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Abstract

Purpose: Cochlear Implants (CIs) are neural prosthetic devices that provide a sense of sound to 

people who experience profound hearing loss. Recent research has indicated that there is a 

significant correlation between hearing outcomes and the intra-cochlear locations of the 

electrodes. We have developed an image-guided cochlear implant programming (IGCIP) system 

based on this correlation to assist audiologists with programming CI devices. One crucial step in 

our IGCIP system is the localization of CI electrodes in post-implantation CTs. Existing methods 

for this step are either not fully automated or not robust. When the CI electrodes are closely-

spaced, it is more difficult to identify individual electrodes because there is no intensity contrast 

between them in a clinical CT. The goal of this work is to automatically segment the closely-

spaced CI electrode arrays in post-implantation clinical CTs.

Methods: The proposed method involves firstly identifying a bounding box that contains the 

cochlea by using a reference CT. Then, the intensity image and the vesselness response of the VOI 

are used to segment the regions of interest (ROIs) that may contain the electrode arrays. For each 

ROI, we apply a voxel thinning method to generate the medial axis line. We exhaustively search 

through all the possible connections of medial axis lines. For each possible connection, we define 

CI array centerline candidates by selecting two points on the connected medial axis lines as the 

array endpoints. For each CI array centerline candidate, we use a cost function to evaluate its 

quality, and the one with the lowest cost is selected as the array centerline. Then, we fit an a-priori 
known geometric model of the array to the centerline to localize the individual electrodes. The 

method was trained on 28 clinical CTs of CI recipients implanted with 3 models of closely-spaced 

CI arrays. The localization results are compared with the ground truth localization results 

manually generated by an expert.

Results: A validation study was conducted on 129 clinical CTs of CI recipients implanted with 3 

models of closely-spaced arrays. 98% of the localization results generated by the proposed method 

had maximum localization errors lower than one voxel diagonal of the CTs. The mean localization 
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error was 0.13mm, which was close to the rater’s consistency error (0.11mm). The method also 

outperformed the existing automatic electrode localization methods in our validation study.

Conclusion: Our validation study shows that our method can localize closely-spaced CI arrays 

with an accuracy close to what is achievable by an expert on clinical CTs. This represents a crucial 

step towards automating IGCIP and translating it from the laboratory to the clinical workflow.
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1. Introduction

Cochlear implants (CIs) are neural prosthetic devices used for treating severe-to-profound 

hearing loss [1]. A CI device has a microphone, a processor, and a transmitter in the external 

component. The external component receives and processes sound signals and sends them to 

the internal component, which consists of an internal receiver coil and an electrode array 

implanted within the cochlea. The implanted CI electrodes receive the electrical signals 

delivered by the receiver coil, then stimulate the spiral ganglion (SG) nerves to induce a 

sense of hearing. The SG nerves are the nerve pathways that branch to the cochlea from the 

auditory nerves, which are tonotopically ordered by decreasing characteristic frequency 

along the length of the cochlea [2–3] (Shown in Figure 1). A SG nerve is stimulated if the 

frequency associated with it is present in the incoming sound [4]. During a CI surgery, a CI 

electrode array is blindly inserted into the cochlea by a surgeon. After the CI surgery, for 

each CI recipient, based on the hearing response, the audiologist adjusts stimulation levels 

for each individual electrode and selects a frequency allocation table to determine which 

electrodes should be activated when specific sound frequencies are detected. CIs lead to 

remarkable success in hearing restoration among the vast majority of recipients [5–6]. 

However, there are a significant number of users experiencing only marginal benefits.

Recent studies have demonstrated that there exists a correlation between hearing outcomes 

and the intra-cochlear locations of CI electrodes [7–12]. When multiple CI electrodes 

stimulate the same nerve pathways, those nerve pathways are activated in response to 

multiple frequency bands [13–14]. This is known as electrode interaction (or “competing 

stimulation”). Clinical studies conducted by our group have shown that hearing outcomes of 

CIs can be significantly improved by using an image-guided cochlear implant programming 

(IGCIP) technique we have designed [15]. In Figure 1 we show the CI electrodes activation 

patterns. With IGCIP techniques, we select an active electrode set in which the electrodes 

causing competing stimulations are identified and then deactivated [16–18]. To program the 

CI with IGCIP, we need to know the locations of the CI electrodes with respect to the intra-

cochlear anatomy. However, CI placement is unique to each patient. Thus, identifying the 

intra-cochlear locations of CI electrodes for each individual CI recipient is a critical 

procedure in the IGCIP process.

Identifying the locations of the CI electrodes relative to intra-cochlear structure is difficult. 

First, segmenting the intra-cochlear structures is difficult because they are not visible in CT 

images. To solve this problem, we have proposed several methods that use a statistical shape 
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model to estimate the location of the invisible intra-cochlear anatomy by using the visible 

part of the external walls of the cochlea as landmarks [19–21]. Second, localizing CI 

electrodes in post-implantation CTs requires expertise. One challenge for localizing CI 

electrodes in clinical CTs is their limited resolution. The typical resolution of a clinical CT 

nowadays is on the order of 0.2 × 0.2 × 0.3mm3. Typical CI electrode size is around 0.3 × 

0.3 × 0.1mm3, which is smaller than the size of a typical voxel. Thus, partial volume effects 

make it difficult to accurately localize CI electrodes, even with expertise. In a clinical CT, 

the voxels occupied by the metallic CI electrodes are assigned high intensity. For electrode 

arrays with electrodes pitched further than 1mm, the individual electrodes are separable 

thanks to the obvious intensity contrast between them. Thus, for localizing distantly-spaced 

CI electrode arrays, our group uses a graph-based method that relies on the intensity contrast 

between electrodes [22]. However, for arrays with electrodes spaced closer than 1mm, the 

method for localizing distantly-spaced electrode arrays does not generalize well because, as 

shown in Figure 2, there is typically no intensity contrast between them due to the lack of 

resolution and beam hardening artifacts. The second challenge is that there exist many FDA-

approved closely-spaced CI electrode array models. The spacing of the electrodes on the 

array differs between models, which leads to different intensity features in the post-

implantation CTs. Table 1 shows the three major types of closely-spaced electrode array 

models produced by Cochlear® (Sydney, New South Wales, Australia). Among the three 

types, CO1 and CO3 have electrode spacing distances that are lower than 0.8mm. In a 

clinical CT implanted with these two types of arrays, the voxels occupied by the electrodes 

are usually connected in a high intensity region, as shown in Figure 2c–d. CO2 has a 

relatively large electrode spacing distance compared to CO1 and CO3. In a clinical CT 

implanted with CO2, voxels occupied by those electrodes can be grouped into several 

regions, as shown in Figure 2a–b. The third challenge is the existence of false positive 

voxels. The wire lead and receiver coils are two sources of false positive voxels since they 

are also composed of metallic materials and have an appearance similar to the array in CTs. 

Another source of false positive voxels is the high density structures such as cortical bones. 

This is more common in a CT acquired with limited range of Hounsfield Unit (lCT). In a CT 

acquired with extended Hounsfield Unit (eCT), the intensity of the metallic material is much 

higher than the intensity of cortical bones, which makes the electrode array more separable 

from the cortical bones. In a lCT, the maximum intensity is limited to the intensity of 

cortical bones. Thus, the electrodes and the cortical bones are assigned the same maximum 

intensity, as shown in Figure 2c. All these three challenges complicate the automatic 

localization of closely-spaced electrode array in clinical CTs.

Braithwaite et al. and Bennink et al. have proposed two methods [23–24] directly related 

with electrode localization in CTs. Braithwaite et al. proposed a method [23] that uses a 

simple thresholding step followed by a specialized filter chain for distantly-spaced CI 

electrode arrays localization in CTs. This method relies on the intensity contrast between 

individual distantly-spaced electrodes. Thus, it cannot be directly applied to localizing 

closely-spaced electrode arrays due to the limited-to-no intensity contrast between individual 

contacts. This method is also not fully automated as human intervention is required for the 

initialization of the step used to connect the segmented electrodes in the correct order. 

Bennink et al. proposed a method [24] for localizing closely-spaced electrode arrays in CTs. 
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This method also requires a manual procedure to define a bounding box that includes all the 

electrodes to initialize the algorithm. It then uses an intensity profile matching algorithm to 

localize the individual electrodes on the initialized centerline extracted by a curve tracking 

algorithm. This intensity profile matching algorithm was designed and validated on a small 

set of lCTs, in which the voxels occupied by electrodes all have the same intensity value of 

3071. In eCTs acquired by different scanners, the intensity values for individual electrodes 

are not homogeneous. The intensity profile matching algorithm would need to be modified 

for this method to be applicable to eCTs. Thus, the existing electrode localization methods 

cannot be directly adopted for fully automating IGCIP. In addition to the two 

aforementioned methods that are specifically designed for localizing electrodes in CTs, 

many methods exist for tubular structure segmentation. For instance, Cheng et al. presented 

a random walk-based curve tracking method for tubular structure segmentation in [25]. Feng 

et al. proposed a deformable model for tubular structure segmentation [26]. Li and Yezzi 

[27] developed a 4D minimal path algorithm for extraction of tubular structures. Manniesing 

et al. proposed a level set-based, topology-constrained surface evolution method [28] to 

iteratively localize the vessel axis of the tubular structure. A more thorough review of 

tubular segmentation methods is provided in [29]. Because the cochlear implant wire lead 

and electrodes form tubular structures, any general tubular shape localization method would 

need to be modified to separate the electrodes from the wire lead and estimate the position of 

each electrode.

In this work, we adopt a standard medial axis extraction based approach and customize it for 

fully automatic localization of closely-space electrode arrays in clinical CTs. We refer to the 

method as the “centerline-based” method (CL). The method is detailed in Section 2. We 

present the validation study of CL on a large-scale dataset of clinical CTs implanted with the 

three major types of closely-spaced CI arrays shown in Table 1. In our validation study, we 

compare CL with three existing methods developed by our group: (1) The Graph-based path-

finding (GP) algorithm [22] for localizing distantly-spaced arrays, (2) Snake-based 

localization (SL) method [30] for localizing CO1, and a preliminary implementation of CL 

(pCL) [31]. In Sections 3 and 4, we present a quantitative comparison of the results 

generated by the three methods and discuss those results. In Section 5, we summarize the 

contributions of this work.

2. Methods

2.1. Dataset

Table 2 lists the dataset we use in this study. It consists of post-implantation clinical whole 

head CTs from 157 subjects acquired with different CT scanners. Manufacturers for the 

scanners used for acquiring CTs in our dataset include Xoran, Siemens, Philips, and GE. 

Among the 157 clinical CTs, 129 are eCTs and 28 are lCTs. Among the 129 eCTs in our 

dataset, 117 are acquired with a Xoran xCAT® from Vanderbilt University Medical Center. 

These Xoran eCTs have an isotropic voxel size. Among all the Xoran eCTs, 104 have voxel 

size 0.4 × 0.4 × 0.4mm3 (voxel diagonal 0.69mm) and 13 have voxel size 0.3 × 0.3 × 

0.3mm3 (voxel diagonal 0.52mm). The remaining 12 eCTs are acquired by other scanners at 

other institutions with anisotropic voxels. There are 2, 4, and 6 that have a voxel diagonal 
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smaller than 0.50mm, 0.60mm, and 0.70mm, respectively. The 28 lCTs are all acquired at 

other institutions with CT scanners manufactured by Siemens, Philips, and GE. For these 

lCTs, the voxel sizes are all anisotropic and 16, 3, 3, 5, 1 of them have a voxel diagonal 

smaller than 0.50mm, 0.60mm, 0.70mm, 0.80mm, and 0.90mm, respectively. While most 

scanners available today are capable of producing eCTs, limited HU reconstructions are still 

the default setting at most centers. Our goal is for our method to be a general approach for 

both eCTs and lCTs to make it applicable to images that have already been acquired with 

limited Hounsfield Units or those that originate from centers where it is difficult to change 

current reconstruction protocols. Thus, in this study we have included both eCTs and lCTs in 

our dataset. Among the 157 CTs, the coarsest resolution is 0.37 × 0.37 × 0.63mm3 (voxel 

diagonal 0.82mm).

We randomly selected 28 CTs as a training dataset for parameter tuning for our proposed CL 

method. The remaining 129 CTs were used for validation and they were not used in the 

training process. For each CT in our dataset, an expert manually localized the electrodes 

three times in all CTs. In each round, the expert manually localized the electrodes once in all 

the CTs and then started the next round after at least a one hour interval to avoid becoming 

familiar with any case. We randomly selected two sets out of the three manual localizations 

from the expert and averaged them to generate the ground truth localization results. The 

remaining set was used to compute the rater’s consistency error (RCE), which is defined as 

the distance between the ground truth and the remaining localizations.

2.2. Method overview

The workflow of our proposed CL method is shown in Figure 3. The first step is to extract 

the volume of interest (VOI). The VOI is a sub-volume of the whole head CT that contains 

the cochlea and electrodes and is automatically estimated. Then, we compute a feature 

image which is the weighted sum of the intensity and the Frangi vesselness filter response 

[32] of the up-sampled VOI. We threshold the feature image to generate the regions of 

interest (ROIs), which are connected components in the thresholded feature image that 

contain electrodes or false positives. For each generated ROI, we perform a voxel thinning 

method [33] to generate its medial axis line. As is shown in Figure 3, the points on the actual 

centerline of the electrode array (shown in blue in Figure 3) are distributed across 

disconnected true positive ROIs. Meanwhile, there also exist several false positive ROIs that 

do not contain electrodes. When there are multiple ROIs, there exist many possible ways for 

connecting any number of their medial axes together. We refer to a given connection of 

medial axes as a “centerline candidate”. Note that any centerline candidate constructed in 

this way cannot be treated as the array centerline directly because the endpoints of the 

centerline candidates do not always correspond to the two endpoints (the most basal and 

apical, as shown in Figure 1) electrodes on the array, for example, when the electrodes ROI 

also contains the lead as is shown in Figure 2d. Thus, we propose an approach to find an 

“array candidate” by exhaustively searching all the centerline candidates for the positions of 

the most basal and apical electrodes, such that the path formed by connecting the basal and 

apical electrodes along the centerline candidate optimizes a cost function we have designed. 

The pseudo-code for this algorithm is shown in Algorithm 1. The array candidate with 

minimum cost among all the centerline candidates found in the set of all possible 
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combinations of connections of the medial axis lines is selected as the centerline of the 

implanted array. Last, we resample the centerline of the implanted array by using the known 

electrode spacing distance of the array. The points on the resampled curve correspond to the 

centers of the electrodes. The following subsections present CL in details. All the parameters 

denoted with Greek letters are determined through a parameter tuning process in Section 3.1.

2.3. Medial axes generation

To extract the VOI from a whole head CT image, we register it to a reference CT where the 

VOI bounding box is known [34]. The reference CT is an “atlas” image where the position 

of the cochlea is known. Registration of the patient CT to the reference is used to define a 

bounding box containing the cochlea in the patient CT in a fully automatic fashion. All the 

subsequent procedures are performed on the VOI. We up-sample the VOI to a voxel size 0.1 

× 0.1 × 0.1mm3 so that the following voxel thinning method, described below, permits 

generating a finer resolution medial axis. The up-sampling process generates an up-sampled 

VOI with around 270 × 270 × 270 voxels. Next, we compute a feature image constructed as 

the weighted sum of the normalized intensity of image I and the normalized Frangi 

vesselness filter response IV of the up-sampled VOI. The range of scales for the Frangi 

vesselness filter is selected as [0.5, 0.6]mm with a step of 0.05mm. The feature image is 

computed as:

If = 1 − ρ I − TI αI%
TI αI% + ρIV − TV αV %

TV αV % (1)

where TI(αI %, TV(αV %) are functions which take percentage values αI % and αV % as 

inputs, and generate thresholds applied to I and IV that correspond to the top αI % = 0.06% 

and αV % = 0.06% of the cumulative histogram of I and IV, respectively. We include the 

vesselness filter response IV in addition to the intensity I in If because it proved to effectively 

enhance the centerline of the electrode array in the previously developed snake-based 

localization method. ρ = 0.29 is a weighting scalar tuned for balancing the significance of I 
and IV in Eqn. (1). After computing the feature image, we threshold it at 0 to generate ROIs, 

which are the connected components in the thresholded feature images containing electrode 

or false positives. After generating the ROIs, we perform a voxel thinning method [33] on 

each ROI to generate a medial axis line of the structure. The medial axis line consists of a 

set of ordered medial axis points. Those medial axis points are defined as the locus of 

locations which maximizes the Euclidean distance from the ROI’s boundary.

2.4. Centerline localization and electrode localization

As mentioned in Section 2.2, array candidates are formed by evaluating all possible 

selections of basal and apical electrode position across the centerline candidates formed by 

all combinations of connections between ROIs. Since a centerline candidate is a set of 

medial axis points ordered on a curve, by selecting two different points and labeling them as 

apical and basal endpoints, we construct an array candidate by connecting the points on the 

curve between the two selected apical and basal endpoints. In a centerline candidate with n 
points, we can construct n(n − 1) different array candidates. An exhaustive search among all 

the possible array candidates is quick because (1) the maximum number of ROIs generated 
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by our proposed method is usually less than 4, and (2) a centerline candidate typically has n 
< 200 points. We exhaustively search all the array candidates and evaluate their quality by 

using a cost function defined as:

Cost p = CostI p + CostS p (2)

where CostI(p) is the intensity-based cost term for p, and CostS(p) is the shape-based cost 

term for p. The cost function is designed to capture intensity and shape-based heuristics for a 

closely-spaced electrode array so that it returns a low cost for the actual centerline of the 

implanted electrode array and higher cost values for the other array candidates. First, the 

intensity-based cost term CostI(p) evaluates a blob filter response at the selected most apical 

(a) and the selected most basal (b) (see Figure 1) endpoints:

CostI p = IBmax − IB a
IBmax

+ μ1
IBmax − IB b

IBmax
(3)

where IB (a) and IB (b) are blob filter responses for the selected apical and basal endpoints in 

an array candidate, respectively. IBmax is the maximum blob filter response among all the 

medial axis points. The blob filter response at voxel v is computed in a way that is similar to 

the Frangi vesselness filter [32] by using the three eigenvalues L1, L2, L3 of the Heissian 

matrix computed at v:

Ib v =
B1 v · B2 v · B3 v , L1, L2, L3 < 0

0, otherwise, (4)

The blob filter response is non-zero only when the three eigenvalues of the Hessian matrix at 

v are all negative. This is because the blob structures we detect are bright structures on a 

dark background. The three terms in Eqn. (4) are 

B1 = 1 − exp −
∑i = 1

3 Li2

S1
2 ,  B2 = exp −

r12 + r23 + r13
S2

, and B3 = 1 − exp −
Lmin

S3
, where rij = |Li 

− Lj|, Lmin = min (−L1, −L2, −L3, S1 = TI(αI), S2 = 5000, S3 = 40000. Eqn. (3) captures the 

heuristic that we expect the voxels occupied by the endpoints to have a large blob filter 

response. Due to the fact that the electrodes are closely-spaced and the CT resolution is 

limited, there is a limited number of voxels with high blob filter response and the voxels 

occupied by the two endpoint electrodes are usually assigned high blob filter responses, as 

shown in Figure 3. Thus, we use the high blob filter response as an indicator to find the most 

apical and basal electrodes. We select the scales for the blob filter as the radius of the basal 

and apical electrodes in the brand of the implanted array. In Eqn. (3), we use μ1 = 1.47 as a 

weighting scalar to place extra emphasis on the blob response feature of the basal electrode 

compared to the apical electrode.

The shape-based cost function CostS(p) captures geometric heuristics for the centerline of 

the implanted array. First, we define one hard constraint for constructing an array candidate 

with selected apical electrode (a) and basal electrode (b) as:
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DOI a > DOI b (5)

In Eqn. (5), DOI(·) is the angular depth of insertion value. As the cochlea has a snail shape 

with 2.5 turns, the depth into the cochlea of any point can be quantified in terms of an angle 

from 0 to 900 degrees. To determine DOI(·), we use a segmentation of the cochlea. We 

segment the cochlea using automated techniques [19] in the pre-implantation CT when it is 

available and automatically register it to our target post-implantation CT. When a pre-

implantation CT is not available, we segment the cochlea using automated techniques 

designed to segment the cochlea directly in the post-operative CT [20, 21]. In general, the 

apical electrode is inserted deeper into cochlea than the basal electrode. Thus, we only 

permit constructing an array candidate when the selected apical electrode has a larger depth 

of insertion value than the basal electrode. For array candidates satisfying Eqn. (5), we 

define the shape-based cost CostS(p) as:

CostS p = μ2
DOI a
DOImax

+ | p − De |

μ3,

μ3 + μ5 μ4 − p
De

,

μ3 + μ5
p

De
− 1 ,

μ4 ≤ p
De

≤ 1

p
De

< μ4

p
De

> 1

(6)

where DOImax is the maximum angular depth of insertion value among all the points on the 

initialized centerline. μ2 = 8.89, μ3 = 0.27, μ4 = 0.9, and μ5 = 1.78 are four tuned parameters. 

‖p‖ is the length of the array candidate p. De is the a-priori expected length of the array when 

it is straight, given by a 3D model of the implanted array. In the first term of Eqn. (6), we 

expect the apical electrode to have a large depth of insertion value. In the second term of 

Eqn. (6), we expect the length of the best array candidate to be close to the a-priori expected 

length. Since the array is not elastic, we should not expect the centerline of the implanted 

array to be longer than De. Curvature of the array can result in a small reduction of the 

centerline length. Thus, we design separate cost terms for centerlines with length falling 

within and outside a pre-defined length range. This pre-defined length range is empirically 

selected as [90%, 100%] of De. For array candidates with lengths out of the normal range, an 

extra cost weighted by μ5 is added.

The centerline of the implanted array is determined as the array candidate that results in the 

lowest cost among all the centerline candidates. The resulting centerline is then resampled 

using the known a-priori electrode spacing distance of the array so that the points that form 

the resulting curve correspond to the centers of the electrodes to generate the final electrode 

array localization result.

2.5. Parameter selection process

The parameter selection process is performed with the 28 CTs in our training dataset. The 

initial values of those parameters are heuristically determined. Then, we sequentially and 

iteratively optimize each parameter until a local optimum is reached with respect to the 
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mean localization errors. After determining the parameter values, we use them to perform 

the validation study on the testing dataset.

2.6 Evaluation of methods

We implemented the automatic methods GP, pCL and CL in C++ on a standard Windows 

Server PC [Intel (R), Xeon (R) CPU X5570, 2.93GHz, 48GB Ram]. SL was implemented in 

Matlab on the same platform used for our previous study [30]. We applied GP, SL, pCL and 

our proposed CL methods to our testing dataset of 129 clinical CTs implanted with CO1, 

CO2, and CO3 arrays. GP and SL are two previously developed methods [22, 30] for 

localizing distantly-spaced electrode arrays and CO1 arrays, respectively. pCL [31] is a 

preliminary implementation of CL. To evaluate the accuracy of a localization result 

generated by an automatic electrode localization method, we compute the Euclidean 

distance between the positions found by the method and the corresponding ground truth 

positions. For each case, the mean localization error is computed by averaging the 

localization errors of all the electrodes on the array. As has been discussed in subsection 2.1, 

the rater’s consistency error (RCE) is computed in the same way.

To detect differences between localization methods, we performed paired t-tests with 

Bonferroni correction on the mean localization errors generated by GP, SL, pCL, CL, and 

RCE on all the possible pairs independently. We visually confirmed that these datasets were 

reasonably well-approximated by a normal distribution to ensure a t-test was appropriate.

3. Results

3.1 Parameter tuning

Table 3 lists the parameter values selected after the parameter tuning process. To show the 

effectiveness of the parameters selected, we visualize the parameter sweeping procedure in 

Figure 4 with respect to the mean localization error in log-scale. Each parameter was swept 

from 0 to the double of its selected value with 11 uniform step sizes. The mean localization 

error for the training cases with the selected parameters is 0.11mm. As can be seen from 

Figure 4, all the parameters reached a local minimum in mean localization error at their 

selected values. Setting any parameter as 0 would lead to an increase of mean localization 

errors in the training dataset. This shows that all the terms in our design contribute to the 

accuracy of the localization results.

3.2. Validation study

The average running time for GP, SL, pCL, and CL from extracted VOI to electrode 

localization was ~8s, ~55s, ~40s, and ~42 seconds. Among the 129 testing cases, GP could 

not generate localization results for 52 cases. SL, pCL and CL could generate results for all 

the testing cases. The comparison of the mean/maximum electrode localization errors among 

GP (excluding the 52 cases for which GP cannot generate results), SL, pCL, CL, and RCE 

are shown as boxplots in Figure 5a. As can be seen from Figure 5a, CL generates 

localization results with a mean localization error of 0.13mm, which is close to the mean 

RCE (0.11mm). The three methods GP, SL and pCL have mean localization errors of 

2.09mm, 2.06mm, and 0.94mm. In Figure 5b, we can see that CL generates 127 localization 
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results among 129 subjects (98%) that have maximum errors within one voxel diagonal, 

which is close to the RCE (100%) and outperforms the preliminary version pCL (80%) and 

the previously developed GP (5%) and SL (51%) methods. In Figure 6, we show two 

localization results generated by GP, SL, pCL and CL in comparison with the ground truth 

localization results for two cases with CTs of CI recipients implanted with a CO2 (Figure 

6a) and a CO1 (Figure 6b) array. As we can see, the proposed CL method generates the most 

accurate automatic localization results compared with other existing methods.

The statistical t-test results of all the possible pairs of our automatic methods and the RCE 

are shown in Table 4. From the p-values, we find that our proposed method CL generates 

localization results that are significantly different from all the other methods and the RCE. 

However, the mean and maximum localization errors indicate CL can generate localization 

results with an accuracy that is close to the manual localization results generated by the CI 

electrode localization expert in our group.

4. Discussion

From the validation results presented in Section 3, we find 52 cases on which GP cannot 

generate valid results. This is because GP was designed for the localization of distantly-

spaced arrays in CTs. One step in GP uses a voxel thinning method [33] to generate 

candidate nodes for the path-finding algorithms to find a fixed-length path with N candidate 

nodes (N is the number of the electrodes on the array). In the 52 cases, a path could not be 

found using the candidate nodes that has the length of the implanted array. From Figure 5, 

we find that the proposed CL method outperforms the existing automatic methods GP, SL, 

pCL, and CL. The two examples shown in Figure 6 also support this conclusion. In Figure 

6a, we show an eCT implanted with a CO2 array. In this case, we cannot find a threshold 

that makes all the electrodes appear in a connected region with high intensity voxels. The 

threshold we select also includes the wire lead in the ROIs. GP generates inaccurate 

localization result by selecting two points on the wire lead as the two most basal electrodes. 

This is because the path-finding algorithm in GP cannot distinguish the voxels on the wire 

lead from the voxels occupied by electrodes. SL and pCL both ignore the electrodes that are 

not in the largest ROI. This is because both of the two methods assume all the electrodes are 

within one connected group of voxels with high intensity. CL successfully localizes all the 

electrodes by evaluating the array centerline candidates produced by all the possible 

connections of ROIs. Figure 6b shows results of a lCT implanted with a CO1 array. In this 

case, the voxels occupied by the wire lead and the electrodes have the same maximum 

intensity value. Thus, both GP and SL fail to distinguish the wire lead from the electrodes. 

To avoid localizing the voxels on the wire lead as the basal electrode, pCL added one 

process before endpoints selection. After generating the medial axis line of the largest 

connected region after thresholding the VOI, pCL performs an image erosion operation on 

the thresholded VOI with an empirically selected kernel size to eliminate the false positives 

on the wire lead before blob filter response computation for endpoints localization. Then, 

pCL constrains the search of the basal and apical electrodes within the remaining voxel 

groups (labeled with grey color). As can be seen in Figure 6b, the image erosion operation 

eliminates the voxel groups around the most basal electrode in this specific case. CL 

localizes the electrodes with a maximum error within one voxel diagonal in this case. 
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Without using image erosion for eliminating the false positives on the wire lead, CL uses the 

first cost term in Eqn. (6) to ensure that the points that are in the deeper region of the cochlea 

are more likely to be selected as the apical point. Then, with an optimal apical electrode 

selected, CL uses the second term in Eqn. (6) so that the selection of the basal electrode and 

the apical electrode forms an array candidate that has a length close to the implant model.

Even though CL has achieved accurate localization results on most of the CTs in our testing 

dataset, it still has several limitations. First, the initialization of the centerline of the 

electrode array is highly dependent on the intensity-based features. Any abnormal intensity-

based features in the CTs may cause the mis-localization of the electrode array. Figure 7 

shows two eCTs on which our proposed CL generates localization results with maximum 

localization errors larger than one voxel diagonal due to the abnormal intensity-based 

features. In Figure 7a, the voxels between the most basal electrode and the three most apical 

electrodes are assigned abnormally high intensity values. This causes CL to incorrectly 

localize the medial axis line, which further affects the centerline localization process. The 

automatically localized centerline deviates from the ground truth locations to the voxels that 

are closer to the apical end. In Figure 7b, the apical electrode is folded, which has been 

verified by an electrode localization expert (JN). However, the intensity feature does not 

show the folded electrode due to the limited resolution of clinical eCTs. Thus, CL mis-

localizes the apical electrode and selects a false positive voxel on the wire lead as the basal 

electrode. The other existing methods all generate inaccurate localization results for these 

two cases. Failure cases as those shown in Figure 7 are rare, and our method generates 

accurate localization results on the remaining testing cases.

Another potential issue is that the locations of the electrodes between the apical and basal 

electrodes are determined by using a resampling method that relies on the a-priori known 

distances between individual electrodes. This process uses the apical and basal electrodes as 

landmarks and the accuracy of the electrodes in between them are only influenced by the 

accuracy of the localization of those two endpoint electrodes but not the local intensity-

based features. An example of errors that can be improved can be seen in Figure 6a. In this 

example, the five most basal electrodes have obvious deviations from the center of the high 

intensity blob in the CT images. In this specific case, the CT has relatively high resolution 

and the electrodes have larger spacing distance between each other, some contrast between 

electrodes could be used in the electrode localization process to further improve the 

electrode localization accuracy. In future work, we will explore modifications to our 

approach to permit leveraging intensity contrast between electrodes when it is available.

Our proposed method uses a set of hand-crafted intensity-based and shape-based features 

inspired by expert heuristics. The determination of the parameters associated with all the 

hand-crafted features relies on a training procedure supervised by image processing experts. 

An alternative solution could be to rely on deep learning techniques. For instance, the ROIs 

could be generated using deep convolutional neural networks such as faster RCNN [35]. We 

are currently investigating these alternative approaches and will compare them to our current 

method.
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The validation approach in our study can also be improved to further investigate the 

robustness of our proposed method. First, due to the limitation of our dataset, we do not have 

enough data to analyze the robustness of our method with respect to various acquisition 

parameters (the HU range, resolution, dose, and type of the implanted arrays) of the CTs and 

to electrode arrays model. In one of our previous studies [36], we use a cochlear phantom 

implanted with two models of distantly spaced CI arrays to perform a robustness analysis on 

the performance of a method for localization of distantly-spaced electrodes with respect to 

different dose levels, different HU ranges, different resolutions, and different models of CI 

electrode arrays. To evaluate the robustness of our proposed method with respect to these 

characteristics, we need to construct a new phantom implanted with closely-spaced CI 

electrode arrays. Another limitation of our validation approach is the accuracy of the ground 

truth. Our ground truth is based on clinical CTs with limited resolution, which introduces 

errors in the manual localization. To address this issue, we need to conduct a study similar to 

the one presented in [37] to better characterize the accuracy of our proposed method. This 

requires the acquisition μCT-CT pairs of cochlear specimens. The μCTs can be used to 

generate the ground truth since they have a higher resolution and our algorithm can be 

applied to the paired clinical CTs. The μCTs and CTs can then be registered, which would 

permit to analyze the electrode localization errors generated by our proposed method with a 

more a reliable ground truth.

5. Conclusion

Localization of CI electrode arrays is a crucial step to analyze electrode stimulation patterns 

in our IGCIP system. In clinical CTs implanted with closely-spaced electrode arrays, the 

identification of each individual electrode is difficult because the intensity contrast between 

electrodes is small. In this paper, we have proposed an automatic centerline-based method 

for the localization of closely-spaced CI electrode arrays in clinical CTs. The validation 

study shows that our method outperforms the existing methods for localizing CI electrodes. 

Our proposed method generates localization results with mean localization error of 0.13mm. 

98% of our localization results have maximum localization errors lower than one voxel 

diagonal. These results show that our proposed method can generate localization results with 

errors that are close to the rater’s consistency errors and are smaller than the errors produced 

by our earlier methods. It represents a crucial step in fully automating IGCIP and translating 

it from the laboratory to clinical use. It also enables us to conduct large-scale studies on 

electrode locations and their effect on hearing outcomes. Future work includes performing a 

robustness analysis on the proposed method by in a similar way as [36] so that we can 

determine the robustness of our proposed method with respect to different closely-spaced CI 

electrode array models and to a range of CT acquisition parameters. We also plan to perform 

a rigorous evaluation of the accuracy of our method by using highly accurate ground truth 

via μCTs [37] so that we can further analyze the impact of the errors in our electrode 

localization methods on the sensitivity of IGCIP.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Visualization of a CI electrode array and intra-cochlear anatomy after CI implantation 

surgery. In (a), the scala tympani (an intracochlear cavity) is shown with the modiolus, 

which represents the interface between the auditory nerves of the SG and the intra-cochlear 

cavities. In (b), a subject implanted with an Advanced Bionics 1J electrode array and 

stimulation patterns of the electrodes are shown. The modiolar surface is color-coded with 

tonotopic place frequencies of the SG in Hz.
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Figure 2. 
Panel (a) and (c) show examples of two slices of CT in coronal view of recipients implanted 

with closely-spaced arrays. Blue points indicate the locations of individual electrodes. An 

iso-contour around high intensity voxels is shown in red. Panels (b) and (d) show 3D iso-

surfaces of the electrode arrays with the manually determined electrode locations generated 

by an expert. In panel (d), we also show the medial axis line (in green) of the largest ROI 

extracted by our proposed method. As can be seen, the endpoints of the medial axis line do 

not always correspond to the electrodes on the two ends of the array.
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Figure 3. 
Workflow of our proposed centerline-based method.
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Figure 4. 
The parameter tuning process for all the parameters in CL. The red hash mark indicates the 

finally selected parameter value.
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Figure 5. 
Panel (a) shows the boxplots of mean (blue) and maximum (magenta) electrode localization 

errors in logscale among the different localization methods. Panel (b) shows the distribution 

of the ratio of the maximum localization errors with respect to the image voxel diagonal (R
%) for different localization methods.
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Figure 6. 
Visualization of localization results generated by GP, SL, pCL, and CL in comparison with 

the manual ground truth localization results.
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Figure 7. 
Visualization of two eCT cases on which CL generates localization results with maximum 

errors larger than one voxel diagonal.
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Table 1.

Specifications of different FDA-approved closely-spaced electrode arrays in our dataset

Electrode array brand Total electrodes Electrode spacing distance (mm)

Contour Advance (CO1) 22 ~0.65

CI-422 (CO2) 22 ~0.95

CI24RE-Straight (CO3) 32 (10 stiffening rings) ~0.75
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Table 2.

Datasets used in this study

Purpose Type of array Number of eCTs Number of lCTs Total number of CTs

Training
(28 CTs)

CO1 8 7 15

CO2 8 2 10

CO3 3 0 3

Validation
(129 CTs)

CO1 78 10 88

CO2 27 6 33

CO3 5 3 8
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Table 3.

The selected values for parameters in our proposed method

Parameters Selected value Parameters Selected value

αI(%) 0.06 (%) μ2 8.89

αV(%) 0.06 (%) μ3 0.27

ρ 0.29 μ4 0.90

μ1 1.47 μ5 1.78
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Table 4.

P-value of the t-test results among mean localization errors by GP, SL, pCL, CL and RCE

GP SL pCL CL RCE

GP / 2.15 × 10−1 2.16 × 10−1 7.58 × 10−5 6.81 × 10−5

SL / 1.03 × 10−4 2.74 × 10−12 1.42 × 10−12

pCL / 3.74 × 10−4 2.44 × 10−4

CL / 6.30 × 10−3

RCE /
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