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Abstract

Localizing the anterior and posterior commissures (AC/PC) and the midsagittal plane (MSP) is 

crucial in stereotactic and functional neurosurgery, human brain mapping, and medical image 

processing. We present a learning-based method for automatic and efficient localization of these 

landmarks and the plane using regression forests. Given a point in an image, we first extract a set 

of multi-scale long-range contextual features. We then build random forests models to learn a 

nonlinear relationship between these features and the probability of the point being a landmark or 

in the plane. Three-stage coarse-to-fine models are trained for the AC, PC, and MSP separately 

using down-sampled by 4, down-sampled by 2, and the original images. Localization is performed 

hierarchically, starting with a rough estimation that is progressively refined. We evaluate our 

method using a leave-one-out approach with 100 clinical T1-weighted images and compare it to 

state-of-the-art methods including an atlas-based approach with six nonrigid registration 

algorithms and a model-based approach for the AC and PC, and a global symmetry-based 

approach for the MSP. Our method results in an overall error of 0.55±0.30mm for AC, 

0.56±0.28mm for PC, 1.08°±0.66° in the plane’s normal direction and 1.22±0.73 voxels in 

average distance for MSP; it performs significantly better than four registration algorithms and the 

model-based method for AC and PC, and the global symmetry-based method for MSP. We also 

evaluate the sensitivity of our method to image quality and parameter values. We show that it is 

robust to asymmetry, noise, and rotation. Computation time is 25 seconds.

Index Terms

anterior commissure; posterior commissure; midsagittal plane; regression forests

I. Introduction

The anterior commissure (AC) and the posterior commissure (PC) are the two points with 

the shortest intraventricular distance between the commissures, according to the standard 

convention of the Schaltenbrand-Wahren atlas [1]. They are important landmarks located in 

the midsagittal plane (MSP), a geometric plane that separates the two hemispheres of the 

cerebrum by the inter-hemispheric fissure (IF). The AC and PC, together with the MSP, 

define a standardized coordinate system widely used by major stereotactic brain atlases such 

as the Schaltenbrand-Wahren atlas [1] and the Talairach and Tournoux atlas [2]. 

Establishing this reference system is pivotal for stereotactic and functional neurosurgery, 

human brain mapping, and medical image processing [3]–[5]. For example, in deep brain 
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stimulation (DBS) procedures, target locations are estimated by their relative positions in 

this standardized system [3]. Identification of the AC, PC, and MSP could also facilitate the 

estimation of an initial intra- or inter-subject affine transformation to reduce the degrees of 

freedom in non-rigid transformations used to register two image volumes [6]. Yet another 

example is the quantification of the structural and radiometric asymmetry of the brain made 

possible by the localization of the MSP. This can be used to detect brain pathologies such as 

tumors that cause severe asymmetry between the two hemispheres [7].

In most current neuroimaging applications, the AC, PC, and MSP are selected manually in 

the magnetic resonance image (MRI) scans by experts. This requires expertise and suffers 

from inter-expert variability, which can have a substantial effect on targeting in image 

guided neurosurgery [8]. Manual intervention also takes time and prevents the automated 

use of such information by other image processing techniques such as registration. Over the 

years, several approaches have thus been proposed to automatically localize the AC and PC 

[6], [9]–[14] as well as the MSP [15]–[24] on 3D MRI scans.

For the AC and PC, these algorithms rely on the successful segmentation of surrounding 

structures, the localization of other anatomical landmarks, or image registration. For 

example, in [6], [9]–[11], the corpus callosum was used to initialize the AC and PC 

positions. Ardekani et al. [12] achieved the initialization by identifying the MSP and a 

landmark on the midbrain-pons junctions. Han et al. [6] and Verard et al. [9] also relied on 

edge detection. In [13]–[14], atlas-based nonrigid registration was performed to transfer the 

AC and PC positions from atlases onto subjects. However, brain segmentation, landmark 

identification, edge detection, and nonrigid registration algorithms may fail due to large 

anatomical variations or image contamination by noise or partial volume effect, leading to 

the failure of the AC/PC detection. In addition, some of these methods require long runtime, 

especially for registration based methods.

For the MSP, most existing methods can be categorized into two types: (i) methods 

maximizing a global symmetry score, (ii) methods detecting the IF. The first type of 

approaches assumes global bilateral symmetry and maximizes a similarity measure between 

the original brain scan and its reflected version [15]–[18]. However, there is no perfect 

bilateral symmetry in the human brain, not only for pathological cases but even for normal 

cases. As shown in Fig. 1 for a control subject, an effect known as brain torque occurs when 

the left occipital lobe or the right frontal lobe is larger than its counterpart in the other 

hemisphere [25]. Hence these methods may suffer from sensitivity to brain asymmetry and 

also often from high computational cost, while they may generalize well to other image 

modalities. On the other hand, approaches of the second type identify the IF from its 

intensity and textural features or by locally optimizing a symmetry measure, as local 

symmetry could be assumed in the vicinity of the IF region. The MSP is then determined by 

fitting a plane to those detected points or line segments [19]–[23]. These methods are 

generally more robust to abnormalities but more sensitive to outliers in the set of feature 

points. A robust outlier removal method is usually required to achieve the desired accuracy.

Recently, learning-based methods using random forests have gained popularity for landmark 

and plane detection. Random forests are an ensemble supervised learning technique for 
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classification or regression. In this approach a multitude of decision trees are constructed by 

evaluating a random subset of features at each node to split the data. The output of these 

trees is then aggregated to produce a final prediction [26]. In [27], Dabbah et al. used 

random forests as a classifier to localize anatomical landmarks in CT. Hough forests, which 

combine random forests with generalized Hough transform, are used to detect points to drive 

an active shape model on 2D radiographs [28], to find a rough position for the center of 

vertebrae in MR images [29], and most recently to localize the parasagittal plane in 

ultrasound images [30]. Schwing et al. [24] proposed to use adaptive random forests to 

jointly identify five distinct landmarks in the MSP in MR T1 images and estimate the plane 

via a least squares fit of these landmarks.

We have previously proposed a learning-based framework using regression forests to detect 

the AC and PC [31]. Here, we extend our previous work and augment it by also localizing 

the MSP. Since the AC, PC, and MSP have different local appearances from other points in 

the image, we hypothesize that a nonlinear regression can be used to estimate the 

relationship between the local appearance of a point and its probability to be the AC, the PC, 

or in the MSP. Compared to exiting techniques, our method is conceptually the most similar 

to the approach of Schwing et al. [24] in that a learning framework is used in both to detect 

the plane. We do, however, regress the distance from a point to the plane directly as opposed 

to its distance to selected landmarks as done in [24] because those landmarks may not be a 

perfect indicator of the plane due to the brain asymmetry.

The algorithm we propose is fast, accurate, and robust. It does not rely on any preprocessing 

of the images such as edge enhancement, nor does it require any segmentation or 

registration. Instead, we extract multi-scale contextual features for points in a set of training 

images and build random forests regression models to learn the probability for each sample 

to be the AC, the PC, or in the MSP. We employ three-stage coarse-to-fine models, with the 

first one operating on a down-sampled image to roughly localize the landmark or the plane 

and the second and third models to fine-tune the position. We evaluate our algorithm in a 

leave-one-out fashion using a large clinical dataset of 100 subjects. We also compare our 

method to state-of-the-art methods including an atlas-based approach with six well-

established nonrigid registration algorithms and a publicly available implementation of a 

model-based approach for the AC and PC, as well as a publicly available implementation of 

a global symmetry-based approach for the MSP. We further test the sensitivity of our 

algorithm to anatomic abnormality, image quality, and parameter values.

II. Methods

A. Image Data

We select 100 subjects from a data repository we have created over a decade for DBS 

surgeries [32]. All images in our data set are T1-weighted sagittal MR volumes with 

approximately 256×256×170 voxels and 1mm in each direction, acquired with the SENSE 

parallel imaging technique (T1 W/3D/TFE) on a 3 Tesla Phillips scanner (TR = 7.92 ms, TE 

= 3.65 ms). These images have similar pose with small differences in head orientation and 

position, and also similar field of view (FOV), i.e., they cover the entire head. All images 
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have been acquired as part of the normal delivery of care and every subject was consented to 

participate in this study.

For the AC and PC, two raters manually identified these points for each subject. These two 

raters followed the same protocol to select the AC and PC and were given sufficient time for 

accurate localization. The inter-rater variability is 0.57±0.47mm for the AC and 0.57±0.37 

mm for the PC. Gold standard AC and PC are computed as an average of the selections by 

the two raters.

For the MSP, one rater manually selected the plane for each subject. Given the gold standard 

AC and PC, the MSP could be defined using any other point on the IF. However, cerebral 

atrophy that affects some DBS patients results in a widening of the IF. This makes the point 

selection on the IF ambiguous. In order to uniquely define the MSP, we follow the approach 

used clinically by an experienced neurosurgeon which relies on the falx cerebri, as 

illustrated in Fig. 2 and 3. The falx cerebri is a sickle-shaped fold of dura mater that 

descends vertically in the IF [33]. It is usually visible in CT but not in MR T1 images. 

Hence we used the CT volumes of the same patients and rigidly registered them to their 

corresponding T1 volumes. After the registration, the CT image and the gold standard AC 

and PC were loaded into a visualization software. A random point on the falx cerebri was 

selected first to establish an initial AC-PC coordinate system. The origin of this coordinate 

system is defined as the midpoint between the AC and the PC, with the x-axis perpendicular 

to the MSP pointing to the right, the y-axis pointing from the PC to the AC, and the z-axis 

pointing superiorly in the MSP. The CT image was then resampled in this coordinate system 

in which the xz planes correspond to the coronal slices. The MSP was then refined using 

coronal slices by varying the orientation of the plane to align it with the falx cerebri as 

accurately as possible. As the brain torque effect mostly causes the MSP to curve in the 

anterior and posterior regions of the brain, we used the midbrain region to define it, i.e., we 

used coronal slices that are anterior to the PC and posterior to the AC. After manual 

adjustment, the AC-PC coordinate system was updated and the CT image resampled in the 

new system for visual check in axial, coronal, and sagittal views. This process was repeated 

until the plane was visually deemed to be satisfactory.

The gold standard AC and PC points together with the manual selection of the MSP are used 

as ground truth for the training and the evaluation of our learning-based method.

B. Problem Formulation

We use a voxel-level training solution based on regression forests to localize the landmarks 

and the plane. For each voxel, we extract a set of features that describe textural context 

variation at different scales, as proposed by Pauly et al. [34]. This is realized by applying a 

random displacement to a voxel x, calculating the mean intensities of a 3D cuboidal region 

 centered on x and of a similar region  of the same size but centered on the displaced 

voxel, and subtracting these two:

(1)
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where I is the intensity, and s is the current scale, i.e., a particular size of the cuboidal 

region. Four scales are used and they correspond to window sizes of 4, 8, 16, and 32. This 

process is repeated M = 2000 times to obtain the feature set .

Each voxel is associated with a probability p to be the AC, the PC, or in the MSP that a 

model is trained to detect. This probability follows a truncated Gaussian distribution based 

on its Euclidean distance d to the ground truth AC, PC, or MSP:

(2)

where σ is the standard deviation of the Gaussian function. We truncate this function at p = 

0.1 to speed up the training process.

Given a number of training pairs , random forests aim to learn a nonlinear 

mapping from the feature space {f⃗} to the probability space {p}. Hence the AC, PC, and 

MSP localization problem can now be formulated as first finding a set of voxels in the 

images that have a high probability to be the AC, PC, or in the MSP and then use these 

points to determine the landmarks or the plane.

C. Regression Forests

We use 20 regression trees to construct the forest. For each tree, a bootstrap of two thirds of 

the training samples is randomly selected and fed to the root node of the tree. Given the 

training samples  at a particular node, we seek to select a feature fm and a 

threshold t to best split the data. The splitting criterion minimizes:

(3)

where MSE is the mean squared error. A subset of 500 features is randomly selected to 

estimate the splitting threshold. A tree stops growing if the number of samples arriving at 

leaf nodes is smaller than 5 or if the best split threshold cannot be found.

Each leaf of the trees stores the mean probability of all samples arriving at that node to be a 

point of interest and this is used as a predictor. When a test sample comes, each tree 

contributes to a prediction. The mean and the variance of these predictions across trees are 

calculated and outputted for this test sample.

D. Training Phase

We train separate models for the AC, PC, and MSP. For each, we build three stage coarse-

to-fine models, one on down-sampled by 4 images, one on down-sampled by 2 images, and 

one on full resolution images. This results in nine models to train for one training dataset.

Sampling strategy—Since all images in our dataset have similar pose and FOV, it is 

sufficient to search for the landmarks or the plane in a region of interest instead of searching 

Liu and Dawant Page 5

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the entire image. Thus, when training the model, for each image, we evaluate a set of points 

within a region of interest.

For the AC and PC, this region of interest is a cube centered on the ground truth points at 

each resolution level. It is a 15×15×15 voxel3 cube that covers a 60×60×60 mm3 volume at 

the coarsest level, a size that we have found large enough to account for the variations in the 

AC and PC positions across all images in the dataset. For each training subject, we use all 

the voxels in these cubes to generate the training samples.

For the MSP, at the coarse level, we follow the same strategy we use for the AC and PC to 

define a pseudo landmark in the MSP and define a cube centered on this point to be the 

region of interest. This point is selected to be on the z-axis, i.e., in the MSP plane, +50mm 

away from the origin in the AC-PC coordinate system established by the ground truth AC, 

PC, and MSP. We refer to this point as the mid-plane point (MP) and calculate the MP for 

each training subject. We use all the voxels in the 15×15×15 voxel3 cube centered on the 

MP as training samples as we have done for the AC and PC. For the next two resolution 

levels, as the MSP can already be roughly localized at the coarsest level, we only need to 

sample points that are spatially close to the MSP to further distinguish them from the true 

MSP. Hence we define the region of interest to be a rectangular cuboid encompassing the 

plane and aligned with the axes of the AC-PC coordinate system. At the down-sampled by 2 

level, coordinates of the lower left corner and upper right corner are (−15mm, −15mm, 

−30mm) and (+15mm, +15mm, +90mm), respectively. At the full resolution level, we 

narrow the region of interest to [−7mm, +7mm] in the x, i.e., lateral direction, for further 

refinement. Voxels in the original image space are transformed into the AC-PC space first to 

check whether they fall into the region of interest, and those that satisfy this condition are 

considered as candidates. This leads to a large number of candidate points for training that 

cannot fit into the main memory. We address this issue by randomly sampling a fixed 

number of candidate points for each training subject.

An example of the training regions from which samples are drawn at the different resolution 

levels is shown in Fig. 4, with the top row illustrating the AC regions and the bottom row 

illustrating the MSP regions.

E. Testing Phase

Given a test image, following the hierarchical approach described earlier, we first down-

sample the image by 4 and start testing using the models built at this resolution level. At 

each level, we sequentially test for the AC, PC, and MSP. We initialize the search center 

from this model by averaging the ground truth AC, PC, and MP of all training subjects, and 

search within a 21×21×21 voxel3 window on a regular grid. A response map is generated for 

each landmark, displaying the mean probabilities p ̄ of the voxels to be the trained landmark. 

For the AC and PC, the voxel associated with the highest probability is then used as the 

search center for the next level. For the MSP, a plane is estimated from the response map for 

the MP together with the AC and PC detected at this level, and this estimation is used to 

define the search region for the next level. We will explain in detail how to estimate the 

plane later. We continue this testing process for the next two resolution levels. For those two 

levels, the testing samples for the AC and PC are the points within a 21×21×21 voxel3 
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volume with its search center estimated from the previous level. For the MSP, the AC-PC 

coordinates of all voxels are first calculated based on the AC, PC, and MSP estimated from 

the previous level. The testing samples are those whose AC-PC coordinates are within 

[−15mm, +15mm] in the×direction, [−15mm, +15mm] in the y direction, and [−30mm, 

+90mm] in the z direction at the down-sampled by 2 level, and [−7mm, +7mm] in the × 

direction, [−15mm, +15mm] in the y direction, and [−30mm, 90mm] in the z direction at the 

full resolution level. An example of the response maps at different levels for one testing 

subject is illustrated in Fig. 5, with the top row illustrating the AC response maps and the 

bottom row illustrating the MSP response maps.

Mean-shift refinement for the AC/PC—When reaching the full resolution level, the 

final prediction for the AC and PC is made via weighted mean shift, a technique that is used 

to localize the maximum of a density function given discrete data sampled from that 

function [35]. Starting with an initial estimate x(0), mean shift iteratively re-estimates the 

mean by weighting each point in its neighborhood, with the value of the weight determined 

by its distance to the current estimate and the probability of this point to be the trained 

landmark:

(4)

where x(t) is the current estimate, xi
(t) is a point in its neighborhood N(x(t)), K(xi

(t)−x(t)) = 

e−k‖xi(t)−x(t)‖2 is a Gaussian kernel, and  is the value of xi
(t) in the response map which 

corresponds to the probability averaged across all trees.

We choose the initial estimate x(0) to be the position of the testing sample with the 

maximum probability in the response map and iteratively update x(t) until it converges. The 

output of this estimate is the final prediction for the AC/PC.

Weighted least squares fitting for the MSP—We represent the MSP as:

(5)

where a,b,c,d are the parameters that uniquely define the plane.

At each testing stage, we need to estimate the MSP using its response map along with the 

current AC and PC estimates. This is done by selecting a set of points that have a high 

probability p ̄ to be in the MSP and fitting a plane to those points. To perform a robust linear 

regression, we compute a weighted least squares solution to account for the degree of 

uncertainty per point:

(6)

where N′ is the number of candidates, and wi is the associated weight for sample (xi, yi, zi).
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For each candidate, we define its weight to be the square of the mean of the predictions 

divided by the variance of the predictions across all trees:

(7)

Where  indicates how close this point is to the MSP as predicted by the model, and 

 indicates the model’s confidence about .

The final MSP prediction is thus the weighted least squares estimate at the full resolution 

level.

F. Comparison to Other Methods

For the AC and PC, we compare our results with those obtained by atlas-based registration, 

including affine only, and affine + nonrigid registration, a technique routinely used for 

automatic identification in DBS procedures [36]. We choose one atlas used by Pallavaram et 

al. [36] to be the reference and project its AC and PC points onto the 100 subjects through 

registration. An affine transformation is estimated first by an intensity-based technique that 

uses Mutual Information [37]–[38] as its similarity measure. The results are visually 

checked and manually corrected if a failure is observed. Then nonrigid registration is 

performed with a series of well-established algorithms, including the Adaptive Basis 

Algorithm (ABA), a variation of ABA that is tuned for deep brain structures referred to as 

the Adaptive Basis Algorithm with bounding box (LABA) [39], Diffeomorphic Demons 

(DD) [40], Symmetric Normalization (SyN) [41], Fast Free Form Deformation (F3D) [42], 

and Automatic Registration Toolbox (ART) [43]. A detailed description of those algorithms 

can be found in [44]. We also compare our method to a publicly available toolkit called 

YUKI which implements a recently proposed model-based approach to detect the AC and 

PC [12].

For the MSP, we compare our method to the same toolkit YUKI, which also implements a 

global symmetry-based approach to localize the plane [15].

III. Results

A. Leave-one-out Validation

We have conducted a leave-one-out validation, which uses 99 volumes for training and the 

last one for testing, and repeats this process 100 times.

Results for the AC and PC—A representative example of response maps at the full 

resolution level is shown in Fig. 6, with the top row showing the AC response map and the 

bottom row showing the PC response map. The maps are overlaid on top of the original 

images, with the cross indicating the ground truth and the white dot our prediction. As 

shown in Fig. 6, the ground truth AC and PC have high probabilities and are close to our 

estimations (0.55mm differences for both AC and PC).

To quantitatively evaluate the accuracy of the algorithm, we use the 3D Euclidean distance 

between the automatically detected landmarks and the ground truth. We refer to our 
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algorithm as RF (Random Forests) in the following text. Fig. 7 shows the boxplot of errors 

using different methods for the AC and PC. There are some outliers with errors beyond the 

maximum range of the y-axis (12mm), which are not shown in these figures. This includes 2 

cases using Affine, 4 cases using YUKI for the AC, and 4 cases using YUKI for the PC. We 

also report error statistics for the AC in Table I and PC in Table II. We have excluded those 

above-mentioned outliers when computing mean, maximum, and standard deviations so as 

not to bias the comparisons. Table I and II demonstrate that our method leads to smaller 

mean, maximum, and standard deviation of errors for the AC and PC than the registration-

based methods using Affine, ABA, DD, F3D, and ART, as well as the toolkit YUKI.

We also performed one-sided paired Wilcoxon signed-rank statistical tests to determine 

whether or not the medians of errors using our method are smaller than those using the other 

methods. The p values are shown in Table III. P values smaller than the significance level 

0.05 are marked in red bold. These results show that our method is significantly better than 

most of the other methods. Indeed, it significantly reduces the AC and PC localization errors 

compared to the registration-based approaches using Affine, ABA, DD, F3D, and ART, as 

well as the publicly available toolkit YUKI.

Results for the MSP—A representative example of response maps at the full resolution 

level is shown in Fig. 8 and 9, with the maps overlaid on top of the full resolution images 

resampled in the AC-PC coordinate system established by the ground truth AC, PC, and 

MSP. The vertical yellow axis represents the ground truth MSP and the red line represents 

the MSP detected by our algorithm. As shown in Fig. 8 and 9, points in the plane have high 

probabilities and our estimation is close to the manual selection (1.10° difference in the 

normal direction).

The best, an average, and the worse results are shown in Fig. 10 in the original image space. 

As before the red lines represent our estimations and the yellow lines the ground truth.

To quantitatively evaluate the accuracy of our algorithm, we use the angular differences in 

the normal direction between the automatically detected MSP and the ground truth MSP as a 

measure of error. We also use a metric called average z-distance proposed by Ruppert et al. 

[18]. Referring to (6), this metric is computed as the absolute difference in the z coordinate 

in voxels between the ground truth plane and the estimated plane, averaged for all possible 

pairs of x and y values. This measure provides a sense of the average distance between the 

planes. Fig. 11 shows the boxplot of errors in the normal direction and in the average z-

distance for our method and for YUKI. There are some outliers with errors beyond the 

maximum range of the y-axis (6° or 6 voxels), which are not shown in these figures. This 

includes 3 cases using YUKI. We also report error statistics for the normal direction in 

Table IV and for average z-distance in Table V. We have excluded those above-mentioned 

outliers for YUKI when computing mean, maximum, and standard deviations in order not to 

bias the comparisons. Table IV and V demonstrate that our method leads to smaller mean, 

maximum, and standard deviation of errors in the normal direction and in the average z-

distance compared to the toolkit YUKI.
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We also performed one-sided paired Wilcoxon signed-rank statistical tests to determine 

whether or not the medians of errors using our method are smaller than those using YUKI. P 

values for both the angular errors and the average z-distance are smaller than the 

significance level 0.05, indicating that our method significantly outperforms YUKI.

B. Robustness Evaluation

We have conducted a series of experiments to assess the robustness of our method with 

regard to asymmetry of the brain, quality of the images, and rotational variations across 

subjects. Our experimental design is similar to those described by Liu et al. [16] and Hu et 

al. [23], except that we use clinical volumes instead of mirrored images. For each 

experiment, we randomly select 10 subjects from the dataset, generate simulated images 

under certain conditions, and localize target anatomies using the models previously trained 

for the unperturbed volume as described in section A. We measure the localization accuracy 

with the metrics used in section A, i.e., the distance error for AC and PC, the angular error 

and the distance error (average z-distance) for MSP. Results are averaged over the 10 

subjects and shown in the following subsections.

Robustness with respect to brain asymmetry—We simulate two different scenarios 

to introduce various pathologies that cause brain asymmetry. The first is to superimpose a 

spherical lesion with a specified position, radius, and intensity value in each test volume. 

The intensity value of the sphere replaces the value of the original voxels, as done in [23]. 

The second is to apply a local growth model with a specified seed point, radius, and growth 

rates to deform brain tissues. The growth model is a radially symmetric displacement field 

that produces deformations originating from the seed point and spreading gradually over the 

brain. The seed position is chosen to be away from the MSP to induce asymmetric 

deformation by the model. More details on this model can be found in [45]. For each test 

subject, we generate a set of simulated images with a range of radii for the sphere or the 

growth model as illustrated in Fig. 12 and localize the AC, PC, and MSP in those images.

Fig. 13 shows the localization accuracy for the AC, PC, and MSP for different sizes of 

spherical lesions averaged over the 10 subjects. As shown in the figure, the AC and PC are 

localized well for spheres of small size; errors increase drastically when the radius is larger 

than 40mm. This is because the sphere has occluded the AC/PC region. In this situation, no 

valid AC/PC point exists in the image and detecting those points logically fails. Localization 

of the MSP is less sensitive to the size of the sphere, as illustrated by a successful case in 

Fig. 14 (a). An exception occurs for one subject when the radius is larger than 40mm, as 

shown in Fig. 14 (b). This is because we use the detected AC and PC to help define the 

search region for MSP, and the failure of AC/PC detection in this case leads to a highly 

skewed region with little coverage of the MSP. In practice, this scenario is unlikely to 

happen. If it does happen, our algorithm needs to be modified to handle failure cases for 

AC/PC so that these will not affect the MSP detection.

Fig. 15 shows the localization accuracy for the AC, PC, and MSP for different levels of 

tissue deformation averaged over the 10 subjects. As shown in this figure, the deformation 

we introduced only has a moderate impact on the results, with localization errors for the AC, 
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PC, and MSP within 1.5 mm, degree, or voxel. The errors for MSP increase slightly with the 

amount of deformation. This is because the MSP deviates from planarity in those images; 

approximating it by a plane as we do in (5) is thus no more accurate. Fig. 16 illustrates such 

example for a test case, in which the effect of the tissue deformation is shown with a 

deformed grid (b) and an MSP detection result (c).

Robustness with respect to the noise level—We artificially degrade each test 

volume by adding Gaussian white noise with zero mean and different variances. The 

localization accuracy of the AC, PC, and MSP for those degraded volumes averaged over 10 

subjects at the same signal-to-noise ratio (SNR) level measured in decibel scale is shown in 

Fig. 17. As shown in the figure, our algorithm is able to detect AC and PC with mean error 

around 1mm and extract MSP with mean angular error within 1.5° and mean distance error 

within 1.5 voxel, even when the SNR is as low as −5dB. Results for a test case with SNR=

−5dB are shown in Fig. 18, with 1.53mm error for AC, 1.82mm for PC, 1.06° angular error 

and 1.22 voxel distance error for MSP.

Robustness with respect to rotation—To study the sensitivity of our models to 

rotation, we rotate each test volume with respect to the center of the image around each of 

the x-, y-, and z-axis separately with angles varying from 0° to 20° in 1° intervals. For our 

images, the x-axis corresponds to the anterior-posterior direction, the y-axis the inferior-

superior direction, and the z-axis the left-right direction.

Before running the tests, we slightly adjust our algorithm to handle rotations in test images. 

At each resolution level, we localize target anatomies as previously described, estimate the 

rotation angles around the x and y axes based on the current estimate of the MSP, and use 

these angles to re-orient the image for the next level. Localization errors for the AC, PC, and 

MSP are computed in the original space. Rotation correction is needed because of the 

limited rotational variations around the x and y axes in our dataset. During image 

acquisition, the scanner restricts the movement of the patient’s head from left to right or 

anterior to posterior. Patients can only freely move by looking up or down, which 

corresponds to rotation around the z-axis in our case. Rotation around the z-axis, however, 

does not affect the normal direction of the MSP. This leads to limited angular variations of 

MSP in our dataset. Models trained with those subjects do not generalize well with images 

with large rotations around x and y axes and the above modifications in the methodology are 

necessary.

With the modified method, the localization accuracy with regard to image rotations in the x-, 

y-, and z- axis is shown in Fig. 19, 20, and 21 respectively. Our algorithm for detecting the 

AC, PC and MSP is robust to rotations in all three directions, with mean errors up to 

0.74mm for AC, 1.07mm for PC, 1.25° and 1.30 voxel for MSP.

C. Parameter Sensitivity Analysis

We have also investigated the sensitivity of the parameters on the localization accuracy of 

the AC, PC and MSP. In this study, we select a subset of parameters that may critically 

affect the results. These parameters include (a) the number of trees in the forest, (b) the size 

of the node used to terminate the training process, i.e., the number of samples leaf nodes can 
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contain, (c) the number of features to examine per node, and (d) the size of the Gaussian 

kernel in the mean shift algorithm. Among these parameters, (a)–(c) are used for model 

creation, i.e., training, and (d) for landmark detection. For each experiment, we test a set of 

parameter values with the 10 subjects used in section B.

To test parameter (a), we plot the out-of-bag (OOB) error rate versus the number of trees for 

the nine models averaged over the 10 subjects in Fig. 22. The OOB error is estimated by 

feeding each tree with the training data left out in the construction of this tree as testing data 

and calculating the mean square difference between the true probabilities and the 

predictions. This has been shown to be an unbiased estimate of the test set error [26]. We 

downscaled the OOB errors for MSP by a factor of 10 for visualization purpose. As more 

trees are added, the OOB error first rapidly decreases and gradually reaches a plateau with 

20, which is the number of trees we have used in section A.

For parameter (a), we also assess its direct impact on the localization accuracy by detecting 

the AC, PC, and MSP with only a subset of trees to make predictions. Localization errors are 

shown in Fig. 23. Compared to Fig. 22, we observe the same trend that introducing more 

trees help reduce the errors, with a difference that few trees are actually needed. This is 

because while the OOB plot treats each sample equally, the localization task does not. 

Samples with low probabilities to be the landmark or in the plane have less effect on the 

localization accuracy if their errors are within the tolerance level, as those samples would be 

disregarded from voting for the final prediction.

To test parameters (b) and (c), for each of the 10 subjects, we re-trained models as described 

in section A with the same training data but different parameter values. We vary parameter 

(b) in the interval [1, 20] with a step size of 5. A node size of 1 corresponds to fully grown 

trees. As the node size increases, the degree of pruning increases. For parameter (c), we test 

standard values as suggested in [26], i.e.,  and log2 M with M being the number of 

features for a sample. In our case, these correspond to ~10 and ~50 respectively. We also 

test a range of values between these and the one we have used in our experiments. We then 

localize the AC, PC, and MSP using those re-trained models. Sensitivity of the localization 

errors to parameters (b) and (c) is shown in Fig. 24 and 25 respectively. The values we have 

used in section A are shown with bold lines. These figures suggest that the size of the node 

and the number of features examined per node have little impact on the accuracy of our 

algorithm. While different parameter values may yield slightly better results than those we 

have used, for example, examining 250 features per node leads to smaller errors for MSP, 

the differences are marginal, i.e., within 0.1 degree or voxel.

Fig. 26 shows the localization errors for the AC and PC when we vary parameter (d). Using 

a kernel with zero variance corresponds to identifying landmarks as the voxel with the 

highest probability, as done in [31]. When the variance of the Gaussian kernel increases, 

errors decline at first and then stabilize when the variance reaches 2. This indicates that the 

spatial smoothing of the response maps using the mean shift technique improves the AC/PC 

detection accuracy but the value of the variance has little effect when it is above 2.
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IV. Discussion and Conclusion

In this paper, we propose a learning-based method to automatically detect the AC, PC, and 

MSP in MR T1 brain scans using random regression forests. We use 20 trees to construct the 

forest, a number we chose based on the plot of the OOB error versus the number of trees. 

We have performed a parameter sensitivity analysis, and results indicate that the size of the 

node used to terminate the training process and the number of features that are examined per 

node have little impact on the localization accuracy. The features we have used for learning 

are contextual features generated by randomly displacing vectors. In principle, the number 

of features could be indefinitely large. To keep the computation practical, only a random set 

of 2000 features are used. Recent work by Yaqub et al. [46] has suggested that with feature 

selection the performance of random forests could be enhanced for brain segmentation task 

in T1 images, one direction we would like to pursue in our work in the future.

We localize the landmarks and the plane using a semi-local search in the sense that the 

search is limited to a large region of interest. This is reasonable because all the images in our 

dataset have similar pose and FOV. If heterogeneous datasets with various orientations, 

dimensions, and field-of-views are involved, one will need to reorient the image first as we 

have done when evaluating the sensitivity of our method to rotation to be consistent with the 

training images or increase the size of the region of interest for training and testing at the 

coarse level. Our technique is developed on MR T1 images. However, extension to other 

image modalities is straightforward by building models for that particular image set.

We have conducted leave-one-out experiments to validate our method. Results have shown 

that our approach is accurate and robust, with 0.55±0.30mm and a maximum of 1.78mm 

error for the AC, 0.56±0.28mm and a maximum of 1.50mm error for the PC, a 1.08°±0.66° 

and a maximum of 3.43° angular error in the normal direction, as well as 1.22±0.73 and a 

maximum of 3.73 voxel of distance error in average z-distance for the MSP.

For the AC and the PC, we have compared our approach to single-atlas-based methods using 

six well-established nonrigid registration algorithms and also with a model-based approach 

that has been proposed recently and implemented in the publicly available toolkit YUKI. We 

have found that our algorithm outperforms four nonrigid registration methods (ABA, DD, 

F3D, and ART) as well as the toolkit YUKI in terms of accuracy and robustness; the 

improvements are statistically significant. Other registration methods (LABA and SyN) 

achieve similar or slightly better accuracy than ours. However, they rely on good affine 

initialization. In this study we have manually corrected 9 out of the 100 affine registrations 

so as not to bias the nonrigid registration results. In an automatic system such uncorrected 

affine registration may deteriorate the performance of nonrigid registrations and cause a 

failure in the AC and PC localization.

For the MSP, we have evaluated our method against a global symmetry-based approach 

implemented in the toolkit YUKI as well. Our results for both plane normal errors and 

average z-distances are statistically significantly better than those using YUKI. A thorough 

comparison to other state-of-the-art methods is nontrivial without any publicly available 

implementations and is out of the scope of this paper. However, a review of the literature 
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shows that our method compares favorably to existing techniques. Indeed, in [18], Ruppert 

et al. compared their method to Volkau et al. [20], Teverovskiy et al. [17], and Bergo et al. 

[21] using average z-distance with 20 normal MR T1 images, and the results were 

1.27±0.59, 1.84±1.14, 1.46±0.81, 1.46±0.93 voxel respectively. With a much larger clinical 

dataset of DBS patients, we achieved results (1.22±0.73) that are highly comparable to the 

best in [18] (1.27±0.59). In a most recent study which also employed a learning-based 

schema as discussed earlier [24], Schwing et al. reported angular errors in the normal 

direction of 1.08°±0.76°. This is the same mean as ours but their standard deviation is larger.

We have designed a set of experiments to test the robustness of our algorithm against 

asymmetry of the brain, poor image quality, and variation in rotations across subjects. 

Results show that our algorithm is tolerant to brain asymmetries such as spherical lesions 

and tissue deformations without occlusions of the AC/PC. It is also tolerant to high level of 

imaging noise and, with the modifications described in section III-B, to rotations for the AC, 

PC, and MSP in any direction.

Another advantage of our approach is the speed. Although registration methods such as SyN 

may be marginally more accurate, they generally take at least minutes, if not hours, to run. 

Our method is fast, taking only about 25 seconds on a standard desktop PC with 4 CPU 

cores and 8GB RAM to compute the AC, PC, and MSP all at once. The algorithm is 

implemented in C++ with parallelization. The computations for model training are done on 

the Advanced Center for Computing and Research Education (ACCRE) Linux cluster at 

Vanderbilt University.

We should note that as a supervised learning technique, our method generalizes the 

information learned from training data to the test data. To achieve the desired accuracy for a 

test case, patches extracted from this image should look somewhat similar to those in the 

training set. Fundamentally the performance of our algorithm is limited by the training data 

we use to build the models. For example, without modifications of our method, the lack of 

variations in rotation around the anterior-posterior and superior-inferior axes would lead to 

poor detection of the MSP on test cases with large rotations in those directions. Our 

algorithm could not manage occlusions of the AC/PC region either, as no such sample 

appeared in the training data. In order for the model to capture this information, the training 

set needs to be enriched to handle images with such variations.

There may be some bias towards our method when compared to YUKI, which can be freely 

downloaded [47]. First, YUKI was not trained on the same images we have used. In 

addition, it may have used a slightly different definition of the AC, PC, or MSP. For 

example, the AC could be marked by its center or its posterior edge; the MSP could be 

defined in other ways than using the falx cerebri. Those factors may account for some of the 

performance differences between YUKI and our method. To address this issue and permit a 

thorough comparison between algorithms, it would be beneficial to develop publicly 

available annotated datasets on which algorithms could be applied.
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Fig. 1. 

An example of the brain torque effect. The MSP represented as the vertical yellow axis 

deviates in the posterior region from the blue dotted curve which separates the hemispheres 

symmetrically on this slice.
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Fig. 2. 

Illustration of the MSP selection. The vertical yellow axis is the selection based on the falx 

cerebri, shown as the bright line on the right pointed by the red arrow, and the blue dotted 

line is one possible plane when selecting the MSP in MR T1 image.
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Fig. 3. 

A zoomed view of the CT slice in Fig. 2.
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Fig. 4. 

Sampling regions for the AC (top row) and the MSP (bottom row) of a training subject at 

down-sampled by 4 (left), down-sampled by 2 (middle), and full resolution level (right), 

each overlaid on the corresponding image.
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Fig. 5. 

Response maps for the AC (top row) and the MSP (bottom row) of a testing subject at 

down-sampled by 4 (left), down-sampled by 2 (middle), and full resolution level (right), 

each overlaid on the corresponding image.
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Fig. 6. 

A representative example of response maps for AC (top row) and PC (bottom row) in 

sagittal (left), axial (middle), and coronal (right) views.
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Fig. 7. 

Boxplot of errors for the AC (red) and PC (green) in millimeters.
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Fig. 8. 

A representative example of response maps for the MSP in the axial (left) and coronal 

(right) views.
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Fig. 9. 

A zoomed view of the right panel in Fig. 8.
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Fig. 10. 

The best (top row), an average (middle row), and the worst (bottom row) MSP results using 

our proposed method. Ground truth MSPs are shown as yellow lines, our results as red lines, 

and the YUKI results as green lines.
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Fig. 11. 

Boxplot of errors for the MSP in the normal direction in degrees (blue) and in average z-

distance in voxels (magenta).
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Fig. 12. 

Examples of simulated brain asymmetry for a test subject. Panel (a) shows one slice of the 

original image, and (e) is the same slice overlaid with the ground truth MSP and segmented 

structures represented as yellow contours. Panels (b)–(d) show the images superimposed 

with spherical lesions of radius 30mm, 50mm, and 70mm respectively, with all center points 

located at (XSize/2−20, YSize/2+20, ZSize/2−10) and intensity value=20. Panels (f)–(h) are 

the images deformed by growth models of radius 30mm, 50mm, 70mm respectively, with all 

seed points located at (XSize/2−20, YSize/2+20, ZSize/2−10).
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Fig. 13. 

Localization errors for the AC, PC, and MSP in millimeters, degrees, or voxels with 

simulated spherical lesions of varying radius in millimeters.
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Fig. 14. 

A successful (a) and a failed (b) case for MSP detection with a spherical lesion of 

radius=50mm. Both images are resampled in the AC-PC reference system with their 

response maps for the MSP overlaid on top. The white cross indicates the ground truth AC 

and PC projected on this slice, the yellow line the ground truth MSP, and the red line the 

detected MSP.
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Fig. 15. 

Localization errors for the AC, PC, and MSP in millimeters, degrees, or voxels with 

simulated tissue deformation using growth models of varying radius in millimeters.
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Fig. 16. 

A test case with a growth model of radius=50mm. Panel (a) is the original image, (b) is the 

grid deformed by the growth model, and (c) is the deformed volume overlaid with the 

response map for MSP, with the yellow line representing the ground truth MSP and the red 

line the detected MSP.
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Fig. 17. 

Localization errors for the AC, PC, and MSP in millimeters, degrees, or voxels with additive 

Gaussian noise of zero mean and varying variances.
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Fig. 18. 

Results for a degraded test volume with SNR=−5dB. Left panel (a) shows the image 

resampled in the AC-PC reference system with the response map for the MSP overlaid on 

top. The yellow line represents the ground truth MSP and red line the detected plane. Right 

panel (b) shows a zoomed sagittal view of the image, with the white cross being the 

projection of the ground truth AC/PC, and the red and green point the detected AC and PC 

respectively.
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Fig. 19. 

Localization errors for the AC, PC, and MSP in millimeters, degrees, or voxels with 

simulated rotation around the x-axis from 0 to 20 degrees.
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Fig. 20. 

Localization errors for the AC, PC, and MSP in millimeters, degrees, or voxels with 

simulated rotation around the y-axis from 0 to 20 degrees.
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Fig. 21. 

Localization errors for the AC, PC, and MSP in millimeters, degrees, or voxels with 

simulated rotation around the z-axis from 0 to 20 degrees.
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Fig. 22. 

OOB errors versus the number of trees for models built for the AC, PC, and MSP at three 

different resolution levels. Errors for MSP are downscaled by a factor of 10 for display 

purpose.
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Fig. 23. 

Localization errors for the AC, PC, and MSP using models with different number of trees.
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Fig. 24. 

Localization errors for the AC, PC, and MSP using models built with different size of the 

node to terminate training process.
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Fig. 25. 

Localization errors for the AC, PC, and MSP using models built with different number of 

features to examine per node.
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Fig. 26. 

Localization errors for the AC and PC in millimeters using Gaussian kernels with zero mean 

and varying variances.
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