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Automati Loal Smoothing for Spetral DensityEstimationJianqing Fan Eva KreutzbergerDepartment of Statistis Department of MathematisUniversity of North Carolina University of KaiserslauternChapel Hill, N.C. 27599-3260 67653 Kaiserslautern, GermanyAbstratThis artile uses loal polynomial tehniques to �t Whittle's likelihood for spetral den-sity estimation. Asymptoti sampling properties of the proposed estimators are derived,and adaptation of the proposed estimator to the boundary e�et is noted. We show thatthe Whittle likelihood based estimator has advantages over the least-squares based log-periodogram. The bandwidth for the Whittle likelihood-based method is hosen by a simpleadjustment of a bandwidth seletor proposed in Fan and Gijbels (1995). The e�etivenessof the proposed proedure is demonstrated by a few simulated and real numerial examples.Our simulation results support the asymptoti theory that the likelihood based spetraldensity and log-spetral density estimators are the most appealing among their peers.KEY WORDS: Bandwidth seletion, loal polynomial �t, periodogram, spetral densityestimation, Whittle likelihood.1 IntrodutionSpetral density estimation is useful for studying stationary time series, inluding periodiity.The raw material used to onstrut a spetral density estimate is periodogram. Let Xt; t =0;�1;�2; : : : denote a zero mean stationary proess with the autoovariane funtion(u) = E(XsXs+u); u = 0;�1;�2; : : : :Then, the periodogram for an observed time series X1; � � � ;Xn is given byI(n)(�) = 12�n j nXt=1 e�i�tXtj2; � 2 [0; �℄:It is well known that the periodogram is approximately an unbiased estimator of the spetraldensity f(�) = 12� 1Xu=�1 (u) exp(�iu�); � 2 [0; �℄:But, it is not a onsistent estimator of f(�). See for example Brillinger (1981), Priestley (1981)and Brokwell and Davis (1991).Consistent estimators of f(�) an be obtained by smoothing the periodogram. Let �k =2�k=n be a Fourier frequeny. There are three possible ways to obtain a onsistent estimate.The �rst approah is to diretly smooth on the data f(�k; I(n)(�k)); k = 1; � � � ; [(n � 1)=2℄g1



via a weighted loal average. Most of the earlier literature used this approah. See Chapter5 of Brillinger (1981) and referenes therein. The seond approah is to smooth over the log-periodogram f(�k; log I(n)(�k))g via a least-squares method. See for example Wahba (1980) whoused a smoothing spline minimizing penalized square errors. The third approah is based on theWhittle (1962) likelihood of the periodogram. See for example, Pawitan and O'Sullivan (1994)and Kooperberg, Stone and Truong (1995a, b) where spline tehniques are employed. As inall nonparametri smoothing problems, an important issue is to hoose appropriate smoothingparameters. Extensive e�orts have been made in the literature. See for example Swanepoeland van Wyk (1986), Beltr~ao and Bloom�eld (1987), Hurvih and Beltr~ao (1990), Franke andH�ardle (1992) and Politis and Romano (1992). Estimation of loations of peaks was studied byNewton and Pagano (1983) and M�uller and Prewitt (1992).There is also a large literature on spetral density estimation based on ARMA or otherparametri models. See for example x10.6 of Blokwell and Davis (1991). The basi idea isto �t an ARMA model with orders seleted adaptively by some riterion suh as the BayesianInformation Criterion. These methods an be very useful for many appliations. However, theomputation ost an be expensive and not all spetral densities an eÆiently be approximatedby ARMA models.Among the three possible smoothing shemes mentioned above, whih one is more appeal-ing? This problem has not been onviningly answered yet. It is also not easy to ompare theabove approahes sine they are based on di�erent smoothing proedures. In this paper, westudy the theoretial and numerial properties of the above three approahes to spetral densityestimation using loal polynomial �tting as a ommon smoother. This smoothing method isasymptotially equivalent to kernel method (M�uller, 1987) exept at boundary regions, whendesigns are equispaed. Reent developments on the loal polynomial approah an be foundin Fan (1992), Hastie and Loader (1993), Ruppert and Wand (1994), Fan, Hekman and Wand(1995), Jones (1997), among others.We show that the Whittle likelihood based estimator has a smaller asymptoti varianethan the least-squares smoothed log-periodogram, while their asymptoti biases are the same.We also demonstrate that the likelihood based estimator has a smaller bias than the smoothedperiodogram at regions where the log-spetral density is onvex (the biases are not ompa-rable at onave regions), while maintaining the same asymptoti variane as the smoothedperiodogram. Hene, the Whittle likelihood based method is reommended.The bandwidth of the Whittle likelihood based loal polynomial �tting is seleted via asimple adjustment of a pre-asymptoti substitutionmethod developed in Fan and Gijbels (1995).The e�etiveness of this method is onviningly demonstrated via intensive simulations. Foromparisons with least-squares based approahes, we also give data-driven bandwidth seletors,based on the methods of Fan and Gijbels (1995), for the least-squares smoothed periodogram2



and log-periodogram. Three data-driven methods for spetral density estimation are thenompared via intensive simulations. It is shown in Setion 3 that for the simulation modelsonsidered the likelihood based method are the best among three proedures onsidered. Thisis onsistent with our asymptoti theory.We begin by desribing the Whittle likelihood based spetral density estimation in Setion2. Finite sample omparisons of three spetral density estimators are presented in Setion 3.The asymptoti properties of the likelihood based estimator is summarized in Setion 4 and theproofs are given in Setion 5.2 Estimation of spetral densityLet �k = 2�k=n(k = 0; 1; � � � ; [(n� 1)=2℄) be Fourier frequenies and let N = [(n� 1)=2℄. Givena stationary linear proess fXtg, it is known (see, for example, Theorem 10.3.2 of Brokwelland Davis, 1991) that fI(n)(�k)g are asymptotially exponentially distributed with mean f(�k)and that they are approximately independent. That is, with Rn;k denoting an asymptotiallynegligible term, I(n)(�k) = f(�k) � Vk +Rn;k; (2.1)where the random variables V 0ks are independent having the standard exponential distributionfor k = 1; � � � ; N . Moreover, V0 and V[n=2℄ (if n is even) have a �21-distribution. For onveniene,we will only onsider the periodogram I(n)(�k) at frequenies �k, k = 1; � � � ; N .Thus the logarithm of the periodogram exhibits the following regression model:8<: Yk = log I(n)(�k) = m(�k) + "k + rk; k = 1; : : : ; N;"k = log(Vk) has a density f"(x) = exp(� exp(x) + x) ; (2.2)wherem(�k) = log f(�k) and rk = log[1+Rn;k=ff(�k)Vkg℄ is an asymptotially negligible term.It is known that E("k) = C0 = �:57721, an Euler onstant, and var("k) = �2=6. See Davis andJones (1968).Regarding (2.2) as a nonparametri regression model and applying the loal linear smoother,we obtain the smoothed log-periodogramm̂LS(�) = â = NXk=1wk(�)(Yk � C0);where wk(�) is the loal linear weight. See for example Fan (1992). We an also apply a higherorder loal polynomial regression (Stone 1977, and Cleveland 1979) to estimate the log-spetraldensity m, but deide not to use it for the sake of simpliity.It an be shown under Conditions (i) { (iv) in Setion 4 that asymptotiallym̂LS(�)�m(�) � N�h2m00(�)�2(K)=2; (�2=6)�0(K)�=(nh)�; (2.3)3



where �2(K) = R u2K(u) du and �0(K) = R K2(u)du. Thus, the asymptotially optimal band-width, whih minimizes the integrated asymptoti squared bias and variane, is given byhLS, OPT = " �0(K)(�2=6)��22(K) R �0 fm00(�)g2d�#1=5 n�1=5: (2.4)In pratial implementations, the optimal bandwidth has to be estimated. Sine model(2.2) is a speial ase of the general nonparametri regression model, we an apply methodsdeveloped in the nonparametri regression literature. In partiular, the onstant bandwidthseletor proposed in Fan and Gijbels (1995) will be used for seleting the bandwidth of m̂LS.The least-squares based estimator m̂LS is not eÆient, sine the distribution of "k is notnormal. Its eÆieny an be improved by using the loal maximum likelihood method.For eah given �, we form the weighted log-likelihood as follows:L(a; b) = NXk=1[� expfYk � a� b(�k � �)g+ Yk � a� b(�k � �)℄Kh(�k � �); (2.5)where Kh(�) = K(�=h)=h. Let â and b̂ be the maximizers of (2.5). The proposed loal likelihoodestimator for m(�) is m̂LK(�) = â.The weighted log-likelihood (2.5) is similar to the Whittle (1962) likelihood based on theexponential model (2.1) with Rn;k = 0 exept that the kernel weight is introdued to loalizethe approximation m(x) � m(�) +m0(�)(x� �). It is a stritly onave funtion so that thereis a unique minimizer.It will be shown in Setion 4 that m̂LK(�) has the following asymptoti bias and variane:m̂LK(�)�m(�) � N�h2m00(�)�2(K)=2; ��0(K)=(nh)�:Comparing with (2.3), we note that the asymptoti variane of m̂LK is a fator �2=6 = 1:645smaller than that of the least-squares estimator m̂LS(�). De�ning the optimal bandwidth in asimilar fashion to (2.4), we �nd that the optimal bandwidth ishLK, OPT = (6=�2)1=5 hLS, OPT = 0:9053 hLS, OPT:Therefore, m̂LK(�) an use the optimal bandwidth for estimator m̂LS(�) adjusted by a fator of0.9053. In the implementation below, the bandwidth for m̂LK is hosen asĥLK, OPT = (6=�2)1=5 ĥLS, OPT;where ĥLS, OPT is the onstant bandwidth seletor in Fan and Gijbels (1995) for the least-squaresnonparametri problem (2.2).Maximization of (2.5) an be done via the Newton-Raphson algorithm or the Fisher soringmethod. The least-squares estimator an be used as an initial value. Sine the least-squares4



estimator possesses the right rate of onvergene, the one-step iteration of the Newton-Raphsonalgorithm will produe an estimator that has the same asymptoti eÆieny as m̂LK. A similarresult was proved by Fan and Chen (1997) in the generalized linear model setting, whih inludesmodel (2.2) with rk = 0. Thus, if omputation ost is of onern, one an use the one-stepestimator instead of m̂LK to improve the eÆieny of m̂LS.To illustrate the performane of m̂LK with the data-driven bandwidth, we use the ARMAmodel Xt + a1Xt�1 + � � �+ apXt�p = "t + b1"t�1 + � � �+ bq"t�qto generate testing examples, where "t � N(0; �2). The model has the spetral density�22� j1 + b1 exp(�i�) + � � �+ bq exp(�iq�)j2j1 + a1 exp(�i�) + � � �+ ap exp(�ip�)j2Throughout the paper, � is taken to be one. Four testing examples are:Example 1. The AR(3) model with a1 = �1:5, a2 = 0:7 and a3 = �0:1.Example 2. The MA(4) model with b1 = �0:3, b2 = �0:6, b3 = �0:3 and b4 = 0:6.Example 3: We generate the stationary time series Xt from Xt = Xt;1+4Xt;2, where Xt;1and Xt;2 are two independent time series, generated respetively from Examples 1 and 2.Example 4: We use the AR12 model with a4 = �0:9; a8 = �0:7; a12 = 0:63 and the restof the oeÆients zero. Put Figure 1 around hereExamples 1, 2 and 4 were used by Wahba (1980) to illustrate the smoothing spline method.We simulated 400 times with sample size N = 250 and present a typial estimated urve. Morepreisely, we present the urve m̂LK having the median performane (in terms of mean absolutedeviation error) among 400 simulations. For omparison, we also present m̂LS using the samesample data. Figure 1 depits the simulation results for estimation of the log-spetral density.Put Figure 2 around hereWe now illustrate the loal likelihood method using sunspot data. The data onsist of theannual average value of the daily index of the number of sunspots for the years 1749-1976.Figures 2 (a) and (b) give the estimated log-spetral and spetral densities. The automatibandwidth seletion rule gives bandwidths ĥLS, OPT = 0:137 and ĥLK, OPT = (6=�2)1=5 ĥLS, OPT.Note that there are two peaks around frequenies 0 and 2�=10:8 � 0:58. This indiates a 10.8-year yli pattern of the data.
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3 Comparisons with other methodsAnother lassial method for estimating a spetral density is to smooth the periodogram di-retly, resulting in the spetral density estimator (instead of log-spetral density estimator)f̂DLS(�) = PNk=1wk(�)I(n)(�k), where wk(�) is the same loal linear weight as in m̂LS. Sinethe spetral density is usually unsmooth, we apply the variable bandwidth seletor of Fan andGijbels (1995) to this estimator and obtain a fully automati estimation method.Put Table 1 around hereIn this setion, we ompare the performane of three spetral density estimators m̂LS; m̂LKand f̂DLS based on 400 simulations. For a spetral density estimator f̂ , we de�ne the MeanAbsolute Deviation Error for the log-spetral density asMADE = ngrid�1 ngridXj=1 j log(f̂(�j))� log(f(�j))jand for the spetral density asSMADE = ngrid�1 ngridXj=1 jf̂(�j)� f(�j)j;where �j = j�=ngrid with ngrid = 201. For ompleteness, we also omputed the orrespondingMean Average Square Errors for estimating the log-spetral density and the spetral density,denoting them respetively by MASE and SMASE. Figure 3 depits the distributions of themean absolute deviation errors based on 400 simulations. Table 1 summarizes the median foreah of the distributions. Put Figure 3 around hereFrom Figure 3 and Table 1, one an easily see that m̂LK performs better than m̂LS andlog(f̂DLS) when the optimal bandwidth, seleted automatially by the proedures mentionedabove for eah estimator, is used. In partiular, from Table 1, the median of the MADE and ofthe MASE for m̂LK are about 0.81 { 0.86 as large as those of m̂LS. This fator is omparablewith the asymptoti result (6=�2)2=5 = 0:8195. Even though exp(m̂LK) performs better thanf̂DLS in the above four examples, their asymptoti biases are not diretly omparable whiletheir asymptoti variane is the same.The above simulations learly indiate that the likelihood-based data-driven spetral densityand log-spetral density estimators are the most appealing among their peers.
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4 Sampling propertiesIn this setion, we establish the asymptoti properties of the proposed loal likelihood estima-tors. To simplify tehnial arguments, we onsider the linear Gaussian proess given byXt = 1Xj=�1ajZt�j ; Zj � iid N(0; �2):The periodogram of this linear proess is given byf(�) = �22� jA(�)j2; with A(�) = 1Xj=�1aje�ij�:We make the following assumptions:(i) fXtg is a stationary proess with Pj jaj jj2 <1.(ii) The spetral density funtion f(�) is positive on [0; �℄.(iii) The kernel funtion K is a symmetri probability density funtion and has a ompatsupport.(iv) (log n)4h! 0 in suh a way that nh!1.It follows from the �rst ondition that the spetral density funtion has a bound seond deriva-tive.For the loal likelihood estimator m̂LK, we have the following results.Theorem 1 Under Conditions (i) { (iv), we have for eah 0 < � < �,pnhfm̂LK(�)�m(�)� h2m00(�)�2(K)=2 + o(h2)g D�! N�0; �0(K)��;and for a boundary point ��n = h, we havepnhfm̂LK(��n)�m(��n)� h2m00(0+)�2(K; )=2 + o(h2)g D�! N�0; �0(K; )��;where with sj; = R �1 tjK(t)dt,�2(K; ) = s22; � s1;s3;s0;s2; � s21; ; �0(K; ) = R �1(s2; � s;1t)2K2(t) dt(s0;s2; � s21;)2 :A natural estimator for spetral density is f̂LK(�) = expfm̂LK(�)g. The following orollarydesribes its asymptoti behavior.
7



Corollary 1 Under Conditions (i) { (iv), we have for eah 0 < � < �,pnhff̂LK(�)� f(�)� h2m00(�)f(�)�2(K)=2 + o(h2)g D�! N�0; �0(K)f2(�)��;and for a boundary point ��n = h, we havepnhff̂LK(��n)� f(��n)� h2m00(0+)f(0+)�2(K; )=2 + o(h2)g D�! N�0; �0(K; )f2(0+)��:Remark 1: The results of Theorem 1 an easily be extended to general loal polynomial�tting. More preisely, letting m̂�(�) be the estimated �th derivative of m based on the loalpolynomial �t of order p using the Whittle likelihood, then for 0 < � < �,pnh2�+1fm̂�(�)�m(�)� Z tp+1K�;p(t)dtm(p+1)(�)(p+ 1)! hp+1�� + o(hp+1��)gD�! N�0; � Z K�;p2(t)dt�;where K�;p(t) is the equivalent kernel given in (5) of Fan, Hekman and Wand (1995). A similarresult holds for the � near the boundary.Remark 2. For the smoothed periodogram f̂DLS, we have for eah 0 < � < �,pnhff̂DLS(�)� f(�)� h2f 00(�)�2(K)=2 + o(h2)g D�! N�0; �0(K)f2(�)��:Note that f 00(�) = f(�)m00(�) + f(�)fm0(�)g2. By Corollary 1, f̂DLS has the same asymptotivariane as that of f̂LK and has a larger bias than f̂LK when m00(�) > 0. When m00(�) < 0, itis hard to say whih estimator has a larger bias.AknowledgmentsFan was partially supported by NSF Grants DMS-9203135 and DMS-9504414 and NSAGrant 96-1-0015. Kreutzberger was supported by a postdotoral grant of the DFG (GermanSiene Foundation). We thank Professor Young K. Truong and referees for their valuableomments that lead to signi�ant improvement of presentation.5 ProofsBy Theorem 10.3.1 of Brokwell and Davis (1991), we an deompose the periodogram asfollows: I(n)(�k) = jA(�k)j2 � IZ(�k) +Rn;k = f(�k)Vk +Rn;k;where IZ(�) = 12�n jPn�1t=0 e�i�t Ztj2 is the periodogram of the noise proess fZtg and Vk =2���2IZ(�k). By the Gaussian assumption, V1; � � � ; VN are i.i.d. exponentially distributed,where N = [(n� 1)=2℄. 8



Lemma 1 Under Condition (ii), max1�k�N jRn;kj = Op( log npn ):The lemma follows diretly from an expliit expression of Rn;k given at page 347 of Brokwelland Davis (1991) and is proved by Kooperberg, Stone and Truong (1995b).Proof of Theorem 2. The idea of this proof is to redue the problem for the dependent datato that for the i.i.d. exponential distributions. We outline the key step of the proof.Let �̂ = a�1n (â �m(�); hfb̂ � m0(�)g)T , where an = (nh)�1=2 and (â; b̂) maximizes (2.5).Then, it an easily be seen that �̂ maximizesNXk=1[� expfYk � �m(�; �k)� an�T�kg+ Yk � �m(�; �k)� an�T�k℄Kh(�k � �);where �m(�; �k) = m(�) +m0(�)(�k � �) and �k = (1; (�k � �)=h)T :Let Lk(Yk;�) = � expfYk � �m(�; �k)� an�T�kg+ Yk � �m(�; �k)� an�T�k:Then, �̂ maximizes `n(�) = h NXk=1fLk(Yk;�)� Lk(Yk; 0)gKh(�k � �):Let Y 0k = m(�k) + "k, the main term of (2.2). Then, we an write`n(�) = `1;n(�) + Unwhere `1;n(�) is de�ned the same as `n(�) with Yk replaed by Y 0k, andUn = �h NXk=1Rkhexpf� �m(�; �k)� an�T�kg � expf� �m(�; �k)giKh(�k � �):By using Taylor's expansion and Lemma 1, for eah �xed �,Un = Op(h � an � n � log n=pn) = oP (1):Thus, we have `n(�) = `1;n(�) + oP (1): (5.1)Observe that `1;n(�) is the loal likelihood based on fexp(Y 0k); k = 1; � � � ; Ng whih are i.i.dexponentially distributed. It is a speial ase studied by Fan, Hekman and Wand (1995). Asshown in Fan, Hekman and Wand (1995), for eah � we have`1;n(�) =WTn� + 12�TA� + oP (1); (5.2)9



where A = ���1diagf1; �2(K)g, and with B = ��1diag(�0(K); R t2K2(t)dt)Wn � a�1n �m00(x)2 h2��1(�2(K); 0)T + o(h3)� D�! N(0; B): (5.3)Combination of (5.1) and (5.2) leads to`n(�) =WTn� + 12�TA� + oP (1):As noted before, L(a; b) is a onave funtion and so is `n(�). By the Quadrati ApproximationLemma given in Fan, Hekman and Wand (1995), we onlude that�̂ = A�1Wn + oP (1):The result follows from (5.3) and the last equality by taking its �rst omponent. This onludesthe proof of Theorem 2.Proof of Corollary 1. By using the Taylor's expansion and Theorem 1, we havef̂LK(�)� f(�) = expfm̂LK(�)g � expfm(�)g= expfm(�)gfm̂LK(�)�m(�)g+Op �fm̂LK(�)�m(�)g2�= expfm(�)gfm̂LK(�)�m(�)g+OP fh4 + (nh)�1g:The onlusion follows. ReferenesBeltr~ao, K.I. and Bloom�eld, P. (1987). Determining the bandwidth of a kernel spetrumestimate. Journal of Time Series Analysis, 8, 21-36.Brillinger, D. R. (1981). Time Series Analysis: Data Analysis and Theory. Holt, Rinehart &Winston, New York.Brokwell, P.J. and Davis, R.A. (1991). Time Series: Theory and Methods, seond edition.Springer-Verlag, New York.Cleveland, W. S. (1979). Robust loally weighted regression and smoothing satterplots.Journal of the Amerian Statistial Assoiation, 74, 829 { 836.Davis, H.T. and Jones, R.H. (1968). Estimation of the innovation variane of a stationarytime series. Journal of the Amerian Statistial Assoiation, 63, 141-149.Fan, J. (1992). Design-adaptive nonparametri regression. Journal of the Amerian StatistialAssoiation, 87, 998 { 1004.Fan, J., Hekman, N.E. and Wand, M.P. (1995). Loal polynomial kernel regression for gen-eralized linear models and quasi-likelihood funtions. Journal of the Amerian StatistialAssoiation, 90, 141-150. 10
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Table 1: The Median of MADE, SMADE, MASE, SMASE based on 400 simulationsm̂LS m̂LK log(f̂DLS) exp(m̂LS) exp(m̂LK) f̂DLSMADE SMADEExample 1 .1556 .1263 .2103 .3518 .2811 .4237Example 2 .2327 .1991 .2198 .0586 .0485 .0472Example 3 .2221 .1870 .2150 1.376 1.104 1.202Example 4 .3484 .2809 .4498 4.451 3.429 4.630MASE SMASEExample 1 .1960 .1909 .2674 1.090 .8417 1.137Example 2 .2957 .2566 .3047 .0908 .0758 .0707Example 3 .2835 .2445 .2950 2.067 1.638 1.822Example 4 .4493 .3648 .6485 23.32 17.69 18.13

13



lo
g-

sp
ec

tr
al

 d
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-6
-4

-2
0

2
4

Ex1: Log-Spectral Density

(a)

lo
g-

sp
ec

tr
al

 d
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-6
-4

-2
0

2

Ex2: Log-Spectral Density

(b)

lo
g-

sp
ec

tr
al

 d
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-4
-2

0
2

4

Ex3: Log-Spectral Density

(c)

lo
g-

sp
ec

tr
al

 d
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-6
-4

-2
0

2
4

6
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(d)Figure 1: Typial estimated log-spetral densities using the loal likelihood method and the loalleast-squares method. Solid thik urves (from thikest to thinest) are the true log-spetral den-sities, estimated log-spetral densities m̂LK, and log-periodogram plus 0.57221. Dashed urvesare the estimated log-spetral densities m̂LS(�).
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(b)Figure 2: Spetral density estimates for sunspot data. (a) estimated log-spetral density for thesunspots data; (b) estimated spetral density for the sunspots data. Thin solid urves | log-periodogram plus 0.57721 or periodogram; thik solid urves | loal likelihood method; dashedurve { the smoothed periodogram using the least-squares method.
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(d)Figure 3: The boxplot of the distributions for the mean absolute deviation errors using modelspresented in Examples 1 { 4. From the left to right are the distributions for respetively m̂LS,m̂LK and log(f̂DLS).
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