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Automatic Local Smoothing for Spectral Density

Estimation
Jianqing Fan Eva Kreutzberger
Department of Statistics Department of Mathematics
University of North Carolina University of Kaiserslautern

Chapel Hill, N.C. 27599-3260 67653 Kaiserslautern, Germany

Abstract

This article uses local polynomial techniques to fit Whittle’s likelihood for spectral den-
sity estimation. Asymptotic sampling properties of the proposed estimators are derived,
and adaptation of the proposed estimator to the boundary effect is noted. We show that
the Whittle likelihood based estimator has advantages over the least-squares based log-
periodogram. The bandwidth for the Whittle likelihood-based method is chosen by a simple
adjustment of a bandwidth selector proposed in Fan and Gijbels (1995). The effectiveness
of the proposed procedure is demonstrated by a few simulated and real numerical examples.
Our simulation results support the asymptotic theory that the likelihood based spectral
density and log-spectral density estimators are the most appealing among their peers.

KEY WORDS: Bandwidth selection, local polynomial fit, periodogram, spectral density
estimation, Whittle likelihood.

1 Introduction

Spectral density estimation is useful for studying stationary time series, including periodicity.
The raw material used to construct a spectral density estimate is periodogram. Let X;,t =

0,£1,£2,... denote a zero mean stationary process with the autocovariance function

Y(u) = BE(X; X)), uw=0,£1,£2,....

Then, the periodogram for an observed time series X1, -+, X, is given by
‘") = — E AL, |2 A€ 0,7

It is well known that the periodogram is approximately an unbiased estimator of the spectral
density
1

" 2r

> y(u) exp(—iu), A€ 0,m].

U=—0

f)

But, it is not a consistent estimator of f()). See for example Brillinger (1981), Priestley (1981)
and Brockwell and Davis (1991).

Consistent estimators of f(\) can be obtained by smoothing the periodogram. Let \; =
27k /n be a Fourier frequency. There are three possible ways to obtain a consistent estimate.
The first approach is to directly smooth on the data {(A\g, 1™ (M), k = 1,---,[(n — 1)/2]}



via a weighted local average. Most of the earlier literature used this approach. See Chapter
5 of Brillinger (1981) and references therein. The second approach is to smooth over the log-
periodogram { (g, log 1™ (\;))} via a least-squares method. See for example Wahba (1980) who
used a smoothing spline minimizing penalized square errors. The third approach is based on the
Whittle (1962) likelihood of the periodogram. See for example, Pawitan and O’Sullivan (1994)
and Kooperberg, Stone and Truong (1995a, b) where spline techniques are employed. As in
all nonparametric smoothing problems, an important issue is to choose appropriate smoothing
parameters. Extensive efforts have been made in the literature. See for example Swanepoel
and van Wyk (1986), Beltrao and Bloomfield (1987), Hurvich and Beltrao (1990), Franke and
Hirdle (1992) and Politis and Romano (1992). Estimation of locations of peaks was studied by
Newton and Pagano (1983) and Miiller and Prewitt (1992).

There is also a large literature on spectral density estimation based on ARMA or other
parametric models. See for example §10.6 of Blockwell and Davis (1991). The basic idea is
to fit an ARMA model with orders selected adaptively by some criterion such as the Bayesian
Information Criterion. These methods can be very useful for many applications. However, the
computation cost can be expensive and not all spectral densities can efficiently be approximated
by ARMA models.

Among the three possible smoothing schemes mentioned above, which one is more appeal-
ing? This problem has not been convincingly answered yet. It is also not easy to compare the
above approaches since they are based on different smoothing procedures. In this paper, we
study the theoretical and numerical properties of the above three approaches to spectral density
estimation using local polynomial fitting as a common smoother. This smoothing method is
asymptotically equivalent to kernel method (Miiller, 1987) except at boundary regions, when
designs are equispaced. Recent developments on the local polynomial approach can be found
in Fan (1992), Hastie and Loader (1993), Ruppert and Wand (1994), Fan, Heckman and Wand
(1995), Jones (1997), among others.

We show that the Whittle likelihood based estimator has a smaller asymptotic variance
than the least-squares smoothed log-periodogram, while their asymptotic biases are the same.
We also demonstrate that the likelihood based estimator has a smaller bias than the smoothed
periodogram at regions where the log-spectral density is convex (the biases are not compa-
rable at concave regions), while maintaining the same asymptotic variance as the smoothed
periodogram. Hence, the Whittle likelihood based method is recommended.

The bandwidth of the Whittle likelihood based local polynomial fitting is selected via a
simple adjustment of a pre-asymptotic substitution method developed in Fan and Gijbels (1995).
The effectiveness of this method is convincingly demonstrated via intensive simulations. For
comparisons with least-squares based approaches, we also give data-driven bandwidth selectors,

based on the methods of Fan and Gijbels (1995), for the least-squares smoothed periodogram



and log-periodogram. Three data-driven methods for spectral density estimation are then
compared via intensive simulations. It is shown in Section 3 that for the simulation models
considered the likelihood based method are the best among three procedures considered. This
is consistent with our asymptotic theory.

We begin by describing the Whittle likelihood based spectral density estimation in Section
2. Finite sample comparisons of three spectral density estimators are presented in Section 3.
The asymptotic properties of the likelihood based estimator is summarized in Section 4 and the

proofs are given in Section 5.

2 Estimation of spectral density

Let A\ = 27k/n(k =0,1,---,[(n—1)/2]) be Fourier frequencies and let N = [(n—1)/2]. Given
a stationary linear process {X;}, it is known (see, for example, Theorem 10.3.2 of Brockwell
and Davis, 1991) that {7 ()\;)} are asymptotically exponentially distributed with mean f(\)
and that they are approximately independent. That is, with R, ; denoting an asymptotically
negligible term,

™) = FOw) - Vi + B, (2.1)

where the random variables V}/s are independent having the standard exponential distribution
for k=1,---, N. Moreover, Vj and V, 5 (if n is even) have a x3-distribution. For convenience,
we will only consider the periodogram I(”)()\k) at frequencies Ay, k=1,---,N.

Thus the logarithm of the periodogram exhibits the following regression model:

{ Yi = log I™(A\y) =m(M) +ex +74, k=1,...,N, )

e = log(Vy) has a density f.(z) = exp(—exp(z) + )

where m(A) = log f(Ax) and rp, = log[14+ Ry, i /{f(Ar)Vi}] is an asymptotically negligible term.
It is known that E(e;) = Cy = —.57721, an Euler constant, and var(e;) = 72/6. See Davis and
Jones (1968).

Regarding (2.2) as a nonparametric regression model and applying the local linear smoother,

we obtain the smoothed log-periodogram
N
rs(A) = a =Y wi(N)(Yi — Co),
k=1

where wy(A) is the local linear weight. See for example Fan (1992). We can also apply a higher
order local polynomial regression (Stone 1977, and Cleveland 1979) to estimate the log-spectral
density m, but decide not to use it for the sake of simplicity.

It can be shown under Conditions (i) (iv) in Section 4 that asymptotically

s () = m(A) ~ N (h*m" (W) ps(K) /2, (2 [6)w (K )/ (nh)), (2:3)



where po(K) = [u?K (u) du and vy(K) = [ K%(u)du. Thus, the asymptotically optimal band-
width, which minimizes the integrated asymptotic squared bias and variance, is given by

w(K) @6 17

W3(K) Ji {m" () }2dX

In practical implementations, the optimal bandwidth has to be estimated. Since model

his, opT = (2.4)

(2.2) is a special case of the general nonparametric regression model, we can apply methods
developed in the nonparametric regression literature. In particular, the constant bandwidth
selector proposed in Fan and Gijbels (1995) will be used for selecting the bandwidth of rs.
The least-squares based estimator mpg is not efficient, since the distribution of e is not
normal. Its efficiency can be improved by using the local maximum likelihood method.

For each given A, we form the weighted log-likelihood as follows:

N
L(a,b) =Y [—exp{¥; —a—b(A, — A} +Yi —a—b(A — N]Ex(Ap — A), (2.5)
k=1
where Kj,(-) = K(-/h)/h. Let a and b be the maximizers of (2.5). The proposed local likelihood
estimator for m(\) is rmrk(A) = a.

The weighted log-likelihood (2.5) is similar to the Whittle (1962) likelihood based on the
exponential model (2.1) with R,, , = 0 except that the kernel weight is introduced to localize
the approximation m(z) ~ m(X) +m/(A)(z — A). It is a strictly concave function so that there
is a unique minimizer.

It will be shown in Section 4 that 71k (A) has the following asymptotic bias and variance:
ik (A) — m(\) ~ N(th”(A)ug(K) /2, Ty (K) /(nh)).

Comparing with (2.3), we note that the asymptotic variance of 7k is a factor 72/6 = 1.645
smaller than that of the least-squares estimator rmypg(\). Defining the optimal bandwidth in a

similar fashion to (2.4), we find that the optimal bandwidth is

hik, opT = (6/m2)!/5 hrs, opr = 0.9053 hrs, opT-

Therefore, ik (-) can use the optimal bandwidth for estimator 7y s(-) adjusted by a factor of

0.9053. In the implementation below, the bandwidth for mypk is chosen as
hik, opr = (6/7%)Y5 his. opr,

where iLLS’ opt is the constant bandwidth selector in Fan and Gijbels (1995) for the least-squares
nonparametric problem (2.2).
Maximization of (2.5) can be done via the Newton-Raphson algorithm or the Fisher scoring

method. The least-squares estimator can be used as an initial value. Since the least-squares



estimator possesses the right rate of convergence, the one-step iteration of the Newton-Raphson
algorithm will produce an estimator that has the same asymptotic efficiency as mpg. A similar
result was proved by Fan and Chen (1997) in the generalized linear model setting, which includes
model (2.2) with r, = 0. Thus, if computation cost is of concern, one can use the one-step
estimator instead of Mk to improve the efficiency of mys.

To illustrate the performance of mpx with the data-driven bandwidth, we use the ARMA
model

Xi4+arX; 1+ 4ayXs p=er+bies 14 +bger g
to generate testing examples, where g, ~ N(0,0?). The model has the spectral density

0? |1+ by exp(—iX) + - + bgexp(—ig)[?
271 |1+ ag exp(—iX) + - - - + ap exp(—ipA)|?

Throughout the paper, o is taken to be one. Four testing examples are:
Example 1. The AR(3) model with a; = —1.5, as = 0.7 and a3 = —0.1.
Example 2. The MA(4) model with b; = —0.3, by = —0.6, b = —0.3 and by = 0.6.
Example 3: We generate the stationary time series X; from X; = X; 1 +4X; 2, where X; ;
and X;» are two independent time series, generated respectively from Examples 1 and 2.
Example 4: We use the AR12 model with a4 = —0.9,as3 = —0.7,a12 = 0.63 and the rest

of the coefficients zero.

Put Figure 1 around here‘

Examples 1, 2 and 4 were used by Wahba (1980) to illustrate the smoothing spline method.
We simulated 400 times with sample size N = 250 and present a typical estimated curve. More
precisely, we present the curve 7k having the median performance (in terms of mean absolute
deviation error) among 400 simulations. For comparison, we also present rrg using the same

sample data. Figure 1 depicts the simulation results for estimation of the log-spectral density.

Put Figure 2 around here

We now illustrate the local likelihood method using sunspot data. The data consist of the
annual average value of the daily index of the number of sunspots for the years 1749-1976.
Figures 2 (a) and (b) give the estimated log-spectral and spectral densities. The automatic
bandwidth selection rule gives bandwidths ilLS, opT = 0.137 and ilLK’ OPT = (6/7r2)1/5 ilLs, OPT.-
Note that there are two peaks around frequencies 0 and 27/10.8 & 0.58. This indicates a 10.8-
year cyclic pattern of the data.



3 Comparisons with other methods

Another classical method for estimating a spectral density is to smooth the periodogram di-
rectly, resulting in the spectral density estimator (instead of log-spectral density estimator)
foLs(A) = SN wi (NI (M), where wy(A) is the same local linear weight as in rnpg. Since
the spectral density is usually unsmooth, we apply the variable bandwidth selector of Fan and

Gijbels (1995) to this estimator and obtain a fully automatic estimation method.

‘Put Table 1 around here‘

In this section, we compare the performance of three spectral density estimators s, Mk
and fDLs based on 400 simulations. For a spectral density estimator f , we define the Mean

Absolute Deviation Error for the log-spectral density as

Mgrid
MADE = ngia~" Y [log(f(A;)) — log(f (M)l
j=1
and for the spectral density as
Morid

SMADE = ngrid71 Z |f(>‘]) - f(A])‘7
j=1

where \; = jm/ngriq with ngiq = 201. For completeness, we also computed the corresponding
Mean Average Square Errors for estimating the log-spectral density and the spectral density,
denoting them respectively by MASE and SMASE. Figure 3 depicts the distributions of the
mean absolute deviation errors based on 400 simulations. Table 1 summarizes the median for

each of the distributions.

Put Figure 3 around here

From Figure 3 and Table 1, one can easily see that mpk performs better than mpg and
log( fDLs) when the optimal bandwidth, selected automatically by the procedures mentioned
above for each estimator, is used. In particular, from Table 1, the median of the MADE and of
the MASE for mirx are about 0.81 — 0.86 as large as those of my,g. This factor is comparable
with the asymptotic result (6/72)%/5 = 0.8195. Even though exp(r k) performs better than
fDLs in the above four examples, their asymptotic biases are not directly comparable while
their asymptotic variance is the same.

The above simulations clearly indicate that the likelihood-based data-driven spectral density

and log-spectral density estimators are the most appealing among their peers.



4 Sampling properties

In this section, we establish the asymptotic properties of the proposed local likelihood estima-

tors. To simplify technical arguments, we consider the linear Gaussian process given by

o0
Xe= > a;jZij, Zj~iid N(0,07).

j=—o00

The periodogram of this linear process is given by

FO) = AP, with AQ) = Y age

j=—o0

We make the following assumptions:
(i) {X:} is a stationary process with 3, laj]j% < oc.
(ii) The spectral density function f(-) is positive on [0, 7].

(iii) The kernel function K is a symmetric probability density function and has a compact

support.
(iv) (logn)*h — 0 in such a way that nh — oc.

It follows from the first condition that the spectral density function has a bound second deriva-
tive.

For the local likelihood estimator myk, we have the following results.
Theorem 1 Under Conditions (i) — (iv), we have for each 0 < X\ < m,
Vih{mik(A) — m(A) — h2m" (N (K) /2 + o(h2)} = N(o, UU(K)W),
and for a boundary point X} = ch, we have
Vah{rk () — m(A;) — hrm"(0+)pa(K, €) /2 + o(h?)} 2 N (0,00(K, o)),
where with ;. = [t/ K(t)dt,

2 c 2 12
52,c — S1,e8 s Seat)2K2(t) dt
/LQ([(7 c) = 2’671’03’07 VO(K7 C) _ f,oo( 2,c ¢l ) ( ) .

2 2
80,c52,c — S1c (80,082,0 - 31,0)2

A natural estimator for spectral density is frx()\) = exp{rirk(A)}. The following corollary

describes its asymptotic behavior.



Corollary 1 Under Conditions (i) — (iv), we have for each 0 < X <,
Vah{fr(V) = F(A) = Bm" () F (N2 (K) /2 + o(h%)} = N (0,v0(K) f2(Mr),
and for a boundary point X% = ch, we have
Vah{fuc() = ) = B2m" (04) f (042 (K, €) /2 + o(h?)} 2> N (0,v(K, ) f*(0+)7)

Remark 1: The results of Theorem 1 can easily be extended to general local polynomial
fitting. More precisely, letting 1, ()\) be the estimated v derivative of m based on the local

polynomial fit of order p using the Whittle likelihood, then for 0 < A < m,
m®P+())

(p+ 1)! hp-l—lfu —I—O(hp_H*V)}

VIl i, (A) = m(\) — / I, () d
2, N(U,W/Ky,f(t)dt),

where K, ,(t) is the equivalent kernel given in (5) of Fan, Heckman and Wand (1995). A similar
result holds for the A near the boundary.

Remark 2. For the smoothed periodogram fDLs, we have for each 0 < A\ < 7,
Vah{fors(A) — F(O) — B2 (Npa(K) /2 + o(h?)} -2 N (0,0(K) f2(N)r).

Note that f”(X) = f(A\)m"(A) + f(A\){m'(A\)}2. By Corollary 1, fprs has the same asymptotic
variance as that of fix and has a larger bias than fix when m”(X) > 0. When m/(\) < 0, it

is hard to say which estimator has a larger bias.
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5 Proofs

By Theorem 10.3.1 of Brockwell and Davis (1991), we can decompose the periodogram as

follows:
™) = [A)2 - T2( M) + Rug = F(0) Vi + Ryg,

where I7(\) = 51— | 20—} e7™ Z,|2 is the periodogram of the noise process {Z;} and V; =

2mn

2mo 2I7()\). By the Gaussian assumption, Vi,---,Vy are ii.d. exponentially distributed,
where N = [(n —1)/2].



Lemma 1 Under Condition (ii),

|
max |Ry, i :Op(ﬂ

1<k<N Vn

The lemma follows directly from an explicit expression of R,, ;, given at page 347 of Brockwell
and Davis (1991) and is proved by Kooperberg, Stone and Truong (1995b).

Proof of Theorem 2. The idea of this proof is to reduce the problem for the dependent data

).

to that for the i.i.d. exponential distributions. We outline the key step of the proof.
Let B = a;'(a — m()\), h{b — m'(\)})7, where a, = (nh)~"/? and (a,b) maximizes (2.5).
Then, it can easily be seen that ﬁ maximizes

N

Yo exp{Ve — m(\ M) — anB Ak} + Y — m(X M) — anBT MK (A — N),
k=1

where

A M) = m(A) +m' V) —A) and Ap = (1, g — A)/R)7

Let
Li(Yk, B) = —exp{Vi, — m(\ M) — anB A} + Y — m(\, Ag) — anB A

Then, 8 maximizes

N
(n(B) =h Y {Lp(Ye,8) — Li(Ye,0)}Kp (A — A).
k=1
Let Y, = m(\g) + €k, the main term of (2.2). Then, we can write

where /1 ,(8) is defined the same as ¢,,(3) with Y}, replaced by Y}, and

N
Un = —h' Y Ri[exp{=m(X M) — anBT A} — exp{—m(X \i)} Kn(h = A).
k=1
By using Taylor’s expansion and Lemma 1, for each fixed 3,

Un = Op(h-an-n-logn/v/n) =op(1).

Thus, we have
£ (B) = £1,n(B) + op(1). (5.1)

Observe that £ ,(8) is the local likelihood based on {exp(Y}),k = 1,---, N} which are i.i.d
exponentially distributed. It is a special case studied by Fan, Heckman and Wand (1995). As
shown in Fan, Heckman and Wand (1995), for each 3 we have

£1.0(8) = WEB + 58" A8 + 0p (1) (52

9



where A = —n~'diag{1, u2(K)}, and with B = n~!diag(vo(K), [ t* K%(t)dt)

W, —a,’ {@h%l(,@([{), 07 + o(h3)} 2, N(0,B). (5.3)

Combination of (5.1) and (5.2) leads to

6(8) = WIB -+ 387 AB + op(1).

As noted before, L(a, b) is a concave function and so is £,,(3). By the Quadratic Approximation

Lemma given in Fan, Heckman and Wand (1995), we conclude that
B=A"'"W, +0p(1).

The result follows from (5.3) and the last equality by taking its first component. This concludes
the proof of Theorem 2.

Proof of Corollary 1. By using the Taylor’s expansion and Theorem 1, we have

fikN) = FO) = explink(A)} - exp{m(A)}
= exp{m(\) Hrnx () = m(\)} + 0, ({iwk(3) = m(1)}?)
= exp{m(\)}Hriuk(\) —m(\)} + Op{h* + (nh) '},

— m(
— m(

The conclusion follows.
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Table 1: The Median of MADE, SMADE, MASE, SMASE based on 400 simulations

s ik log(fors) || explins)  exp(ink)  fors
MADE SMADE
Example 1 | .1556 .1263 .2103 3518 2811 4237
Example 2 | .2327 .1991 .2198 .0586 .0485 .0472
Example 3 | .2221 .1870 .2150 1.376 1.104 1.202
Example 4 | .3484 .2809 .4498 4.451 3.429 4.630
MASE SMASE
Example 1 | .1960 .1909 .2674 1.090 8417 1.137
Example 2 | .2957 .2566 .3047 .0908 .0758 .0707
Example 3 | .2835 .2445 .2950 2.067 1.638 1.822
Example 4 | .4493 .3648 .6485 23.32 17.69 18.13
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Figure 1: Typical estimated log-spectral densities using the local likelihood method and the local
least-squares method. Solid thick curves (from thickest to thinest) are the true log-spectral den-
sities, estimated log-spectral densities myk, and log-periodogram plus 0.57221. Dashed curves
are the estimated log-spectral densities mys(-).
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Figure 2: Spectral density estimates for sunspot data. (a) estimated log-spectral density for the
sunspots data; (b) estimated spectral density for the sunspots data. Thin solid curves log-
periodogram plus 0.57721 or periodogram; thick solid curves — local likelihood method; dashed
curve  the smoothed periodogram using the least-squares method.
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Figure 3: The boxplot of the distributions for the mean absolute deviation errors using models
presented in FExamples 1 — 4. From the left to right are the distributions for respectively mys,

’ﬁ’LLK (md log(fDLs ) .
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