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Abstract

A novel technique is introduced to locate and track the facial area in videophone-type sequences. The proposed
method essentially consists of two components: (i) a color processing unit, and (ii) a knowledge-based shape and color
analysis module. The color processing component utilizes the distribution of skin-tones in the HSV color space to obtain
an initial set of candidate regions or objects. The second component in the segmentation scheme, that is, the shape and
color analysis module is used to correctly identify and select the facial region in the case where more than one object has
been extracted. A number of fuzzy membership functions are devised to provide information about each object’s shape,
orientation, location and average hue. An aggregation operator finally combines these measures and correctly selects the
facial area. The suggested approach is robust with regard to different skin types, and various types of object or
background motion within the scene. Furthermore, the algorithm can be implemented at a low computational
complexity due to the binary nature of the operations involved. Experimental results are presented for a series of CIF and
QCIF video sequences. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Digital video is an integral part of many newly
emerging multimedia applications. Recent ad-
vances in the area of mobile communications and
the tremendous growth of the Internet have placed
even greater demands on the need for more effective

video coding schemes. However, future coding
techniques must focus on providing better ways to
represent, integrate and exchange visual information
in addition to efficient compression methods. These
efforts aim to provide the user with greater flexibility
for ‘content-based’ access and manipulation of
multimedia data. Numerous video applications
such as portable videophones, videoconferencing,
multimedia databases, and video on demand can
greatly benefit from better compression schemes
and this added ‘content-based’ functionality.
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International video coding standards such as
H.261, and more recently recommendation H.263,
are widely used for very low bit-rate applications
such as those described above. These existing stan-
dards including MPEG 1 and 2 are all based on the
same framework, that is, they employ a block-
based motion compensation scheme and the dis-
crete cosine transform for intra-frame encoding.
However, this block-based approach introduces
blocking artifacts and motion ‘jerkiness’ in the re-
constructed sequences. Furthermore, the existing
standards deal with video exclusively at the frame
level, thereby preventing the manipulation of indi-
vidual objects within the bitstream. Second genera-
tion coding algorithms have focused on representing
a scene in terms of ‘objects’ rather than square
blocks [15,10]. This approach not only improves the
coding efficiency and alleviates the blocking arti-
facts, but it can also support the content-based func-
tionalities mentioned previously by allowing inter-
activity and manipulation of specific objects within
the video stream. These are some of the objectives
and issues addressed within the framework of the
MPEG 4 and future MPEG 7 standards [4].

In order to obtain an object-based representa-
tion, an input video sequence must first be seg-
mented into an appropriate set of arbitrarily
shaped regions (termed the video object planes in
the MPEG 4 verification model), where each of the
regions may represent a particular content of the
video stream [25]. The features of each ‘object’ such
as shape, motion, and texture information can sub-
sequently be coded into the so called video object
layer for transmission or storage. Thus, the success
of any object-based approach depends largely on
the segmentation of the scene based on its image
contents. In a videophone-type application for
example, an accurate segmentation of the facial
region can serve two purposes: (1) it can allow the
encoder to place more emphasis on the facial region
since this area (i.e. the eyes and mouth in particu-
lar) is the focus of attention to the human visual
system of an observer, and (2) it can also be used to
extract features so that higher-level descriptions
can be generated (i.e. personal characteristics, facial
expressions, and composition information). In
a similar fashion, the contents within a video
database can be segmented into individual objects,

where the following features can be supported:
(1) sophisticated query and retrieval functions, (2)
advanced editing and compositing, and (3) better
compression ratios.

In this paper, we focus on the automatic location
and tracking of the facial region of a head-and-
shoulders videophone-type sequence using color
and shape information. The method we present
utilizes the skin-tone distribution of the histograms
in the HSV color space to initially extract the facial
region. The segmentation results are then refined
using a series of post-processing operations which
include median filtering, region filling and removal,
and morphological opening and closing operations.
A series of fuzzy membership functions are finally
used to correctly classify and retain the facial area
in the case of additional falsely included regions.
The feature vector obtained from this last step can
be used to augment a further feature extraction
stage which can support the aforementioned ‘con-
tent-based’ functionalities. Our approach is robust
with regards to facial shape, size, skin color, ori-
entation, motion, and lighting conditions. Further-
more, it can be implemented at a relatively low
computational complexity due to the binary nature
of the operations performed.

The organization of the paper is as follows. In
Section 2 the color attribute is investigated as one
of the two visual cues to be used in the segmenta-
tion process. The distributions of various skin-
types are first examined within the framework of
the HSV color space. The technique utilized to
extract the skin-tone clusters within an image is
later introduced. A series of post-processing opera-
tions used to refine the shape of the facial region are
then discussed in the last part of the section. In
Section 3 the second part of the localization
scheme is described which consists of the shape and
color analysis module. More specifically, the shape
attribute is discussed along with the fuzzy member-
ship functions used to form this knowledge-based
decision module. Aggregation operators used to
select the facial region from the set of candidate
objects, are finally examined at the end of the sec-
tion. In Section 4, experimental results are pre-
sented and analyzed for several videophone-type
sequences. Finally, in Section 5 the conclusions are
drawn up.
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2. Color image segmentation

2.1. Motivation and related work

The recognition of human faces is currently an
active area of research in computer vision
[1,13,16,31]. The task of recognizing human faces is
essentially a two-step process: (1) the detection and
automatic location of the human face, and (2) the
automatic identification of the face based on the
extracted features. Most of the research to date has
been directed towards the latter identification
phase, with less emphasis being placed on the initial
localization stage. However, the first step is critical
to the success of the second and the overall recogni-
tion system. Thus, the importance of obtaining an
accurate localization of the face is clear and vital in
numerous applications including human recogni-
tion for security purposes, human-computer inter-
faces and, more recently, for video coding, video
databases, and video on demand. Nevertheless, de-
termining the location of a face of unknown size,
in a scene with a complex or moving background
still remains a difficult problem that is relatively
unexplored.

Several techniques based on shape and motion
information have been proposed recently for the
automatic location of the facial region [5,14,22].
The former two are related to video coding applica-
tions while the latter is part of a facial recognition
system. The shape-based approach in [5] models
the contours of the face as an ellipse. The location
of the facial region is determined by performing an
ellipse fitting task to a thresholded binary edge
image. In [22], a generic 3-D face model is adapted
to the extracted facial outline from a videophone
type scene for the case where only one person is
talking against a stationary background. In this
application, a hierarchical localization scheme is
utilized to isolate the facial area. The technique is
based on the shape of the extracted head-and-
shoulders silhouette which is obtained using the
thresholded frame differences. Finally, in [14],
a motion detection algorithm is used to segment
the facial area from a complex background. The
proposed method locates the facial region by as-
suming that the object having the greatest motion
in the video sequence is the face to be detected. This

assumption, however, may limit the success of the
approach in applications with non-stationary
backgrounds (i.e. mobile videophones) and/or
other moving objects in the scene. The authors also
acknowledge potential problems caused by noise or
other objects moving in the background and also
suggest a modification in their technique to better
handle the case of tilted or turned faces.

Color is a key feature used to understand and
recollect the contents within a scene. It is found to
be a highly reliable attribute for image retrieval as it
is generally invariant to translation, rotation, and
scale changes [12]. In our approach we use color as
the primary tool in detecting and locating the facial
region in a scene with a complex or moving back-
ground. In certain cases, however, the use of
a single image attribute such as color may lead to
additional falsely detected objects. This situation
may occur when other objects in the scene have
colors similar to those of skin tone regions. In these
cases, a feature vector based on a number of shape
characteristics is constructed from a series of fuzzy
membership functions to provide the necessary dis-
criminatory information. The aggregation of these
features within the framework of a knowledge-
based decision system provides the mechanism of
selecting the facial area from the set of candidate
regions.

The segmentation of a color image is the process
of classifying the pixels within the image into a set
of clusters with a uniform color characteristic. The
objective in our approach is to detect and isolate
the color clusters that correspond to the skin areas
of the facial region. However, the shape or distribu-
tion of the clusters that form depend on the chosen
color space [29]. Therefore, the most advantageous
color space must first be selected (i.e. one which
produces distinct and clearly separated clusters) in
order to obtain the most effective results in the
segmentation process. In [14], the color distribu-
tion of a facial image was examined using four
different color coordinate systems, which included
the RGB space, HSI, CIE L*u*v*, and the Kar-
hunen—Loeve transformation. The HSI color space
was found to be the most suitable as it produced
clusters that were clearly separated, allowing them
to be detected and readily extracted. The other
three spaces showed ambiguity in the partitioning
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Fig. 1. HSV hexcone color model.

of these clusters. We have found similar results by
examining the RGB, HSV and the L*a*b* color
spaces. The HSV space (similar to HSI) appeared to
be the most advantageous due to the distribution of
the clusters formed. The perceptually uniform
L*a*b* space did not exhibit a global compactness
in the different skin clusters, making it difficult to
derive a uniform distance metric for segmentation
purposes. The set of transformation equations that
relate the different color coordinate systems can be
found in [21]. A more detailed account of the
selected HSV space is presented below.

2.2. HSV color space

Color information is commonly represented in
the widely used RGB coordinate system. This basis
is hardware oriented and is suitable for acquisition
or display devices but not particularly applicable in
describing the perception of colors. On the other
hand, the HSV (hue, saturation, value) color model
corresponds more closely to the human perception
of color. The HSV color space is conveniently rep-
resented by the hexcone model shown in Fig. 1.
The hue (H) is measured by the angle around the

vertical axis and has a range of values between
0 and 360 degrees beginning with red at 0°. It gives
us a measure of the spectral composition of a color.
The saturation (S) is a ratio that ranges from 0 (i.e.
on the » axis), extending radially outwards to
a maximum value of 1 on the triangular sides of the
hexcone. This component refers to the proportion
of pure light of the dominant wavelength and indi-
cates how far a color is from a gray of equal
brightness. The value (») also ranges between 0 and
1 and is a measure of the relative brightness. At the
origin, »"0 and this point corresponds to ‘black’.
At this particular value, both H and S are unde-
fined and meaningless. As we traverse upwards
along the » axis we perceive different shades of
gray until the endpoint is reached (where »"1
and S"0) which is considered to be ‘white’. At any
point along the » axis the saturation component is
zero and the hue is undefined. This singularity
occurs whenever R"G"B. The set of equations
below can be used to transform a point in the RGB
coordinate system to the appropriate value in the
HSV space.

H
1
"cos~1G

1
2
[(R!G)#(R!B)]

J(R!G)2#(R!B)(G!B)H, (1)

H"H
1

if B)G, (2)

H"360°!H
1

if B'G, (3)

S"
Max(R,G,B)!Min(R,G,B)

Max(R,G,B)
, (4)

»"

Max(R,G,B)

255
. (5)

In the expressions above, the Max and Min oper-
ators select the maximum and minimum values of
the operand, respectively, and R, G and B range
between 0 and 255. A fast algorithm used here to
convert the set of RGB values to the HSV color
space is provided in [7]. The HSI (hue, saturation,
intensity) color space mentioned earlier, is analog-
ous to the HSV model and is conveniently repre-
sented by the biconical color solid [11]. In this
biconical model, the effectiveness of the hue is lim-
ited at both, the low and high Intensity values [28].
This additional limitation at the high end may
affect the robustness of our proposed hue-based
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Table 1
Statistics of the hue distribution categorized by race

Caucasian African—American Asian

m (°) p (°) m p m p
25.3 6.8 8.6 8.2 28.9 5.1

color segmentation approach and, thus, the HSV
model is selected. The computational complexity of
the HSV transformation equations are also advant-
ageous over the corresponding trigonometric HSI
relations.

Having defined the selected HSV color space, we
must subsequently devise a technique to determine
and extract the color clusters that correspond to
the facial skin regions. This requires an understand-
ing of where these clusters form in the space just
outlined above. We examine the distribution of
these clusters next.

2.3. Skin-tone distribution

Human skin is composed of several layers of
tissue which consist essentially of blood cells, and
a yellow pigment called melanin [6]. The appear-
ance of the skin is affected by a number of factors
which include the degree of pigmentation (varies
amongst individuals and different races), the con-
centration of blood, and the incident light source.
The combination of all of these factors give rise to
a variation in skin color which spans over the range
of red, yellow and brownish-black. Nevertheless,
this corresponds to a restricted range of hue values
as will be shown below. In [27], a hue range that is
representative of skin regions has also been pro-
posed.

A large sample of head-and-shoulders type im-
ages were collected to observe the distribution of
skin colors in the HSV color space. The test images
contained several MPEG 4 test sequences (i.e.
well-behaved lighting), as well as numerous still
images obtained from the Internet that contained
random lighting conditions (i.e. poor and well lit).
The test set consisted of facial images from differ-
ent races, in order to model a wide range of skin
colors. These included Caucasian, Asian and
African—American skin-types. Over three hundred
images were used as the training set for each cat-
egory so that an adequate sample set could be
obtained at a suitably feasible complexity. The fol-
lowing scheme was used to generate the histograms
for the H, S and » components of each category.
The facial skin region was manually selected in
each sample image, and the H, S and » values were

determined for each pixel within this area. The
histograms were subsequently formed by compiling
the results from all of the images within each cat-
egory. The normalized histograms obtained from
this procedure are shown in Fig. 2. It is clear that in
all three categories the hue component consists of
a limited range of values. The hue values of Cau-
casian and Asian samples fall predominantly be-
tween 0° (Red) and 60° (Yellow) while those of
African—American are shifted closer towards 0°
with a small portion of the distribution in the
red—magenta hue sector. One may also note that
the hue values between 180° and 360° can be repre-
sented by their equivalent negative values (i.e.
340°"!20°). In the figures, the Saturation com-
ponent ranges from about 10 to 100% in all cases,
with the majority falling in the 20—60% range. This
suggests that the skin colors for all races are some-
what saturated but not deeply saturated. Finally,
we see in Fig. 2 that the Value or brightness com-
ponent for both Caucasian and Asian distributions
ranges from approximately 40% to the maximum
value of 100%. The Asian test images are shifted
even more so towards the maximum value of » (i.e.
top of the hexcone model) signifying a high level of
brightness in the facial skin regions of these sam-
ples. The African—American test set on the other
hand, has a wider value range but is shifted towards
lower values. The mean, m, and standard deviation,
p (both given in degrees), of the three hue distribu-
tions are conveniently summarized in Table 1. The
tabulated values indicate that the Asian test sam-
ples have the highest mean value of the three distri-
butions, m"28.9° (i.e. greater shift towards Yel-
low) with the lowest standard deviation, p. The
Caucasian sample set has similar statistics with
a slightly smaller mean value, m"25.3° and
a slightly larger value of p. The African—American
distribution has the smallest mean value of the
three, m"8.6° (shift towards red) and the largest
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Fig. 2. Skin color distributions of different races in the HSV space: (a) Caucasian, (b) African—American and (c) Asian test samples.
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Fig. 2. Continued.

standard deviation. The large value in p can be
attributed to the variation in skin colors within the
African—American sample set.

Having obtained the distribution for this
wide range of skin colors, we must devise an appro-
priate scheme to segment the facial skin area in any
given image. We outline the proposed technique
below.

2.4. Extraction of skin-tone regions

The basis of segmenting an image by color lies in
the extraction of a set of regions that satisfy some
homogeneity criterion using the spectral compo-
nents of the image. The approach in any technique
depends on the way these regions to be extracted
are defined and formed. Four fundamental ap-
proaches can be identified and are categorized as
follows: (1) pixel-based techniques, (2) area-based
methods, (3) edge-based schemes, and (4) physics-
based vision models. In the first of these techniques,
the regions to be segmented are determined by
operating directly in the color space domain. The
set of pixels that form each region are determined
by a class membership function which is defined in
the selected color space. Histogram-based tech-
niques, clustering and fuzzy clustering methods all
fall into this first category. In the area-based
schemes of the second category, the regions of uni-
formity are determined by operating spatially in the
image domain. Region growing, and split and
merge algorithms belong to this class of techniques.
In edge-based segmentation, a color contour is
created by connecting a set of edge pixels deter-
mined by various color edge detectors. Finally, the
fourth category belongs to a relatively new class of
computer vision methods which employ physical
models to partition the image. The aim in this latter
approach is to segment the image at the object
boundaries rather than the edges of highlights or
shadows of the image. An extensive survey of the
various techniques can be found in [26].

The method we propose here falls into the first of
the four categories described above. The objective
in pixel-based segmentation techniques is to parti-
tion or divide the color space rather than segment
the spatial domain of the image. In histogram-based
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approaches this partitioning can be accomplished
by determining the significant peaks and valleys of
the computed histograms and setting the thresh-
olds accordingly. A variety of multi histogram-
based thresholding schemes have been suggested
to divide multichannel data as in color images
[17,18]. Alternatively, the color space can be
divided by using a technique known as clustering
[2,29]. In this scheme, the partitioning is a function
of the input vectors (i.e. vector values of the color
pixels) and is based on a criterion of optimality
such as the least sum of squares. This is closely
related to the vector quantization problem of map-
ping the set of input vectors to a finite number of
weight vectors which form the Voronoi tessellation.
The computational complexity of these latter tech-
niques can become quite demanding. Either of the
two approaches just described can be utilized as
general purpose segmentation schemes. However,
a scene that consists of an unknown number of
homogeneous regions or objects is, in general, very
difficult to segment. In many cases, the techniques
involve some human interaction in which certain
thresholds are manually selected or where assump-
tions are made regarding the number of distinct
regions or clusters in the scene. In our particular
application, we utilize the apriori knowledge of the
skin-tone distributions found previously to identify
and extract the facial skin regions. A polyhedron is
defined in the HSV hexcone model which contains
the skin-colored clusters. The proper selection of
this polyhedron is the key to obtaining successful
segmentation results.

The hue component is the most significant fea-
ture in defining the desired polyhedron. The histo-
grams of Fig. 2 indicate that the hue values can be
represented by a limited range 340—360° (ma-
genta—red) and 0—50° (red—yellow) for all skin types.
This range is very effective in extracting skin
colored regions under higher levels of illumination
and sufficiently saturated colors. However, the hue
can be unreliable when the following two condi-
tions arise: (1) when the level of brightness (i.e.
value) in the scene is low, or (2) when the regions
under consideration have low saturation values.
The first condition can occur in areas of the image
where there are shadows or, generally, under low
lighting levels. In the second case, low values of

saturation correspond to achromatic regions. As
mentioned previously, saturation values of zero lie
on the » axis in the hexcone model and appear as
gray areas. Many objects, by nature, are achro-
matic (i.e. white clouds, gray asphalt roads, etc.),
however, shadows or conditions of non-uniform
illumination (i.e. specular reflection) can cause
chromatic regions such as skin areas to appear
achromatic. Thus, we must define thresholds for the
value and saturation components where the hue
attribute is reliable. Incidentally, this will also de-
fine the desired polyhedron.

The HSV hexcone model of Fig. 1 and the dis-
tributions of Fig. 2 were used in the threshold
selection process. A lower bound threshold of
¹

7!-
"35% was chosen for the value component.

Pixels with values less than ¹
7!-

were not con-
sidered in the segmentation process as the hue
becomes unreliable for values below this threshold.
This can be seen visually by observing the hexcone
model as the value component is varied. Fig. 3 il-
lustrates four different cases: (1) when the bright-
ness value is at its maximum, »"100%, (2) at
»"63%, (3) at the threshold value, where
»"¹

7!-
"35%, and (4) below the threshold value

at »"20%. The figure gives us an indication of
the discriminatory power of the hue component at
four different slices (i.e. hexagons) of the hexcone
model. Radial supersets of the hexagons are shown
in the figure for the sake of simplicity. In each
circular plot, the saturation varies radially from
0%, at the center of each circle, to 100%, at the
outer edges of the circle. The effectiveness of the hue
is evident in parts (a) and (b) where the value is at its
maximum, and at »"63%, respectively. Part (d)
clearly illustrates that the hue is meaningless when
the brightness in the scene is low. On the other
hand, the threshold value of »"35% in part (c) is
a break point where the hue component starts to
become ineffective. Experimental results also in-
dicated that the selection of a lower threshold led to
erroneously detected regions. The importance of
intensity information for color image segmentation
has also been emphasized in [8,9,29].

A saturation threshold, ¹
4!5

, is also very impor-
tant in obtaining reliable segmentation results. We
have found that the hue is reliable when the satura-
tion is greater than 20% and meaningless when it is
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Fig. 3. HSV hexcone model at different values of the » component: (a) »"100%, (b) »"63%, (c) »"¹
V!-

"35% and (d) »"20%.
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less than 10%. Similar results have been deter-
mined in [8]. The sector between 0% and 10%
corresponds to the achromatic sector of a particu-
lar hexagonal slice in the HSV model. The range
between 10% and 20% represents a sort of
transition from the achromatic to the chromatic
areas. Selecting ¹

4!5
"20% as a lower bound yields

satisfactory segmentation results, however, we have
found that the addition of a select number of pixels
within the 10—20% range can improve the results.
This procedure is outlined below.

A principal polyhedron, PP, that corresponds to
skin colored clusters with well-defined saturation
components is formed by the selection of the
following four thresholds:

¹
)6%1

"340°)H)¹
)6%2

"360°, (6)

¹
)6%3

"0°)H)¹
)6%4

"50°, (7)

S*¹
4!51

"20%, (8)

»*¹
7!-

"35%. (9)

Although this polyhedron is successful in extracting
the skin-tone regions, an improvement can be real-
ized if an additional number of pixels are selected
from a second polyhedron, SP. This second poly-
hedron corresponds to the 10—20% transitional
range and is determined adaptively as described
below.

The histogram of all saturation values that lie
within the bounds of Eqs. (6), (7) and (9) is first
formed. The analysis of this histogram allows the
threshold, ¹

4!52
, to be selected which is essentially

used to separate the chromatic and achromatic
regions within the transitional region. Having de-
termined the saturation histogram, we search for
the first peak, Pk

1
, beginning the search from the

0% saturation level. If the first peak exists at
a value greater than 20% then the scene consists
of mainly chromatic areas and a choice of
¹

4!52
"10% can safely be made. If Pk

1
is within the

range 0—20% then the image also contains some
achromatic regions (more so if Pk

1
is between 0%

and 10%) which must be separated. In this case, the
second peak, Pk

2
is detected (i.e. as we move away

from Pk
1

in the direction of increasing saturation)
and the in-between valley, Vl

1,2
is found. If Vl

1,2
lies in the range 0—20% then the selection

¹
4!52

"Max(10%,Vl
1,2

) is made, where Max se-
lects the maximum value of the operand. In certain
images, the scene may consist of mainly chromatic
regions where the saturation component gets
slightly shifted due to the lighting conditions. This
may result in the first peak being just under 20%
with the valley being greater than 20%. In this case,
we would like to include the chromatic component,
and thus a saturation threshold of 10% is chosen.
A similar procedure has been proposed in [8] for
determining an adaptive threshold value in the
saturation component. Thus, the selection of
¹

4!52
is summarized as follows:

¹
4!52

"10%, if Pk
1
'20%, (10)

¹
4!52

"Max(10%,Vl
1,2

),

if Pk
1
(20%W 0%)Vl

1,2
)20%, (11)

¹
4!52

"10%, if Pk
1
(20%WVl

1,2
'20%. (12)

In order to extract the significant peaks and valleys,
then the histograms above must be smoothed to
remove any meaningless local extrema. For this
purpose, we apply the well-known scale space filter
[3,30] where the 1-D saturation histogram, f

s
(x), is

convolved with the Gaussian function, g(x, q), of
zero mean, m, and standard deviation, q:

F
s
(x, q) f

s *
g(x, q)

"P
=

~=

f
s

1

J2pq
expC

!(x!u)2

2q2 Ddu. (13)

The peaks and valleys can subsequently be deter-
mined by examining the first and second deriva-
tives of F

s
above. The procedure just described is

effective in separating the chromatic and achro-
matic regions.

The second polyhedron, SP, can now be formed
by using the saturation threshold, ¹

4!52
, that was

just determined and this is defined by

¹
)6%1

"340°)H)¹
)6%2

"360°, (14)

¹
)6%3

"0°)H)¹
)6%4

"50°, (15)

¹
4!52

)S)20%, (16)

»*¹
7!-

"35%. (17)

The two polyhedra, PP and SP, expressed by
Eqs. (6)—(9) and Eqs. (10)—(17), respectively, can
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Fig. 4. Overall segmentation scheme using color and shape attributes.

now be used to extract the areas that correspond to
the skin-tone clusters. The initial color segmenta-
tion using the defined polyhedra is summarized in
the next section.

2.5. Segmentation using the color attribute

The overall segmentation technique that we pro-
pose is shown in the block diagram of Fig. 4. It
consists essentially of two components: (1) a two-
stage color processing module, and (2) a shape and

color analysis module which is implemented in the
third and final stage.

The first stage of the procedure is composed of
three fundamental blocks as shown in Fig. 4. In the
first of these, all of the pixels in the input image or
frame that lie within the principal polyhedron, PP,
are extracted and passed on to the next block. The
transformation equations of Eqs. (1)—(5) can be
used to convert RGB pixel values to the HSV color
space. The extent of the hue range as defined in the
principal polyhedron was chosen to be quite wide
so that a variety of skin types could be modeled. As
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a result of this, other objects in the scene with
‘skin-like’ colors (i.e. reddish-brown shirt) may also
be extracted by this first block. Thus, the function
of the second block is to separate these objects by
color if this case arises. This is accomplished by
analyzing the hue histogram of the extracted pixels.
Scale space filtering, as described earlier, is used to
smoothen the histogram and obtain the meaningful
peaks and valleys. The valley between two peaks is
used to separate two objects that possess different
hue ranges (i.e. the facial region and a different
colored object). This process partitions the initial
segmentation into distinct hue regions, HR

i
, as

shown in the output of the second functional block
of Fig. 4. Incidentally, in the remote case that an-
other object matches the skin color of the facial
area (i.e. separation is not possible by the scale
space filter), then the shape analysis block in
stage 3 will again provide the necessary discrimi-
natory functionality. The binary representation
of the pixels within each hue region are sub-
sequently taken and passed on to the last block of
Stage 1. A binary median filter and a region filling
and removal step is applied to each hue region
independently, to generate a set of objects of
significant size. The objects within each region are
finally combined to obtain the distinct objects, O

i
.

Further post-processing and shape analysis of these
objects takes place on the bi-level images (i.e.
binary representation of the objects) which we refer
to as the object silhouettes. Details of the final
post-processing block are described in the next
subsection.

The output from the first stage is next passed on
to the second stage of the color processing module.
As mentioned earlier, the purpose of this second
stage is to refine the segmentation results of the
initial stage. In most cases, very reasonable results
may be obtained even if this second stage is by-
passed. In the first block, the secondary polyhed-
ron, SP, is now used to extract the set of pixels that
lie within this solid (the first block of both stages
1 and 2 can actually be implemented in one pass of
the image). The extracted pixels S

i
are subsequently

merged with the results from stage 1. The merging
process is performed as follows. Each pixel S

i
is

taken, and the distance d
cs

to the centroid of each
object, O

i#
, is computed. The centroid of each object

is easily determined from the bi-level image using
the object silhouette [11]. If the distance to the
closest object is less than a certain threshold, then
the pixel under consideration is added to that par-
ticular object. If it does not fall within the thre-
shold, then the candidate pixel is discarded (i.e. not
part of any object). The threshold chosen here is
that d

cs
must be within a certain factor, f

d
, of the

distance from the centroid of the object to the most
distant point of the object, d

cp
. In other words,

d
cs
)f

d
]d

cp
, where a reasonable selection of f

d
is

made if this factor ranges between 1.0 and 1.5. The
merging block just described consists of binary
operations (i.e. performed on the object silhouettes)
which can be implemented at a very low computa-
tional complexity.

The output from the merging block of the second
stage is finally passed on to a post-processing block
similar to the one in Stage 1 with the exception of
an additional morphological operator. This block
essentially refines the shape of the objects in the
image and produces the final results from the color
processing module (i.e. a set of refined objects, C

i
).

The details of this post-processing block are pre-
sented next.

2.6. Median filtering and region filling/removal

The median filter has found its way into numer-
ous applications and has been particularly success-
ful in the filtering of noise corrupted images and
video sequences [19]. Here, the median filter is
applied in the third block of each stage of the color
processing module. Once again, we operate on the
binary image frames which consist of the object
silhouettes. The purpose of this median operation is
to smoothen these silhouettes and also eliminate
any isolated misclassified pixels that may appear as
impulsive type noise from the initial color extraction
stage (i.e. the output from block 2 of either stage).
The two-dimensional median filter is given by

y
k,l
"medMx

k`r,l`s
; (r, s)3AN, (18)

where A defines the size and structure of the filter
window about the central pixel (k, l). A set of
n o2bservations, x

i
, for i"1,2, n are obtained

from the filter window, and the median value is
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computed as follows:

y
k,l
"med(x

i
)"x

(l`1)
, (19)

where n"2l#1 and x
(i)

denotes the ith order
statistic. Square filter windows of size 5]5 and
7]7 provide a good balance between adequate
noise suppression, and sufficient detail preserva-
tion. The binary output, y

k,l
above, can also be

determined by a simple counting procedure which
leads to a fast implementation.

The result of the median operation is successful
in removing any misclassified ‘noise-like’ pixels,
however, small isolated regions and small holes
within object areas may still remain after this step.
Thus, we follow the application of median filtering
by region filling and removal. This operation fills in
small holes within objects which may occur due to
color differences (i.e. eyes and mouth of the facial
skin region), extreme shadows, or any unusual
lighting effects (specular reflections). At the same
time, any erroneous small regions are also elimi-
nated as candidate object areas.

This second post-processing step involves
boundary extraction and contour tracing/counting
of the median filtered binary image. The bound-
aries or edges of the binary image are easily deter-
mined by identifying the black pixels with at least
one white nearest neighbor. We note that in the
bi-level image, the black pixels correspond to skin-
colored regions while the white space represents the
non-skin-colored areas. The edge points of each
contour formed are subsequently followed (under
eight connectivity) and counted. If the contour
boundary is less than a pre-determined threshold
then the region is either filled or removed. If the
region is surrounded by neighboring skin pixels
then it is filled otherwise it is eliminated. The selec-
tion of the contour boundary threshold is based on
the size of the image (i.e. smaller thresholds for
smaller size images).

2.7. Morphological processing

The result of median filtering and region fill-
ing/removal yields one or more objects of signifi-
cant size in which one of these is the facial region. In
certain video sequences, however, we have found

gaps or holes around the eyes of the segmented
facial area. This occurs in sequences where the
forehead is covered by hair and as a result the eyes
fail to be included in the segmentation. Two mor-
phological operators are used in the final block of
the color processing module to account for this
problem and also to smoothen the facial contour.

Most morphological operations can be defined
in terms of two basic operations, erosion and dila-
tion [24]. The erosion of an object X with the
structuring element B is defined as the set of all
points x such that Bx (the translation of B so that its
origin is located at x) is included in X,

X>B"Mx: BxLXN. (20)

Similarly, the dilation of X by B is the set of all
points x such that Bx hits x, that is, they have
a non-empty intersection [11],

X=B"Mx: B
x
W XO0N. (21)

The erosion outlined above uniformly reduces the
size of an object whereas dilation performs the
inverse and expands the object size. When com-
bined, these two operations form the familiar mor-
phological opening

XB"(X>B)=B (22)

and closing

XB
"(X=B)>B. (23)

Here, we use these last two operations in the final
post-processing stage. The closing operation is first
used to fill in small holes and gaps followed by an
opening operation which is used to remove small
spurs and thin channels. Both of these operations
maintain the original shapes and sizes of the object.
A compact structuring element such as a circle or
square without holes can be used to implement
these operations and at the same time it can also
help to smoothen the object contours. A semi-
circular structuring element was used here as it
provided adequate smoothing and a two-fold re-
duction in the computation time over its circular
counterpart. Furthermore, these binary mor-
phological operations can be implemented by low
complexity ‘hit or miss’ transformations [24].

The output from the last block of the second stage,
C

i
, is the final result that is obtained from the color
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processing module. At this point, the segmented re-
sults may contain one or more objects, C

i
, in which

one of these consists of the facial area. The shape and
color analysis module of Stage 3 provides the mech-
anism to correctly select and classify the facial re-
gion. More details of this third stage are provided in
the following section on shape and color analysis.

3. Shape and color analysis

3.1. Introduction

The output from the color processing module
may contain objects other than the facial area. In
this case, additional processing is needed to
guarantee that the actual face will be extracted
rather than an object with similar hue character-
istics. In order to achieve this, a number of expected
facial characteristics such as the shape, symmetry
and facial location within the image should be used
to determine the correct facial region. These facial
characteristics will be fuzzified so that they become
less sensitive to variations in the feature values.
Although we apply the knowledge-based methodo-
logy to the problem of face location, it should be
noted that feature-based recognition systems can
be used to identify arbitrary objects. Such systems
are based on the development of an object descrip-
tion from examples that are available to the de-
signer. In the actual operating phase, the know-
ledge-based system associates a membership value
with every feature for each one of the objects. These
values give us an indication of the goodness of fit
with an ideal prototype of the corresponding fea-
ture. An overall ‘goodness of fit’ value can finally be
derived for each object by combining the measures
obtained from the individual primitives.

In most cases, the description of an object cannot
be characterized by some unique or ideal value.
However, fuzzy set theory can be used to quantify
the acquired knowledge about the object. A num-
ber of fuzzy membership functions can be utilized
to transform the physical measurements of the ob-
ject into a set of values in the interval [0, 1]. The
value of a particular membership function quan-
tifies the degree to which the object fits the corre-
sponding primitive. Depending on the construction

of the knowledge-based system many of these mem-
bership values can be fused together to generate an
overall goodness of fit measure for the object under
consideration.

In conventional knowledge-based face recogni-
tion systems, features such as the width of the eyes,
nose and mouth, the distances between pairs of
facial components, and the geometry of the human
face are used as primitives. In Stage 3 of our seg-
mentation scheme we utilize a set of features that
are suitable for our application purposes. In most
videoconferencing or videophone-type sequences,
the scene consists of front-view faces which are
relatively close to the center of the image. Thus, we
utilize features such as the location of the face, its
orientation from the vertical axis, and its aspect
ratio to assist us with the location/recognition task.
Values from these primitives are used to construct
the membership functions using a set of examples
that are available during the training phase. In the
evaluation phase, the corresponding membership
function values are used to determine the degree to
which each object satisfies the particular invocation
of the facial feature.

In the methodology we propose, each segmented
object, C

i
(i.e. obtained from the color processing

module of Stage 2), is examined to determine the
degree to which it satisfies the selected facial primi-
tives. More specifically, we consider the following
four features (primitives) in our face localization
system:
1. Deviation from the average hue value of the differ-

ent skin-type categories. The average hue value
for different skin-types varies amongst humans
and depends on the race, gender and the age of
the person. However, it was shown in Section 2
that the facial region exhibits regular properties
in the HSV color space. In particular, the hue
values of skin fall within a specific range for all
skin-type categories (Table 1). The average hue
of the different skin-types forms a range that
represents the most probable hue for human
skin tones. The deviation of an object’s expected
hue value from this defined range gives us an
indication of its similarity to skin tone colors.

2. Face aspect ratio. Given the geometry and the
shape of the human face, it is reasonable to
expect that the ratio of height to width falls
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Fig. 5. General trapezoidal membership function.

within a specific range. If the dimensions of
a segmented object fit the commonly accepted
dimensions of the human face then it can be
classified as a facial area.

3. »ertical orientation. The location of an object in
a scene depends largely on the viewing angle of
the camera, and the acquisition devices. In video
sequences intended for videoconferencing,
videophone or multimedia mail applications, it
is assumed that:
3.1. The head is not tilted forwards, or back-

wards so that the face becomes occluded.
3.2. Only reasonable rotations of the head are

allowed in the image plane. This corresponds
to a small deviation of the facial symmetry
axis from the vertical direction. This is
a logical assumption for the intended ap-
plications, as the head will not be parallel to
the horizontal axis in a video communica-
tion scenario.
This primitive is utilized so that an object is
excluded as a valid facial area when its
orientation axis (i.e. least moment of iner-
tia) exhibits a large deviation from the verti-
cal axis.

4. Relative position of the facial region in the image
plane. By similar reasoning to 3 above, it is more
probable that the face will be located in a region
that is relatively close to the center rather than
the edges of the image. This feature is used so
that any segmented objects which are located
near the edges and corners of the image plane
are less likely to be classified as facial regions.

3.2. Fuzzy membership functions

The four features described above are used to
define the membership functions required in calcu-
lating an appropriate evaluation measure for the
invocation of the different primitives. In our seg-
mentation scheme, each membership function pro-
vides the degree of similarity of the given object to
the facial primitive in question. Thus, the member-
ship values are used to quantify the deviation from
the expected or ideal feature value.

A number of membership function models can be
constructed and empirically evaluated. A simplified
function model is utilized here in order to keep the
complexity of the overall scheme to a minimum.
A trapezoidal shape was selected as the member-
ship function for each of the primitives described
above. The general form of the function is defined
below and is also shown schematically in Fig. 5:

k(x)"G
(x!c)

(a!c)
if c)x)a,

1 if a)x)b,

(d!x)

(d!b)
if b)x)d,

0 otherwise.

(24)

This type of membership function attains the max-
imum value only over a limited range of input
values. Symmetric or asymmetrical trapezoidal
shapes can be obtained depending on the selected
parameter values of a, b, c and d. The membership

N. Herodotou et al. / Signal Processing: Image Communication 14 (1999) 359—388 373



function can assume any value in the interval [0, 1],
including both of the extreme values. A value of 0 in
the definition above, indicates that the event is
impossible. On the contrary, the maximum mem-
bership value of 1 represents total certainty. The
intermediate values are used to quantify variable
degrees of uncertainty. The estimates for the four
membership functions are obtained by a collection
of physical measurements of each primitive from
our extensive database. The values of the trap-
ezoidal parameters in the four membership func-
tions are set so that each function accurately rep-
resents the physical primitives observed.

The image database that was constructed for the
analysis of the skin-tone distributions was also used
in devising the ranges of the trapezoidal member-
ship functions. The hue characteristics of the facial
region were used to form the first membership
function. The extent of our proposed hue range
[!20°, 50°] (i.e. discrete universe of discourse) has
purposely been designed to be quite wide in order
to adequately model the different skin-types and
the varying illumination conditions. However, the
mean hue values of the different skin-type catego-
ries fall within an even narrower range. The lower
bound of the average hue observed in the image
database is approximately 8° (African—American
distribution) while the upper bound average value
is around 30° (Asian distribution). A range is for-
med using these values, where an object is accepted
as a skin-tone color with probability 1 if its average
hue value falls within these bounds. Objects C

i
with

average hue values outside this range (i.e. closer
towards the extremes of the defined range) are
assigned a smaller weighting and are also less likely
of being classified as a facial region. Thus, the
membership function associated with the first
primitive is defined as follows:

k
1
(x

1
)"G

(x
1
#20)

28
if !20°)x

1
)8°,

1 if 8°)x
1
)30°,

(50!x
1
)

20
if 30°)x

1
)50°.

(25)

Experimentation with a wide variety of facial im-
ages has led us to the conclusion that the aspect

ratio (height/width) of the human face has a nom-
inal value of approximately 1.5. This finding con-
firms previous results reported in the open litera-
ture [14]. However, in certain video sequences we
must also compensate for the inclusion of the neck
area which has similar skin-tone characteristics to
the facial region. This has the effect of slightly
increasing the aspect ratio. Using this information
along with the observed aspect ratios from our
database, we can tune the parameters of the trap-
ezoidal function for this second primitive. The final
form of the function is given by

k
2
(x

2
)"G

(x
2
!0.75)

0.5
if 0.75)x

2
)1.25,

1 if 1.25)x
2
)1.75,

(2.25!x
2
)

0.5
if 1.75)x

2
)2.25,

0 otherwise.

(26)

The vertical orientation of the face in the image is
the third primitive used in our shape recognition
system. As mentioned previously, the orientation of
the facial area (i.e. deviation of the facial symmetry
axis from the vertical axis) is more likely to be
aligned towards the vertical due to the type of
applications considered. The following range of
values were observed for the orientation of the
facial region in over 100 frames from several video
sequences: (i) (0—10.5°) in Foreman, (ii) (0—4.75°) in
Akiyo, (iii) (3.5—21°) in Carphone and (iv) (0.5—6.75°)
in Claire. A reasonable threshold selection of 30°
can be made for valid head rotations as confirmed
in the observed sequences above. Thus, a member-
ship value of 1 is returned if the orientation angle is
less than this threshold. The membership function
for this primitive is defined as follows:

k
3
(x

3
)"G

1 if 0)x
3
)30°,

(90!x
3
)/60 if 30°)x

3
)90°.

(27)

The last primitive used in our knowledge-based
system refers to the relative position of the face in
the image. Due to the nature of the applications
considered, we would like to assign a smaller
weighting to objects that appear closer to the edges
and corners of the images. For this purpose, we

374 N. Herodotou et al. / Signal Processing: Image Communication 14 (1999) 359—388



construct two membership functions. The first one
returns a confidence value for the location of the
segmented object with respect to the X-axis. Sim-
ilarly, the second one quantifies our knowledge
about the location of the object with respect to the
½-axis. The discrete universe of discourse for these
membership functions depends on the dimensions
of the image. Since our system supports variable
size images, the following membership function has
been defined for the position of the segmented
object with respect to either the X or ½-axis:

k
4
(x

4
)"G

(x
4
!(d))

d/2
if d)x

4
)3d/2,

1 if 3d/2)x
4
)5d/2,

((3d)!x
4
)

d/2
if 5d/2)x

4
)3d,

0 otherwise.

(28)

The membership function for the X-axis is deter-
mined by letting d"D

x
/4 where D

x
represents the

horizontal dimensions of the image (i.e. in the X-
direction). In a similar way, the ½-axis membership
function is found by letting d"D

y
/4 where D

y
rep-

resents the vertical dimensions of the image (i.e. in
the ½-direction). Thus, the X- and ½-axis member-
ship functions are assigned the maximum value if
the centroid of the object is within a window that is
relatively central to the image. The parameter
values have been appropriately chosen for the int-
ended applications.

3.3. Aggregation operators

In the end, the individual membership functions
must be combined to form an overall decision.
A nonlinear operator is used to arrive at this final
decision by appropriately combining the informa-
tion from the different features. The function of the
operator is to reduce the imprecision and uncer-
tainty in the decision-making process. A number of
fuzzy operators can be used to combine or fuse
together the various sources of information. Con-
junctive type of operators represent a consensus
between the different sources of information. Such
operators search for a simultaneous satisfaction of

the various primitives or objectives by weighting
more heavily the criterion with the smallest mem-
bership value. On the contrary, disjunctive oper-
ators express redundancy between information by
assigning the most weight to the criterion with the
largest membership value. Compromise operators,
such as weighted mean operators or fuzzy integrals
provide a trade-off among different and possibly
incompatible objectives.

The latter approach is followed in this paper. An
aggregator (fuzzy connective) whose shape is de-
fined a priori, is used to combine the four elemental
membership functions resulting from the primitives
discussed above.

The compensative operator selected mixes both
conjunctive and disjunctive behavior. Following
the results in [32], the operator is defined as the
weighted mean of a (logical AND) and a (logical
OR) operator

A(cB"(AWB)1~c ) (AXB)c, (29)

where A and B are sets defined on the same space
and represented by their membership functions.
Different t-norms and t-conorms can be used to
express a conjunctive or a disjunctive attitude. If
the product of membership functions is utilized to
determine the intersection (logical AND) and the
possibilistic sum for the union (logical OR), then
the form of the operator becomes [32]

k
#
"

m
<
j/1

k(1~c)
j A1!

m
<
j/1

(1!k
j
)B

c
, (30)

where k
#

is the overall membership function which
combines all the knowledge primitives for a particu-
lar object, and k

j
is the jth elemental membership

value associated with the jth primitive. The weight-
ing parameter c is interpreted as the grade of compen-
sation taking values in the range of [0, 1] [32]. The
product and the possibilistic sum are not the only
operators that can be used in Eq. (29). A simple and
useful t-norm function is the min operator while the
corresponding one for the t-conorm is the max
operator. In this paper, we utilize this t-norm to
represent intersection. In this case, the compen-
sative operator of Eq. (29) has the following form:

k
#
"A

m
min
j/1

k
jB

(1~c)
A

m
max
j/1

k
jB

c
. (31)
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The form of the compensative operator in Eq. (30)
is not unique. A number of other mathematical
models can be used to represent the AND aggrega-
tion. An alternative operator, which combines the
averaging properties of the arithmetic mean (mem-
ber of the averaging operator class) with a logical
AND operator (conjunctive operator) was also
proposed in [32]

k
#
"c

m
min
j/1

k
j
#(1!c)Am~1

m
+
j/1

k
jB , (32)

where k
#
is again the overall membership function

and the parameter c3[0, 1] is interpreted as the
grade of compensation. In this equation the min
t-norm stands for the logical AND. Alternatively,
the product of membership functions can be used
instead of the min operator in the above equation.
The arithmetic mean is used to prevent higher
elemental weights with extreme values to dominate
the final outcome.

Compensatory operators are intuitively attract-
ive and provide a simple yet powerful method to
express the interactions between different know-
ledge primitives. For this reason, our shape and
color analysis module utilizes these operators in
correctly selecting the facial area from a set of
candidate objects.

In this work we define c"0.5. Therefore, the
compensative operator assumes the form of
a weighted product. The min and max operators
were selected to model the corresponding t-norm
and t-conorm functions [20]. Thus, the overall
fuzzy membership function can be defined as

k
#
"AA

m
min
j/1

k
jBA

m
max
j/1

k
jBB

0.5
. (33)

In general, additional weighting factors must be
used in the generalized function above in order to
absorb possible scale differences in the definition of
the elemental membership functions. However, all
the elemental membership functions used here are
within the interval [0, 1], and thus no such weight-
ing factors are required.

The aggregation operator defined in Eq. (33) can
be used to form the final decision based on the four
primitives under consideration. However, in order
for our results to be meaningful, the nonlinear

operator applied must satisfy some properties that
will guarantee that its application will not alter in
any manner the elemental decisions about the
knowledge primitives. In the literature, there are
a number of properties that all the aggregation or
compensative operators must satisfy. We will try to
examine if the operator which we intend to use in
the calculation of the final membership function
satisfies these properties [23]. These properties are
listed below:

1. Convexity. The convexity of the operators
allows for a compromise among the different
elemental membership functions. The weighted
operator in Eq. (33) is convex since it is known
from statistics that

ka
#
"Amin

k/1,j

k
k
max
k/1,j

k
kB

0.5
, (34)

min
k

k
k
)ka

#
)max

k

k
k
, (35)

where k"1, 2,2, j is the number of elemental
membership functions to be fused together.

2. Neutrality (symmetry). The operator used here is
symmetric. The property guarantees that the
order of presentation for the elemental member-
ship functions does not affect the overall final
membership value. It is not hard to see that by
simply interchanging the order of presentation
for the max and the min value the same result
will occur

k
#
"AA

m
min
j/1

k
jBA

m
max
j/1

k
jBB

0.5

"AA
m

max
j/1

k
jBA

m
min
j/1

k
jBB

0.5
. (36)

3. Monotonicity. The property of monotonicity
guarantees that the stronger piece of evidence
(larger elemental membership value) generates
a stronger support in the final membership func-
tion.
Let us assume that k

i
)k

l
, with A"minj

k/1
k
k

and B"maxj
k/1

k
k
.

By the definition of the min and max operators

min(A,k
i
))min(A,k

l
) (37)
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and

max(A,k
i
))max(A,k

l
). (38)

Therefore,

(min(A,k
i
)max(A,k

i
))0.5

)(min(A,k
l
)max(A,k

l
))0.5. (39)

4. Idempotence. The operator considered in
Eq. (33) is idempotent. The property guarantees
that the outcome of the overall function gener-
ates the same value with each elemental value if
all of them report the same result. Given the
form of the operator

k
#
"(k

a
k
b
)0.5"(k*k*)0.5"k*, (40)

with

k
a
"A

m
min
j/1

k
jB"k* (41)

if k
1
"k

2
"2"k

j
"k*.

In summary, it is proven that the compensatory
operator that we intend to utilize for our shape
and color analysis module in Stage 3 corresponds
to an aggregation class which satisfies a number of
natural properties, such as neutrality and mono-
tonicity.

4. Experimental results

The steps outlined in Fig. 4 were used to locate
and track the facial region of several videophone-
type sequences. The results from 3 CIF and 2 QCIF
sized sequences, as well as one still image, are pre-
sented below: (1) Claire, (2) Miss America, (3)
Akiyo, (4) Foreman, (5) Carphone and (6) an Afri-
can—American sample image, respectively. The
aforementioned test sequences were chosen so as to
represent all skin-type categories (i.e. Caucasian,
African—American and Asian) and various types of
motion within the scene (camera pan and zoom,
head rotations and tilts, and moving complex back-
grounds). The segmentation results in Fig. 10 illus-
trate the robustness of the technique to the various
cases of motion and skin color mentioned above.
The facial region is successfully located and tracked

when the head is rotated as in Fig. 10(a) or in the
cases of head tilts as in Fig. 10(c) and (f ). The
technique is successful even when the facial area
undergoes various deformations caused by different
facial expressions (i.e. Claire, Miss America,
Carphone, and Akiyo). The Foreman sequence of
Fig. 10(d) demonstrates that the extraction process
is invariant to pans and zooms within the scene
while the Carphone sequence in Fig. 10(f ) illus-
trates the effectiveness of the algorithm under con-
ditions of a complex and moving background. The
latter scenario may be the case in an environment
where mobile videophones are employed. Finally,
we observe that successful results are obtained for
the complete range of skin colors (Akiyo, African—
American sample and Miss America, i.e. Fig. 10(c),
(e) and (b), respectively).

In Fig. 6(a)—(f ) we present the hue histograms of
Frame 20 from the different video sequences. These
are obtained by passing each of the images through
the principal polyhedron (PP) as defined previously
in Section 2.4. The smoothed scale-space filtered
versions of these histograms are also shown along-
side the former, and are derived from the second
block in Stage 1 of the color processing module
(Fig. 4). A standard deviation of q"2 in the Gaus-
sian function, g(x, q), provided adequate smoothing
of the histograms and was found to be appropriate
for the different skin-tone distributions which had
standard deviations, p that ranged from 5.1 to 8.2°.
In the Claire sequence of Fig. 6(a), the histograms
indicate that one distinct hue range exists which
has a mean value around 34°. In turn, this range
contains only one distinct object, O

1
, which is the

facial region. The observed hue values are shifted
towards the yellow spectrum which is also evident
visually from the results in Fig. 10(a). Thus, we see
that in the case of the Claire sequence, the shape
and color analysis module (SC module) of Stage 3
need not be invoked.

The histograms in both, Fig. 6(b) and (c) indicate
that two different hue ranges exist and we refer to
each of these as hue regions, HR

1
and HR

2
. Inci-

dentally, each hue region, HR
i
, may contain one or

more disjoint areas which we refer to as objects,
O

i
(C

i
is the post-processed version of O

i
). The latter

are processed by the SC module in the selection of
the facial region. Each hue range in both, Fig. 6(b)
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Fig. 6. Hue values of the principal polyhedron along with its scale-space filtered version for Frame 20 of the following video sequences:
(a) Claire, (b) Miss America, (c) Akiyo, (d) Foreman, (e) African—American sample image and (f) Carphone.
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Fig. 6. Continued.
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and (c), is determined by utilizing the hue histo-
gram. Each range, in turn, may contain one or
more objects which are analyzed by the shape
module in order to correctly select the one which
corresponds to the facial area. A more detailed
analysis of these two sequences is presented in the
subsections below.

In Fig. 6(d), the Foreman sequence contains three
different hue regions (i.e. 3 distinct peaks), which are
separated by the valleys at 32° and 38°. The first
two regions!20°)HR

1
)32°, 32°)HR

2
)38°,

each contain one object, C
1

and C
2
, respectively,

while the third region 38°)HR
3
)50° contains

two objects, C
3

and C
4
. In the final analysis, the

shape module correctly selects the first object, C
1
as

the facial area of the sequence. The mean value of
C

1
(i.e. first peak in Fig. 6(c)) is approximately

25° which is also in accordance with the mean hue
value of the Caucasian skin-type distribution
(k"25.3°). A summary of the results from the SC
module are presented in Table 4.

Next, in Fig. 6(e), the African—American sample
image consists of only one hue region, HR

1
,

containing one object, C
1
, which has a mean of

approximately 10°. This value is close to the mean
of 8.6° which was found earlier for the Afri-
can—American distribution. Once again, the shape
module is not necessary in the segmentation of this
image.

Finally, in the Carphone sequence of Fig. 6(f ) we
can only identify one region with a distinct hue
range, HR

1
(i.e. only one distinct maximum or

minimum point), and this has a mean value of
approximately 24°. This value is also in accordance
with the expected value of the Caucasian distribu-
tion and the pixels about the peak belong to the
facial area. Some of the values in the tail of the
distribution (i.e. 35—50°) do not correspond to the
facial area, however, these pixels are scattered and
thus are removed by median filtering and region
removal. As a result, only one object, C

1
, remains

which is the extracted facial region. Incidentally, we
have found that this sequence benefits by using the
secondary polyhedron (SP in Stage 2 of Fig. 4). The
segmentation results are refined around the chin
area of the facial region which contains less
saturated pixel values. A more detailed account of
the Akiyo and Miss America sequences is given

next to illustrate the overall procedure and the use
of the shape and color analysis module in the selec-
tion of the facial region from the set of candidate
objects. The remaining sequences (excluding Fore-
man) do not require the discriminatory functional-
ity of the SC module.

4.1. Akiyo sequence

The set of results in Fig. 8 illustrate the details of
the segmentation process for the Akiyo sequence
(Frame 20) through the different stages of the facial
extraction scheme outlined in Fig. 4. The segmen-
tation process begins by first passing the input
image through the principal polyhedron, PP. The
histogram of the hue values within PP is formed
and subsequently smoothened by the scale-space
filter, g(x, q). The results of the histograms obtained
from this step are shown in Fig. 6(c). From the
scale-space filtered version we can identify two
hue regions. The minimum value at H"18° is
used to separate the two regions as follows
18°)HR

1
)50° and !20°)HR

2
(18°. The lo-

cal maxima and minima in Fig. 6(c) are determined
automatically by the scale-space filtering technique
described earlier. The images in Fig. 8(a)—(f ) illus-
trate the results obtained from the remaining steps
in the segmentation process for the region HR

1
which incidentally corresponds to the facial area.
A similar procedure is also carried out for the
second region, HR

2
.

In Fig. 8(a) the results are shown for HR
1

after
the primary extraction process using PP. Most of
the facial skin area is extracted from this initial step,
with the addition of some erroneous regions from
the jacket area. Fig. 8(b) illustrates the output after
median filtering which is used to remove the iso-
lated ‘noise-like’ pixels. A filter window of 7]7 was
chosen for the CIF size images while a 5]5 mask
was utilized for the smaller QCIF size format. In
Fig. 8(c) the results are shown after region fill-
ing/removal. This step eliminates small misclassi-
fied regions and also fills in holes within the larger
regions (i.e. the eyes and mouth). A region was
removed if its perimeter was less than a threshold
value of 200 pixels for the CIF images and 100 for
the QCIF sequences. These values were found to be
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Fig. 7. Saturation components of the principal polyhedron for the two hue regions, HR
1

and HR
2
, of the Akiyo sequence (Frame 20).

appropriate choices for the videophone-type ap-
plications that were considered. A selection of small-
er thresholds can also be made for other applications
(i.e. where the face occupies a very small area within
the image), however, this requires the SC module to
analyze a greater number of objects. At this point in
the segmentation process, we are left with one object,
O

1
, within the first hue region, HR

1
.

The steps highlighted above mark the comple-
tion of Stage 1 of the color processing module. In
the first block of Stage 2, the pixel values within the
secondary polyhedron, SP, are extracted. As men-
tioned earlier, this is done to include pixels which
lie in the transition range of chromatic and achro-
matic regions. The threshold ¹

4!52
found in

Eqs. (14)—(17) defines SP, and its selection is made
from the saturation histogram formed by Eqs. (6),
(7) and (9). This histogram is shown in Fig. 7(a) for
the region of HR

1
, while the one in Fig. 7(b) illus-

trates that for HR
2
. A choice of ¹

4!52
"18% is

made for SP of HR
1

according to the conditions in
Eq. (11). Fig. 8(d) shows the pixels extracted by the
Secondary Polyhedron while Fig. 8(e) displays the
result of the merging block in the second step of

Stage 2. A factor of f
d
"1.1 was used in merging the

results from the two polyhedra. As we can see, in
the Akiyo sequence, the SP extraction process has
virtually no effect in refining the results obtained
from the principal polyhedron. Finally, in Fig. 8(f )
the segmentation results are shown for the region
HR

1
after the final post-processing block in Stage

2. A semi-circular structuring element (SCSE) of
radius 15 was utilized for the morphological closing
operation and a radius of 5 for the opening opera-
tion. This was found to be quite effective in accom-
plishing the desired objectives. Furthermore, the
SCSE performed equally as well as its circular
counterpart while requiring only half the number of
operations. In Fig. 8(f ), only one object remains,
C

1
(i.e. C

i
is the post-processed version of O

i
) and

this happens to be the facial region. A similar step-
by-step procedure was repeated for the second hue
region, HR

2
, and in this case the object C

2
in

Fig. 8(h) was obtained.
The two objects, C

1
and C

2
, obtained from the

color module in Fig. 4 were subsequently passed on
to the shape and color analysis module for the
selection process. The shape module analyzes each
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Fig. 8. Extraction of the facial region for the Akiyo sequence (Frame 20) through the various stages: (a) initial extraction by the principal
polyhedron for the hue region, 8°)HR

1
)50°, (b) median filtered result, (c) region filling and removal, (d) extraction of the secondary

polyhedron for HR
1
, (e) region merging of the extracted PP and SP regions, (f) final result of HR

1
after morphological processing (i.e.

C
1
), (g) shape processing of object, C

1
(i.e. facial region), and (h) shape processing of object C

2
found from the second hue region

!20°)HR
1
)8°.
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Table 2
Akiyo (width]height"352]288): shape and color analysis

Centroid location Orientation Object ratio Mean hue
Object Aggregation
C

i
X k

1
½ k

2
h° k

3
r k

4
H

m
(°) k

5
k
#

1 178 1 134 1 3.10 1 1.97 0.56 23 1 0.75
2 246 0 245 0.2 31.70 0.98 1.18 0.86 14 1 0.0

Table 3
Miss America (width]height"360]288): shape and color analysis

Centroid location Orientation Object ratio Mean hue
Object Aggregation
C

i
X k

1
½ k

2
h° k

3
r k

4
H

m
(°) k

5
k
#

1 177 1 188 1 4.92 1 1.61 1 20 1 1.0
2 245 0 120 1 47.74 0.7 1.16 0.82 !6 0.5 0.0
3 244 0 269 0.02 44 0.77 1.32 1 !5 0.54 0.0

object and computes a set of values for the different
primitives considered. Table 2 summarizes the re-
sults of the five primitives along with the member-
ship function values, k

i
, for i"1,2, 5 for each of

these features. The aggregation of these functions,
k
#
is computed by Eq. (33) and is shown in the final

column of the table. The first object, C
1
, scored the

highest aggregate value and, therefore, was selected
as the facial region. A high membership value was
obtained for every primitive, except for the object
ratio which begun to exceed the bounds of the
allowable facial aspect ratio. Object C

2
scored reas-

onably well in orientation, object ratio and mean
hue, however, its poor location in the image
brought its aggregation value down. Both of these
objects C

1
and C

2
can be seen in Fig. 8(g) and (h),

respectively.

4.2. Miss America sequence

The detailed procedure just described was also
applied to the Miss America sequence. The scale-
space filtered hue histogram in Fig. 6(b) indicates
that two hue regions exist just as in the Akiyo
sequence. These are easily separated into the
following two ranges: 8°)HR

1
)50° and

!20°)HR
2
(8°. In the first region, HR

1
, only

one object remains (i.e. the facial region) and this is
shown in Fig. 9(b). However, the second region,
HR

2
, contains two objects, C

2
and C

3
, and these

are illustrated in Fig. 9(c) and (d), respectively.
These latter two correspond to the jacket area and
are in the red—magenta sector of the hue hexagon.
Fig. 9(a) (image before the morphological opera-
tion) is shown simply to illustrate the importance of
the morphological operation in filling the holes
around the eye regions in cases where the hair is
close to these areas.

The shape and color feature values are provided
in Table 3 for each of the three objects in the Miss
America sequence (Fig. 10). Once again, object
number 1, C

1
is correctly chosen as the facial region

based on the computed aggregation value. The
objects C

2
and C

3
scored poorly in their location

and Mean hue value, and also had lower member-
ship values in the orientation primitive. The net
effect of this was to bring the aggregation value
down to zero in each case.

The results in Table 4 illustrate the details of the
color and shape analysis for the Foreman sequence.
As mentioned previously, four objects are identified
in the sequence as a result of three hue regions. The
first object corresponds to the facial region and this
one is also selected by our knowledge-based system
due to its aggregation value.
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Fig. 9. Extraction of the facial region for the Miss America sequence (Frame 20): (a) extraction of the facial region prior to
morphological processing, (b) shape processing of object, C

1
(i.e. facial region) in hue region, HR

1
, (c) shape processing of object, C

2
in

hue region, HR
2
, and (d) shape processing of object, C

3
in HR

2
.

Table 4
Foreman (width]height"176]144): shape and color analysis

Centroid location Orientation Object ratio Mean hue
Object Aggregation
C

i
X k

1
½ k

2
h° k

3
r k

4
H

m
(°) k

5
k
#

1 76 1 82 1 12.8 1 1.46 1 25 1 1.0
2 130 0 159 0 81.6 0.14 1.20 0.9 32 0.9 0.0
3 59 0 36 0 82.0 0.13 1.75 1 45 0.25 0.0
4 94 0 137 0 64.43 0.43 2.14 0.22 45 0.25 0.0
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Fig. 10. Location and tracking of the facial region for the following video sequences: (a) Claire, (b) Miss America, (c) Akiyo, (d) Foreman,
(e) African—American sample image and (f) Carphone.
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Fig. 10. Continued.

5. Conclusions

In this paper, a novel technique was proposed
for the automatic location and tracking of the
facial area in color video sequences. The attributes
of color and shape were utilized in devising a
three-stage segmentation scheme which consisted

of a two-stage color processing unit, and a single-
stage shape/color analysis module. The suggested
method led to a consistent and accurate localiza-
tion of the facial region and performed robustly for
different skin types and various cases of object or
background motion within the scene. The first
stage of the color processing module was used to
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extract the regions in the image that matched the
hue characteristics of skin tones. This extraction
process was formulated in the perceptual HSV
color space by utilizing the a priori knowledge of
the skin-tone distributions for various skin-type
categories. The second stage in the color module
was essentially used to refine the results of the
initial extraction stage. In most cases, it was found
that reasonable output could be obtained by ex-
cluding this second stage, thereby, decreasing the
overall execution time of the algorithm. A number
of binary post-processing operations were also in-
cluded in the color processing unit to refine the
shape of the segmented facial region. The computa-
tional complexity of these steps were minimal due
to the binary nature of the operations. In many
cases, only the facial area was extracted from the
image, since no other objects in the scene possessed
hue characteristics that were similar to the face. In
a situation where more than one object was detec-
ted, then the final shape and color analysis stage
provided the mechanism to correctly select the
facial area. A compensative aggregation operator
was used to combine the results from a series of
fuzzy membership functions that were tuned for
videophone-type applications. A number of fea-
tures such as object shape, orientation, location
and average hue were used to form the appropriate
membership functions. The three-stage segmenta-
tion process appears to be quite promising and can
be used with an additional feature extraction stage
to provide higher level descriptions in future video
coding environments.
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