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Abstract. This paper presents a new method for automatic localiza-
tion and identification of vertebrae in arbitrary field-of-view CT scans.
No assumptions are made about which section of the spine is visible
or to which extent. Thus, our approach is more general than previous
work while being computationally efficient. Our algorithm is based on re-
gression forests and probabilistic graphical models. The discriminative,
regression part aims at roughly detecting the visible part of the spine. Ac-
curate localization and identification of individual vertebrae is achieved
through a generative model capturing spinal shape and appearance. The
system is evaluated quantitatively on 200 CT scans, the largest dataset
reported for this purpose. We obtain an overall median localization error
of less than 6mm, with an identification rate of 81%.

1 Introduction

This paper proposes an algorithm for automatic detection, localization, and iden-
tification of individual vertebrae in computed tomography scans. A variety of
tasks beyond spine specific analysis can immediately benefit from such a system.
The spine provides a natural patient-specific coordinate system, where individ-
ual vertebrae serve as anatomical landmarks. These can be used, for instance,
for semantically guided inspection tools, linking of radiological reports with cor-
responding image regions, or for robust initialization of image registration. Ver-
tebrae localization also provides valuable priors for subsequent tasks such as
anatomy segmentation, image retrieval, shape and population analysis.

The challenges associated with automatic localization of individual vertebrae
arise from i) the repetitive nature of these structures, ii) the variability of normal
and pathological anatomy, iii) and the variability of images (e.g. resolution and
field-of-view). A common approach for vertebra (in CT) and intervertebral disks
(in MRI) is to employ a multi-stage approach. In the first stage a detector in
the form of a filter [1, 2], a single/multi-class classifier [3–8] or a model-based
Hough transform [9] is used to detect potential vertebra candidates. As these
candidates may contain many false positive responses a second stage is applied
to add robustness. Prior knowledge on the global shape and/or appearance of
individual vertebrae and their interconnections is used. In [2], a clever search is
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performed based on prior information through the candidates, while [1, 4, 5] fit
a low order polynomial curve to the candidates to remove outliers. In [3, 6, 8, 9]
the authors add prior information via graphical models, such as Hidden Markov
Models (HMMs) [10], and infer the maximum a-posteriori (MAP) estimate for
the vertebrae locations. In contrast, [11, 12] use a fully generative model, and
inference is achieved via generalized expectation-maximization, while in [7] de-
formable templates are used for segmentation and subsequent identification.

Although previous works achieve high localization accuracy they cannot han-
dle completely general scans where it is not known in advance which portion
of the anatomy is visible. In fact, most algorithms require a priori knowledge
of which vertebrae are visible in the scan [1–8]. They either focus on a specific
region, such as lumbar or thoracic, or need to modify their models based on
the expected spine region. In [11, 12] approximate alignment between scans is
assumed. To the best of our knowledge the only work that explicitly handles ar-
bitrary scans is [9]. However, the added generality comes at high computational
cost. Based on an affine vertbra registration algorithm, the identification phase
is reported to take up to 36 minutes for 12 thoracic vertebrae.

In this paper we overcome those drawbacks with a vertebra localization and
identification algorithm which is both robust and efficient. Its main advantage is
the automatic handling of arbitrary field-of-view scans displaying widely varying
anatomical regions. For instance, in a narrow abdominal scan we may be able to
see just a handful of vertebrae together with the kidneys. A radiologist makes
use of such contextual information to infer that we are looking at a lumbar
section of the spine. In our system we incorporate contextual information within
a regression forest algorithm. More specifically, we build upon state-of-the-art
supervised, non-linear regression techniques [13] used jointly with a probabilistic,
generative prior of spinal shape and appearance. The forest provides context-
aware, fast estimation of vertebrae centres. In a second stage a joint model of
vertebra appearance and global spine shape yields a refined localization as well as
individual vertebra identification. The whole process takes less than 2 minutes on
a standard desktop machine, thus allowing integration in existing image analysis
pipelines. Details of our approach are presented in the next section, followed by
an extensive quantitative validation on a large labelled dataset of 200 CT scans.

2 Vertebrae Localization and Identification

Similar to previous methods, our system relies on a two-stage approach. The first
stage aims at roughly detecting and localizing all vertebrae of the spine within
the image. Refinement of vertebrae positions and their identification is obtained
in the second stage.

Previous work extracts location candidates via classification (e.g. in a sliding
window framework). In contrast, here we take a more direct, regression approach.
In fact, given a training set we learn a regression function which associates
vertebrae positions with image points, directly. By combining the predictions of
many (possibly sparse) sampled image points, one can obtain robust and efficient
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location estimates while avoiding sliding window-like expensive search. Note that
these location estimates are not restricted to be inside the visible image domain,
and thus, an approximate localization of all vertebrae is possible, even if only a
small portion of the patient’s anatomy is visible.

Contextual reasoning is enabled via long-range spatial features, like the ones
used in [14, 15]. This way, the presence of organs such as kidneys, liver, or lungs
provide strong indications about the presence of certain vertebrae. Regression
forests enable us to select automatically the most discriminative features of ac-
curate prediction. Next, we first formalize the regression technique. Then we
describe the second, refinement stage.

2.1 Stage 1: Regression Forests

Regression forests is a supervised learning technique for the probabilistic estima-
tion of continuous variables. Recent work has shown that this technique can be
successfully applied to organ bounding box localization in CT [14] and MR [15].
In our application, we aim at regressing the set of n vertebrae centroids denoted
as C={ci}n1 with c∈R

3. The predictor function is then defined as p(C|X ) where
X = {(xj , f j)} is a set of pairs of feature vectors f = (f1, . . . , fd) ∈ R

d with
visual feature responses f extracted for individual image points x ∈ R

3. Thus,
given the data X obtained from an image this discriminative predictor allows to
estimate the most likely positions of vertebrae in that image.

Regression forests tackle the problem of learning the predictor in a divide-
and-conquer fashion. A forest is an ensemble of T (probabilistic) binary decision
trees, where each tree t learns its own predictor pt(C|X ). Given a training set
T = {(Xk, Ck)}, obtained from annotated CT scans, training a tree is done by
successively subdividing the training examples within the feature space. At each
internal node data subsets TL, TR are sent to the left and right child node. A local
split function is determined at each node based on the arriving examples. The
splits are obtained by (randomly) selecting one feature response for all examples
and optimizing over a threshold w.r.t. an objective function. The splitting aims
at clustering examples in leaf (terminal) nodes with both consistent annotations
and similar feature responses. Tree growing stops when a certain tree depth is
reached. In order to extract visual feature responses f , we employ displaced box
features which: i) capture long-range appearance context [14, 15] and, ii) can be
implemented efficiently via integral image processing [16]. Injecting randomness
during the tree training process decreases correlation between individual trees
and increases the forest generalization capabilities1.

Forest Training. Since our training set is composed of feature vectors for im-
age points from arbitrary, unregistered CT scans with varying resolutions and
croppings, a regression over absolute image coordinates of vertebrae is not mean-
ingful. Instead, and similar to the case of bounding box regression [14, 15], we as-
sociate each training point x with its relative displacements {di}, i.e. the offsets
to all available vertebrae centroids given by di=ci −x. We employ multivariate

1 More details on forests can be found in [13].
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(a) (b) (c) (d)

Fig. 1. (a) Mean images of our appearance model for T3 and L3. (b) Visualization
of Gaussian densities for offset probabilities in our shape model. Ellipses illustrate
one standard deviation w.r.t. covariance matrices. (c) Output of the regression forest
for a test image (red) with an overlay of expert annotation (yellow) and prediction
distribution for L4. (d) Result after refinement via HMM. Besides accurate predictions
for vertebrae within the image, our method yields reasonable predictions outside.

Gaussians to model the node predictor functions:N (μ,Σ|D) with μ ∈ R
3n where

D={{di}j} is the set of offsets obtained from all training points arriving at that
node. The training objective function is defined as ξ(TL, TR) = tr(ΣL) + tr(ΣR).
Node training aims at minimizing ξ which, in turn, minimizes the diagonal en-
tries of the covariance matrices. This produces child subsets TL,R with lower
uncertainty and higher confidence in the prediction of vertebrae location.

Forest Testing.Given a previously unseen CT scan, image points cast a (proba-
bilistic) vote on the position of all vertebrae. In fact, each point is pushed through
all trained trees. Each split node then sends the point to its left or right child
depending on its feature vector, recursively until the point reaches a leaf node.
The corresponding predictor function (i.e. Gaussian in this case) is read out
and used for making one prediction for all vertebrae positions relative to the
image point location. Aggregating all predictions over all trees and test points
yields a distribution over all vertebrae positions (see Fig.1(c)). For robustness, we
approximate the maximum a-posteriori estimate Ĉ of this distribution through
mean-shift (initialized with the maximum response of a low-resolution histogram
over predictions with bin size 4mm). The output vertebrae locations obtained
here are then used as input for our refinement step, described next.

2.2 Stage 2: Hidden Markov Model

The second stage of our approach aims at refining the localization of all centroids
of vertebrae visible in the image. To this end, we employ a joint prior model of
vertebra appearance and spinal shape. The model parameters are optimized
using the same data set employed to train the forest.

Vertebra Appearance Model. The appearance model consists of pairs of
mean and variance images A={(Mi, Vi)}n1 , one pair per vertebrae. These pairs
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are computed by super-imposing sub-volumes of size 11×11×5cm cropped from
the training data and centered on each annotated vertebra. A few iterations of
nonlinear registration are performed to increase the sharpness of the mean images
(see examples in Fig. 1(a)). Given a candidate position ci we define a likelihood
function w.r.t. the appearance model as

p(ci|A) =

∫
Ωi

1√
2πVi(x)

exp

(
− (I(ci − x)−Mi(x))

2

2Vi(x)

)
dx . (1)

Spine Shape Prior. The shape model captures conditional probabilities over
vertebrae positions. We determine a set of distributions S={p(ci|ci−1, s)}n2 where

p(ci|ci−1, s)=̂N
(
‖ci − ci−1‖

s
|μi, Σi

)
with s =

1

n− 1

n∑
i=2

‖ci − ci−1‖
E(‖ci − ci−1‖)

(2)

The variable s corresponds to a global scale factor which reflects overall body
size. A visualization of these offset distributions is shown in Fig. 1(b).

Joint Shape and Appearance. We define an HMM with hidden states for
each vertebrae position, appearance likelihoods and inter-vertebra shape priors.
The HMM distribution p(C|A,S, s) conditioned on global scale yields the energy:

E(C; s) = −
n∑

i=1

log [p(ci|A)]− λ
n∑

i=2

log [p(ci|ci−1, s)] . (3)

Given a value for s and multiple sampled location candidates MAP inference can
be achieved via dynamic programming. Several thousand candidate locations are
sampled from the vicinity of the forest prediction using a normal distribution
N (ci, σ

2) with σ=30mm. In practice, we optimize over 7 scale parameters from
a [0.85, 1.15] interval covering 97% of observed patient scales. The weighting
parameter λ controls the influence of the shape term, and thus, how much the
solution can deviate from the mean shape. Throughout our experiments this
weighting is fixed to 0.1. In the exemplary result in Fig. 1(d) notice how the
thoracic vertebrae follow reasonable predictions outside the image domain.

3 Experiments

Our spine model includes n = 26 individual vertebrae, where the regular 24
from the cervical, thoracic, and lumbar regions are augmented with 2 centroids
denoted as S1 and S2 located on the sacrum. We evaluate accuracy of both lo-
calization and identification on a dataset of 200 CT scans where the centroids of
all visible vertebrae have been manually selected. The dataset is a heterogeneous
collection of CT scans from different clinical centers equipped with varying hard-
ware. Images have been acquired for diverse clinical tasks. The scans vary widely,
especially in terms of vertical cropping, image noise and physical resolution. The
inter-axial distance varies between 0.5 and 6.5mm, with 79 scans having a dis-
tance of 3.75mm. The number of slices varies between 51 and 2058 with an
average of about 240. Some highly cropped images show only 4 vertebrae.
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Table 1. Summary of the localization and identification errors evaluated on 200 CTs

Vertebrae Stage 1: Regression Forest Stage 2: HMM Distance to Closest Identification 
Region Counts Median Mean Std Median Mean Std Median Mean Std Correct Rate 

All 2595 15.91 18.35 11.32 5.31 9.50 10.55 4.79 6.10 5.53 2089 81% 
Cervical 116 25.97 30.74 18.64 6.87 10.85 12.49 6.14 8.53 9.05 84 72% 
Thoracic 1417 15.79 18.20 10.81 5.51 9.83 10.44 4.91 5.94 4.84 1100 78% 
Lumbar 1062 15.40 17.20 10.07 4.88 8.92 10.45 4.59 6.06 5.82 905 85% 
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Fig. 2. Error statistics for individual vertebrae: (left) forest prediction only, (right)
refinement via HMM. The counts of each vertebra in our database are given in brackets.

3.1 Results

We split the 200 CT scans into two non-overlapping sets with 100 scans each.
Each set is used once for both: i) forest training (50 trees, depth 20), and ii)
estimating the shape and appearance model; the remaining set is used for testing.
Thus we can report errors for all 200 scans and a total of 2595 vertebrae.

Localization Errors defined as distance (in mm) of each predicted vertebra
location from its expert annotation are summarized in Tab. 1 and Fig. 2. We
obtain a median error of less than 6mm. The highest errors are within the cervical
region with a median of about 7mm. This is due to the low number of cervical
vertebrae in our data sets (only 6-17 examples for C1 to C7). The lowest errors
are obtained for the lumbar region (including S1 and S2) where visual appearance
is more discriminative and low image resolution has less of an impact. In Fig. 2,
we plot the statistics over localization errors graphically. The figure highlights
the massive improvement due to the HMM refinement step. We also give the
counts for vertebrae as they appear in the set of 200 scans.

In Tab. 1 we also report distances of predictions from the closest vertebra.
So, we have an estimate whether our prediction is in fact located on a vertebra,
even if it is not the correct one. The difference between these errors and the ones
when considering the correct vertebra is higher for the cervical region, while in
the thoracic and lumbar region the difference between median errors is less than
0.6mm. This indicates that in most cases the closest centroid in T and L regions
is the correct one, while in C our predicted localizations are in fact on the spine,
but might be in some cases on the incorrect vertebra. This confirms that the
increased difficulty in discriminating close-by vertebrae in the cervical and upper
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Fig. 3. Our results (red) for varying CT scans (cropped, low resolution, noise, and
large field-of-view). Numbers are the mean errors w.r.t. expert annotations (yellow).

thoracic regions contributes to most of our errors. Still, even in these challenging
cases our system is able to robustly localize the overall spinal anatomy, which in
certain applications might be sufficient.

Identification Errors.We define a vertebra identification criterion as follows: if
the closest centroid in the expert annotation corresponds to the correct vertebra,
and the localization error is less than 20mm, we call the identification correct.
The last two columns in Tab. 1 show an overall success rate of 81%, i.e. 2089
out of 2595 vertebrae correctly identified.

Efficiency. In the proposed system training a single tree takes about 3 minutes
on randomly sampled 5% of the image points of 100 scans. Each tree can be
trained independently and in parallel. More importantly, testing is very fast.
In fact, testing a whole forest on a scan takes less than 1 second. The HMM-
based refinement takes about 5-15 seconds for each scale s, also depending on
the number of vertebrae within the image. Thus, in total, the localization and
identification of all vertebrae in one test image is achieved in less than 2 minutes.
Figure 3 provides some visual results and corresponding mean errors.

4 Conclusion

This paper has proposed an automatic and efficient approach for the localization
and identification of vertebrae in generic CT scans. The algorithm does not make
any assumptions on the input images and can deal with highly cropped scans and
partially visible spines. Exhaustive experiments on a database of 200 labelled CT
scans demonstrate the strength of our joint model of discriminative regression
and generative appearance and shape modeling.

In the future, increasing the amount of training data, in particular, for the
cervical region would produce an increase in accuracy across the entire spine.
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Additionally, automatically predicting the patient overall size could replace the
current scale search step and reduce testing times to only a few seconds. Further
investigation will also be carried out w.r.t. highly pathological cases of spine
such as high-grade scoliosis and cifosis.
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