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Abstract. We present a fully automatic lung lobe segmentation algorithm that is
effective in high resolution computed tomography (CT) datasets in the presence
of confounding factors such as incomplete fissures (anatomical structures indi-
cating lobe boundaries), advanced disease states, high body mass index (BMI),
and low-dose scanning protocols. In contrast to other algorithms that leverage
segmentations of auxiliary structures (esp. vessels and airways), we rely only
upon image features indicating fissure locations. We employ a particle system
that samples the image domain and provides a set of candidate fissure locations.
We follow this stage with maximum a posteriori (MAP) estimation to eliminate
poor candidates and then perform a post-processing operation to remove remain-
ing noise particles. We then fit a thin plate spline (TPS) interpolating surface to
the fissure particles to form the final lung lobe segmentation. Results indicate
that our algorithm performs comparably to pulmonologist-generated lung lobe
segmentations on a set of challenging cases.

1 Introduction

Anatomically, the lungs consist of distinct lobes: the left lung is divided into upper and
lower lobes, while the right lung is divided into upper, middle, and lower lobes. Each
lobe has airway, vascular, and lymphatic supplies that are more or less independent of
those supplies to other lobes. Fissures (left oblique, right oblique, and right horizontal)
define the boundaries between the lobes and present as 3D surfaces that have greater
attenuation (i.e. are brighter) than the surrounding lung parenchyma in CT datasets.

Several pulmonary diseases preferentially affect specific lobes: tuberculosis and sili-
cosis tend to affect the upper lobes while interstitial pulmonary fibrosis tends to occur in
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the lower lobes [1]. In the case of chronic obstructive pulmonary disease (especially em-
physema), there are ongoing efforts to produce clinically relevant disease subtypes for
better diagnosis and patient management. Performing lobe-based quantitative analysis
can assist such efforts, especially in the context of epidemiological studies. Addition-
ally, lobe specific measurements can help determine whether patients are good candi-
dates for procedures such as lung volume reduction surgery [2]. These issues motivate
the need for automatic and reliable lobe segmentation algorithms.

Advanced disease states (e.g. emphysema), atelectasis, and certain imaging proto-
cols (low-dose, and expiratory acquisitions) can make it difficult to detect fissures in
certain regions, and so-called incomplete fissures are not uncommon [3]. In [4] the au-
thors address the issue of missing fissures. They use contextual information drawn from
segmentations of the lung, fissure, and bronchial tree in conjunction with a multi-atlas
selection mechanism to segment datasets that exhibit incomplete fissures. In a similar
vein [5] does not rely on the presence of fissures but instead rely on the absence of
vessels in the vicinity of the fissures (leveraging the dedicated blood supplies to each
lobe). [1] uses vascular and airway tree segmentations to provide contextual clues for
fissure locations. These approaches, however, rely on reliable segmentations of auxil-
iary structures (although [4] do not require such structures to be segmented, segmenta-
tion accuracy diminishes when they are not used in the presence of missing fissures).

[6] has shown that by selecting a small set of points along each of the three fissures,
thin plate spline (TPS) interpolation is sufficient to accurately delineate the major lobes.
However, the points in this study were manually selected. We build on this work and au-
tomatically identify fissure locations by adopting and extending the particle system for
ridge surface extraction previously described by [7]. Other fissure identification and en-
hancement schemes have been proposed, namely [8]. We choose the particle approach
because it is a fast and flexible way in which to sample likely fissure locations from the
image data, and it fits seamlessly into the TPS surface fitting stage.

Following particle convergence, maximum a posteriori (MAP) estimation is used to
both estimate the parameters of a smoothly fit TPS surface and to classify the particles
as being members of either fissure or non-fissure classes. Making the assumption that
fissures are locally planar, a post-processing stage is used to reject any remaining non-
fissure points. We then use the methodology described in [6] to acquire the final lung
lobe segmentation.

The paper is outlined as follows. In section 2 we describe the steps in our approach:
lung segmentation, particles based sampling, MAP estimation, post-processing, and
TPS fitting. In section 3 we describe the data used in our study and report the results of
our algorithm on these datasets as compared to pulmonologist-established ground truth.
In section 4 we discuss our results and draw conclusions about our methodology.

2 Methods

In this section we describe our approach to lobe segmentation. We begin by performing
lung segmentation, which produces a labeling of the left and right lungs. Lung segmen-
tation algorithms have been described elsewhere ([6],[9]), so we do not discuss this step
here. Below we briefly review the method described by [6], by which interpolating sur-
faces are fit through a sparse set of points to define lobe boundaries. Next we discuss
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the sampling method used to identify candidate fissure points, which is based on [7]
specialized for ridge features. Following this we describe the MAP estimation that en-
ables the elimination of non-fissure points from the sampling stage. Finally, we present
a post-processing stage that eliminates remaining noise points. The final set of points is
then used to define the lobe boundaries as in [6].

Thin Plate Spline Interpolation. Our goal is to identify a set of points along each
fissure through which a TPS surface can be fit that accurately captures the lobe bound-
aries. [6] suggested that a small set of such points is sufficient to identify these surfaces.
The TPS interpolating surface is the minimally curved surface that passes through all
the selected points. The equation is given by

f (x, y) = a1 + a2x + a3y +
n∑

i=1

wiU (|Pi + (x, y)|) (1)

where U(r) = r2 log r is the radial basis function. The coefficient vector, a =
(a1, a2, a3), and the weight vector, w = (w1, . . . , wn) are determined from the n iden-
tified fissure points, P , such that the height function’s bending energy is minimized [10].
In the procedure we will outline below, a TPS surface is fit independently for each of
the three fissures of interest.

Particles Sampling. Once the lung field is segmented we rescale the intensity from
[−1024HU,−200HU ] to [0, 216] to maximize contrast and then compute a sampling
of features that include the fissures. We adopt a particle system for feature extraction
described by [7]. As the fissure surface between lung lobes has higher radio-opacity than
the lobes themselves, the fissure can be isolated as a ridge surface, defined by [11] as
the loci of points where the gradient of the image is orthogonal to the minor eigenvector
of the Hessian. For the particle system, a smooth image domain is computed by cubic
B-Spline interpolation, and the particles are constrained to lie within ridge surfaces by
a Newton optimization that maximizes the image intensity, restricted to motion along
the Hessian minor eigenvector e3 (with corresponding negative eigenvalue λ3).

The iterative solution of the particle system involves adding, moving, or removing
particles to minimize the collective energy of the system, which is the sum of energy
from all pair-wise particle interactions, governed by a single rotationally symmetric po-
tential φ(r) around each point. As described in [7], having a small negative well in φ(r)
allows the particle system’s population control to be formulated in the same energy
minimization that moves particles into a uniform close-packing onto ridge surfaces.
Particles are also removed when the local image properties suggest that they are no
longer within a well-defined ridge surface, for which we adopted two heuristics. First,
ridge surface strength −λ3 (how concave-down the image is, cutting across the fissure)
had to satisfy −λ3 > 4, 000, an empirically determined threshold that depends linearly
on image contrast. Second, the mode of the Hessian eigenvalues γ1 (the third standard-
ized moment of the three eigenvalues) had to satisfy γ1 < −0.3; a perfect ridge surface
might have Hessian eigenvalues {0, 0,−1} ⇒ γ1 = −1. The system is initialized by
seeding 6, 000 particles randomly throughout the lung field, and then run for 100 iter-
ations. Due to the population control mechanism, the final number of particles ranges
from 15, 000 to 20, 000 depending on the case. We select parameters for the particle
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Fig. 1. Sagittal CT slice (right lung) and glyphs illustrating particles-based image sampling. The
system is initialized with a random distribution of particles (left image). Upon convergence, the
fissures are well sampled (pale green glyphs in right image). Additional, non-fissure locations
that locally behave like ridges are also detected.

system that tend to make it very sensitive at the price of specificity. That is, we attempt
to find a dense sampling of true fissure locations and permit a great deal of other lo-
cations that locally behave like ridge surfaces to be detected. Figure 1 illustrates the
sampling procedure.

MAP Estimation. After point selection, we use MAP estimation to separate true fissure
particles from noise. We formulate the problem as follows. Let S = {p1, . . . ,pn} be
the set of n particle points detected in our image where each particle point, p, is given
by (x, e3), x being the spatial location, (x, y, z), of the particle and e3 being the Hessian
eigenvector in the direction normal to the local planar image feature at x. We seek the
parameters, Θ, of a probability distribution that best explains the subset of particles,
D ⊂ S, that lie on the true fissure (note that these steps are carried out for each of the
three fissures). We assume the elements of D are independent and identically distributed
(i.i.d.) random variables. The parameters, Θ = (z1, · · · , zl), that we seek are the heights
of l control points (we use l = 10) of a “smoothed” TPS surface that is loosely fit to
our data, and it is with respect to this surface that the probability that a particle point is
a fissure point (p(p|ω), where ω is the class of true fissure particles) is defined. We will
refer to this surface as STPS and denote it as fs. It is important to distinguish between
the STPS surface and the TPS surface that will be fit through our final set of fissure
points. (The construction of the STPS surface will be described below). We represent
the class-conditional probability distribution given a specific choice of Θ as

p(p|ω, Θ) = N(µh, σh|Θ)N(µθ , σθ|Θ) (2)

where N represents the normal distribution. Here h indicates the height difference in
the z-direction between the particle and the STPS surface: z − fs(x, y), and θ is the
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Fig. 2. STPS control points for each of the three fissures: right oblique (left), left oblique (middle),
and right horizontal (right). Yellow indicates the pulmonologist-selected points on the training
scans, mapped to the unit cube and projected onto the X-Y plane. Black indicates the ten control
points used for our MAP estimation.

angle formed between the particle’s eigenvector, e3, and the surface’s normal vector at
(x, y). The intuitive description of this distribution is that if a particle is far away from
the surface and/or not parallel in orientation with respect to the surface normal, it is
unlikely to be a fissure particle. Note that we assume independence between h and θ.

To construct the STPS, we use a parameterization scheme that enables MAP estima-
tion. Each parameter is a control point in our domain (the X-Y plane). By selecting a
dispersed set of control points we can fit a surface to the data by controling their heights
(z-values). For each fissure, a different set of control points is needed, and the repre-
sentation needs to be coordinate frame agnostic. We begin by generating manually seg-
mented CT datasets following [6]: two pulmonologists manually select points on each
of the three fissures to segment the lobes. We then map the manually selected points to a
common coordinate frame by applying the transform needed to map the corresponding
lung’s bounding box to the unit cube (via scaling and translating); this is done indepen-
dently for the left and right lung. Once all the points are in the unit cube’s coordinate
frame, we project their coordinates onto the X-Y plane, which serves as the domain for
the STPS function. Note that our approach to placing all points in the same coordinated
frame is in lieu of a more elaborate registration scheme. Given that the datasets were
acquired with similar patient position (head-first, supine scans) this scheme is sufficient
for our purposes. Once all the manually selected points across all the training datasets are
projected on the unit cube’s X-Y plane, we have a good idea of where the control points
need to be for each fissure STPS. Performing simple k-means clustering then allows us
to choose a small set of points that will then be used for subsequent MAP estimation.
Figure 2 illustrates the control point selection within the unit cube.

After the control points are chosen, priors for each fissure, p(Θ) are constructed. This
is done by determining the parameter vectors for each of the three fissures across all the
training datasets. We compute the z-value at each control point using the TPS surface
for each fissure in our training set. Thus, for a given fissure the parameter vector can be
represented as Θ = (z1, · · · , z10). All of this is done within the unit cube, and it is done
idependently for each fissure. Once we have our population of parameter vectors, we
compute the mean and covariance matrix and represent the priors with a multivariate
normal distribution.
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With all these terms defined, we can now represent the function we wish to maximize
as ln p(D|Θ) + ln p(Θ) where

p(D|Θ) =
n∏

k=1

p(pk|ω, Θ) (3)

is the likelihood of Θ given our data.
This is the standard MAP formalism, but we note that this mechanism assumes that

all of our data, p, are drawn from the same distribution. In our case this is not true given
that we initially compute the likelihood function across all data points in S. However,
we perform an iterative search for Θ using a gradient descent optimizer (applied to the
negative of the log likelihood), and at the end of each convergence we prune away the
most unlikely candidate points and then continue the search for Θ. For the pruning step
we evaluate the probability of each point, p(p|ω, Θ), and cast away a percentage of the
points least likely to be fissure points (we use 30% for our experiments). This “enriches”
our dataset over several iterations, increasing the ratio of true fissure particles to non
fissure particles until what remains is very close to D, the set of true fissure points.

Post-Processing. After the MAP estimation stage, we are left with a set of particles
along the given fissure of interest. However, some non-fissure particles survive owing
to their high probability of being fissure particles as measured by our likelihood func-
tion. In order to eliminate these, we perform a final post-processing stage. We make
the assumption that fissures are locally planar structures and construct connected com-
ponents in the following manner. For each remaining particle we compute the vector
between its position, p, and the positions of every other particle. If the magnitude of
this vector is above a threshold (chosen to be 5mm in our study), no direct connection
is said to exist between them. If the particles are in close proximity to one another,
we compute the angle formed between the vector that connects them and each of their
eigenvectors, e3. If the angles are sufficiently different than right angles (we use a tol-
erance of 20◦), we assume that they represent different planar structures, and we do
not form a connection between them. This is illustrated in the figure below. After all
possible connections are made, small connected components are rejected, and we are
left with our final set of points through which we compute the TPS that represents the
lobe boundaries as in [6].

Fig. 3. Connected components analysis. The middle particle, m, is considered connected to the
right particle, r, given their proximity and orientation (ϕm,r ≈ ϕr,m ≈ π/2), but the leftmost
particle, l, and the middle particle would not be connected, given their discrepancy in orientation
(ϕl,m > π/2).
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Fig. 4. CT slices of the datasets used in this study. Arrows indicate partial fissures. Case 1: low
dose, expiratory scan, severe emphysema; Case 2: low dose, expiratory scan, high BMI, right
horizontal fissure nearly absent (feature directly below arrows appears as fissure in this slice);
Case 3: low dose, expiratory scan, moderate emphysema; Case 4: inspiratory scan, moderate
emphysema; Case 5: low dose, expiratory scan, marked fissure aberration; Case 6: inspiratory
scan, high BMI, mild diffuse interstitial abnormalities.

3 Results

Fig. 5. Sagittal view of right lung
(case 3) with algorithm output dis-
played semi-transparently. Note agree-
ment between segmented boundaries
and fissure locations, visible just below
the red boundary lines.

Here we provide results on a set of challenging
cases. For our study we have chosen cases that
exhibit incomplete fissures (as determined by pul-
monologists and defined as the absence of clearly
visible fissure delineating adjacent lobes) and a
range of other factors which make the lobe seg-
mentation task difficult (expiratory acquisitions,
low dose, high body mass index (BMI), disease
presence). The scans have in-plane spacing rang-
ing from 0.52mm to 0.74mm and z-spacing rang-
ing from 0.625mm to 0.75mm. More case details
are presented in figure 1.

Table 1 shows the results of our algorithm on
the test cases, and figure 5 illustrates an output
segmentation mask superimposed on a slice of the
CT image from which it was derived. We com-
pared our algorithm’s performance to segmenta-
tions produced by two pulmonologists (readers 1
and 2), and we additionally compared the readers
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Table 1. Algorithm performance comparison to pulmonologist segmentations. Units are in mm.
LO = left obliuqe, RO = right oblique, RH = right horizontal. Note also comparison between
readers 1 and 2.

Reader 1 vs. Alg. Reader 2 vs. Alg. Reader 1 vs. Reader 2
LO RO RH LO RO RH LO RO RH

Case 1 1.63 ± 1.56 0.86 ± 0.96 2.95 ± 2.67 1.82 ± 1.90 2.12 ± 2.01 3.54 ± 5.78 2.75 ± 2.72 2.58 ± 2.36 4.08 ± 3.69
Case 2 3.39 ± 3.19 2.34 ± 3.05 1.21 ± 1.33 1.68 ± 1.69 2.83 ± 3.63 1.02 ± 1.03 2.75 ± 2.59 1.10 ± 1.32 0.80 ± 0.70
Case 3 2.11 ± 2.57 1.81 ± 2.08 1.08 ± 2.96 2.38 ± 2.57 1.29 ± 1.30 1.25 ± 1.43 1.32 ± 1.23 1.29 ± 1.24 0.66 ± 0.81
Case 4 1.82 ± 1.97 4.35 ± 4.65 1.87 ± 2.38 1.84 ± 1.70 6.07 ± 6.99 2.93 ± 5.72 2.83 ± 2.69 2.68 ± 2.72 2.39 ± 2.15
Case 5 0.82 ± 0.92 1.50 ± 1.50 2.92 ± 2.57 1.28 ± 1.71 1.37 ± 1.43 4.68 ± 4.95 1.44 ± 1.54 0.81 ± 0.82 6.44 ± 8.14
Case 6 1.04 ± 1.28 2.52 ± 2.87 1.35 ± 1.27 1.69 ± 1.76 2.29 ± 2.28 4.27 ± 3.99 0.99 ± 1.07 4.01 ± 3.75 4.32 ± 7.73

Average 1.80 ± 1.92 2.23 ± 2.52 1.90 ± 2.20 1.78 ± 1.89 2.66 ± 2.94 2.95 ± 3.82 2.01 ± 1.97 2.08 ± 2.04 3.12 ± 3.87

to each other. To measure segmentation agreement, we computed the average Euclidean
distance between the fissures in question. As can be seen, the algorithm performs com-
parably to the pulmonologists.

4 Discussion and Conclusion

The algorithm execution time was on the order of 30-45 minutes, although we did not
attempt to measure this exactly. This was a proof of concept study, and we made no
attempt to optimize the algorithm. The most time consuming stage is the MAP estima-
tion, which involves a series of fitting and pruning stages. The fitting stage uses gradient
descent to find the optimal heights of our (10) control points. It may be possible to gen-
erate equally good results with many fewer control points; we did not investigate this.
Reducing the dimensionality of the search space would improve execution time. We
also continued the fitting-pruning until we were left with a user-specified fraction of
the original number of points. Post-processing was then applied. The fraction that we
used was arbitrarily chosen, but terminating the fitting-pruning earlier would reduce
execution time and may not adversely affect results.

In summary, we present a fully automatic method for lung lobe segmentation that
performs very well on challenging cases. Whereas other methods tend to rely on seg-
mentations of auxiliary structures (vessels, airways) to augment algorithm performance,
we only rely on existing fissure image features, even though they may be scarce. We
do not deny that other structures can provide contextual clues for fissure localization,
but generating segmentations of these structures, especially for patients with advanced
disease, presents its own challenges. Furthermore, we believe that obtaining these struc-
tures is not necessary and that sufficient fissure information is directly obtainable pro-
vided these image features are carefully selected.
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