(K) = R K2(u)du. Thus, the asymptoti
ally optimal band-width, whi
h minimizes the integrated asymptoti
 squared bias and varian
e, is given byhLS, OPT = " �0(K)(�2=6)��22(K) R �0 fm00(�)g2d�#1=5 n�1=5: (2.4)In pra
ti
al implementations, the optimal bandwidth has to be estimated. Sin
e model(2.2) is a spe
ial 
ase of the general nonparametri
 regression model, we 
an apply methodsdeveloped in the nonparametri
 regression literature. In parti
ular, the 
onstant bandwidthsele
tor proposed in Fan and Gijbels (1995) will be used for sele
ting the bandwidth of m̂LS.The least-squares based estimator m̂LS is not eÆ
ient, sin
e the distribution of "k is notnormal. Its eÆ
ien
y 
an be improved by using the lo
al maximum likelihood method.For ea
h given �, we form the weighted log-likelihood as follows:L(a; b) = NXk=1[� expfYk � a� b(�k � �)g+ Yk � a� b(�k � �)℄Kh(�k � �); (2.5)where Kh(�) = K(�=h)=h. Let â and b̂ be the maximizers of (2.5). The proposed lo
al likelihoodestimator for m(�) is m̂LK(�) = â.The weighted log-likelihood (2.5) is similar to the Whittle (1962) likelihood based on theexponential model (2.1) with Rn;k = 0 ex
ept that the kernel weight is introdu
ed to lo
alizethe approximation m(x) � m(�) +m0(�)(x� �). It is a stri
tly 
on
ave fun
tion so that thereis a unique minimizer.It will be shown in Se
tion 4 that m̂LK(�) has the following asymptoti
 bias and varian
e:m̂LK(�)�m(�) � N�h2m00(�)�2(K)=2; ��0(K)=(nh)�:Comparing with (2.3), we note that the asymptoti
 varian
e of m̂LK is a fa
tor �2=6 = 1:645smaller than that of the least-squares estimator m̂LS(�). De�ning the optimal bandwidth in asimilar fashion to (2.4), we �nd that the optimal bandwidth ishLK, OPT = (6=�2)1=5 hLS, OPT = 0:9053 hLS, OPT:Therefore, m̂LK(�) 
an use the optimal bandwidth for estimator m̂LS(�) adjusted by a fa
tor of0.9053. In the implementation below, the bandwidth for m̂LK is 
hosen asĥLK, OPT = (6=�2)1=5 ĥLS, OPT;where ĥLS, OPT is the 
onstant bandwidth sele
tor in Fan and Gijbels (1995) for the least-squaresnonparametri
 problem (2.2).Maximization of (2.5) 
an be done via the Newton-Raphson algorithm or the Fisher s
oringmethod. The least-squares estimator 
an be used as an initial value. Sin
e the least-squares4



estimator possesses the right rate of 
onvergen
e, the one-step iteration of the Newton-Raphsonalgorithm will produ
e an estimator that has the same asymptoti
 eÆ
ien
y as m̂LK. A similarresult was proved by Fan and Chen (1997) in the generalized linear model setting, whi
h in
ludesmodel (2.2) with rk = 0. Thus, if 
omputation 
ost is of 
on
ern, one 
an use the one-stepestimator instead of m̂LK to improve the eÆ
ien
y of m̂LS.To illustrate the performan
e of m̂LK with the data-driven bandwidth, we use the ARMAmodel Xt + a1Xt�1 + � � �+ apXt�p = "t + b1"t�1 + � � �+ bq"t�qto generate testing examples, where "t � N(0; �2). The model has the spe
tral density�22� j1 + b1 exp(�i�) + � � �+ bq exp(�iq�)j2j1 + a1 exp(�i�) + � � �+ ap exp(�ip�)j2Throughout the paper, � is taken to be one. Four testing examples are:Example 1. The AR(3) model with a1 = �1:5, a2 = 0:7 and a3 = �0:1.Example 2. The MA(4) model with b1 = �0:3, b2 = �0:6, b3 = �0:3 and b4 = 0:6.Example 3: We generate the stationary time series Xt from Xt = Xt;1+4Xt;2, where Xt;1and Xt;2 are two independent time series, generated respe
tively from Examples 1 and 2.Example 4: We use the AR12 model with a4 = �0:9; a8 = �0:7; a12 = 0:63 and the restof the 
oeÆ
ients zero. Put Figure 1 around hereExamples 1, 2 and 4 were used by Wahba (1980) to illustrate the smoothing spline method.We simulated 400 times with sample size N = 250 and present a typi
al estimated 
urve. Morepre
isely, we present the 
urve m̂LK having the median performan
e (in terms of mean absolutedeviation error) among 400 simulations. For 
omparison, we also present m̂LS using the samesample data. Figure 1 depi
ts the simulation results for estimation of the log-spe
tral density.Put Figure 2 around hereWe now illustrate the lo
al likelihood method using sunspot data. The data 
onsist of theannual average value of the daily index of the number of sunspots for the years 1749-1976.Figures 2 (a) and (b) give the estimated log-spe
tral and spe
tral densities. The automati
bandwidth sele
tion rule gives bandwidths ĥLS, OPT = 0:137 and ĥLK, OPT = (6=�2)1=5 ĥLS, OPT.Note that there are two peaks around frequen
ies 0 and 2�=10:8 � 0:58. This indi
ates a 10.8-year 
y
li
 pattern of the data.
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3 Comparisons with other methodsAnother 
lassi
al method for estimating a spe
tral density is to smooth the periodogram di-re
tly, resulting in the spe
tral density estimator (instead of log-spe
tral density estimator)f̂DLS(�) = PNk=1wk(�)I(n)(�k), where wk(�) is the same lo
al linear weight as in m̂LS. Sin
ethe spe
tral density is usually unsmooth, we apply the variable bandwidth sele
tor of Fan andGijbels (1995) to this estimator and obtain a fully automati
 estimation method.Put Table 1 around hereIn this se
tion, we 
ompare the performan
e of three spe
tral density estimators m̂LS; m̂LKand f̂DLS based on 400 simulations. For a spe
tral density estimator f̂ , we de�ne the MeanAbsolute Deviation Error for the log-spe
tral density asMADE = ngrid�1 ngridXj=1 j log(f̂(�j))� log(f(�j))jand for the spe
tral density asSMADE = ngrid�1 ngridXj=1 jf̂(�j)� f(�j)j;where �j = j�=ngrid with ngrid = 201. For 
ompleteness, we also 
omputed the 
orrespondingMean Average Square Errors for estimating the log-spe
tral density and the spe
tral density,denoting them respe
tively by MASE and SMASE. Figure 3 depi
ts the distributions of themean absolute deviation errors based on 400 simulations. Table 1 summarizes the median forea
h of the distributions. Put Figure 3 around hereFrom Figure 3 and Table 1, one 
an easily see that m̂LK performs better than m̂LS andlog(f̂DLS) when the optimal bandwidth, sele
ted automati
ally by the pro
edures mentionedabove for ea
h estimator, is used. In parti
ular, from Table 1, the median of the MADE and ofthe MASE for m̂LK are about 0.81 { 0.86 as large as those of m̂LS. This fa
tor is 
omparablewith the asymptoti
 result (6=�2)2=5 = 0:8195. Even though exp(m̂LK) performs better thanf̂DLS in the above four examples, their asymptoti
 biases are not dire
tly 
omparable whiletheir asymptoti
 varian
e is the same.The above simulations 
learly indi
ate that the likelihood-based data-driven spe
tral densityand log-spe
tral density estimators are the most appealing among their peers.
6



4 Sampling propertiesIn this se
tion, we establish the asymptoti
 properties of the proposed lo
al likelihood estima-tors. To simplify te
hni
al arguments, we 
onsider the linear Gaussian pro
ess given byXt = 1Xj=�1ajZt�j ; Zj � iid N(0; �2):The periodogram of this linear pro
ess is given byf(�) = �22� jA(�)j2; with A(�) = 1Xj=�1aje�ij�:We make the following assumptions:(i) fXtg is a stationary pro
ess with Pj jaj jj2 <1.(ii) The spe
tral density fun
tion f(�) is positive on [0; �℄.(iii) The kernel fun
tion K is a symmetri
 probability density fun
tion and has a 
ompa
tsupport.(iv) (log n)4h! 0 in su
h a way that nh!1.It follows from the �rst 
ondition that the spe
tral density fun
tion has a bound se
ond deriva-tive.For the lo
al likelihood estimator m̂LK, we have the following results.Theorem 1 Under Conditions (i) { (iv), we have for ea
h 0 < � < �,pnhfm̂LK(�)�m(�)� h2m00(�)�2(K)=2 + o(h2)g D�! N�0; �0(K)��;and for a boundary point ��n = 
h, we havepnhfm̂LK(��n)�m(��n)� h2m00(0+)�2(K; 
)=2 + o(h2)g D�! N�0; �0(K; 
)��;where with sj;
 = R 
�1 tjK(t)dt,�2(K; 
) = s22;
 � s1;
s3;
s0;
s2;
 � s21;
 ; �0(K; 
) = R 
�1(s2;
 � s
;1t)2K2(t) dt(s0;
s2;
 � s21;
)2 :A natural estimator for spe
tral density is f̂LK(�) = expfm̂LK(�)g. The following 
orollarydes
ribes its asymptoti
 behavior.
7



Corollary 1 Under Conditions (i) { (iv), we have for ea
h 0 < � < �,pnhff̂LK(�)� f(�)� h2m00(�)f(�)�2(K)=2 + o(h2)g D�! N�0; �0(K)f2(�)��;and for a boundary point ��n = 
h, we havepnhff̂LK(��n)� f(��n)� h2m00(0+)f(0+)�2(K; 
)=2 + o(h2)g D�! N�0; �0(K; 
)f2(0+)��:Remark 1: The results of Theorem 1 
an easily be extended to general lo
al polynomial�tting. More pre
isely, letting m̂�(�) be the estimated �th derivative of m based on the lo
alpolynomial �t of order p using the Whittle likelihood, then for 0 < � < �,pnh2�+1fm̂�(�)�m(�)� Z tp+1K�;p(t)dtm(p+1)(�)(p+ 1)! hp+1�� + o(hp+1��)gD�! N�0; � Z K�;p2(t)dt�;where K�;p(t) is the equivalent kernel given in (5) of Fan, He
kman and Wand (1995). A similarresult holds for the � near the boundary.Remark 2. For the smoothed periodogram f̂DLS, we have for ea
h 0 < � < �,pnhff̂DLS(�)� f(�)� h2f 00(�)�2(K)=2 + o(h2)g D�! N�0; �0(K)f2(�)��:Note that f 00(�) = f(�)m00(�) + f(�)fm0(�)g2. By Corollary 1, f̂DLS has the same asymptoti
varian
e as that of f̂LK and has a larger bias than f̂LK when m00(�) > 0. When m00(�) < 0, itis hard to say whi
h estimator has a larger bias.A
knowledgmentsFan was partially supported by NSF Grants DMS-9203135 and DMS-9504414 and NSAGrant 96-1-0015. Kreutzberger was supported by a postdo
toral grant of the DFG (GermanS
ien
e Foundation). We thank Professor Young K. Truong and referees for their valuable
omments that lead to signi�
ant improvement of presentation.5 ProofsBy Theorem 10.3.1 of Bro
kwell and Davis (1991), we 
an de
ompose the periodogram asfollows: I(n)(�k) = jA(�k)j2 � IZ(�k) +Rn;k = f(�k)Vk +Rn;k;where IZ(�) = 12�n jPn�1t=0 e�i�t Ztj2 is the periodogram of the noise pro
ess fZtg and Vk =2���2IZ(�k). By the Gaussian assumption, V1; � � � ; VN are i.i.d. exponentially distributed,where N = [(n� 1)=2℄. 8



Lemma 1 Under Condition (ii), max1�k�N jRn;kj = Op( log npn ):The lemma follows dire
tly from an expli
it expression of Rn;k given at page 347 of Bro
kwelland Davis (1991) and is proved by Kooperberg, Stone and Truong (1995b).Proof of Theorem 2. The idea of this proof is to redu
e the problem for the dependent datato that for the i.i.d. exponential distributions. We outline the key step of the proof.Let �̂ = a�1n (â �m(�); hfb̂ � m0(�)g)T , where an = (nh)�1=2 and (â; b̂) maximizes (2.5).Then, it 
an easily be seen that �̂ maximizesNXk=1[� expfYk � �m(�; �k)� an�T�kg+ Yk � �m(�; �k)� an�T�k℄Kh(�k � �);where �m(�; �k) = m(�) +m0(�)(�k � �) and �k = (1; (�k � �)=h)T :Let Lk(Yk;�) = � expfYk � �m(�; �k)� an�T�kg+ Yk � �m(�; �k)� an�T�k:Then, �̂ maximizes `n(�) = h NXk=1fLk(Yk;�)� Lk(Yk; 0)gKh(�k � �):Let Y 0k = m(�k) + "k, the main term of (2.2). Then, we 
an write`n(�) = `1;n(�) + Unwhere `1;n(�) is de�ned the same as `n(�) with Yk repla
ed by Y 0k, andUn = �h NXk=1Rkhexpf� �m(�; �k)� an�T�kg � expf� �m(�; �k)giKh(�k � �):By using Taylor's expansion and Lemma 1, for ea
h �xed �,Un = Op(h � an � n � log n=pn) = oP (1):Thus, we have `n(�) = `1;n(�) + oP (1): (5.1)Observe that `1;n(�) is the lo
al likelihood based on fexp(Y 0k); k = 1; � � � ; Ng whi
h are i.i.dexponentially distributed. It is a spe
ial 
ase studied by Fan, He
kman and Wand (1995). Asshown in Fan, He
kman and Wand (1995), for ea
h � we have`1;n(�) =WTn� + 12�TA� + oP (1); (5.2)9



where A = ���1diagf1; �2(K)g, and with B = ��1diag(�0(K); R t2K2(t)dt)Wn � a�1n �m00(x)2 h2��1(�2(K); 0)T + o(h3)� D�! N(0; B): (5.3)Combination of (5.1) and (5.2) leads to`n(�) =WTn� + 12�TA� + oP (1):As noted before, L(a; b) is a 
on
ave fun
tion and so is `n(�). By the Quadrati
 ApproximationLemma given in Fan, He
kman and Wand (1995), we 
on
lude that�̂ = A�1Wn + oP (1):The result follows from (5.3) and the last equality by taking its �rst 
omponent. This 
on
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Table 1: The Median of MADE, SMADE, MASE, SMASE based on 400 simulationsm̂LS m̂LK log(f̂DLS) exp(m̂LS) exp(m̂LK) f̂DLSMADE SMADEExample 1 .1556 .1263 .2103 .3518 .2811 .4237Example 2 .2327 .1991 .2198 .0586 .0485 .0472Example 3 .2221 .1870 .2150 1.376 1.104 1.202Example 4 .3484 .2809 .4498 4.451 3.429 4.630MASE SMASEExample 1 .1960 .1909 .2674 1.090 .8417 1.137Example 2 .2957 .2566 .3047 .0908 .0758 .0707Example 3 .2835 .2445 .2950 2.067 1.638 1.822Example 4 .4493 .3648 .6485 23.32 17.69 18.13
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Ex4: Log-Spectral Density

(d)Figure 1: Typi
al estimated log-spe
tral densities using the lo
al likelihood method and the lo
alleast-squares method. Solid thi
k 
urves (from thi
kest to thinest) are the true log-spe
tral den-sities, estimated log-spe
tral densities m̂LK, and log-periodogram plus 0.57221. Dashed 
urvesare the estimated log-spe
tral densities m̂LS(�).
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(b)Figure 2: Spe
tral density estimates for sunspot data. (a) estimated log-spe
tral density for thesunspots data; (b) estimated spe
tral density for the sunspots data. Thin solid 
urves | log-periodogram plus 0.57721 or periodogram; thi
k solid 
urves | lo
al likelihood method; dashed
urve { the smoothed periodogram using the least-squares method.
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(d)Figure 3: The boxplot of the distributions for the mean absolute deviation errors using modelspresented in Examples 1 { 4. From the left to right are the distributions for respe
tively m̂LS,m̂LK and log(f̂DLS).
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