
J Supercomput (2018) 74:3489–3503

https://doi.org/10.1007/s11227-015-1594-6

Automatic malware mutant detection and group

classification based on the n-gram and clustering

coefficient

Taejin Lee1
· Bomin Choi1 ·

Youngsang Shin1
· Jin Kwak2

Published online: 18 December 2015

© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract The majority of recent cyber incidents have been caused by malware.

According to a report by Symantec, an average of one million malicious codes is found

daily. Automated static and dynamic analysis technologies are generally applied to

cope with this, but most of the new malicious codes are the mutants of existing mal-

ware. In this paper, we present technology that automatically detects the n-gram and

clustering coefficient-based malware mutants and that automatically groups the differ-

ent types of malware. We verified our system by applying more than 2600 malicious

codes. Our proposed technology does more than just respond to malware as it can also

provide the ground for the effective analysis of new malware, the trend analysis of a

malware group, the automatic identification of specific malware, and the analysis of

the estimated trend of an attacker.

Keywords Malicious code · Mutant · n-Gram · Clustering coefficient

B Jin Kwak

jkwak.security@gmail.com

Taejin Lee

tjlee@kisa.or.kr

Bomin Choi

bmchoi@kisa.or.kr

Youngsang Shin

ysshin@kisa.or.kr

1 Korea Internet and Security Agency, Seoul, Korea

2 Department of Cyber Security, College of Information Technology, Ajou University, Suwon, Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-015-1594-6&domain=pdf

3490 T. Lee et al.

1 Introduction

The majority of recent cyber incidents have been caused by malware. The major

cyber incidents in Korea such as 7.7 DDoS in 2009, 3.4 DDoS in 2011, and the 6.25

cyber-attack in 2013 were all caused by malware. Such malicious codes are increasing

drastically every year. According to the 2014 Symantec Security Intelligence Report,

the number of malicious codes in 2014 increased by 26 % from 2013 to one million new

malicious codes on a daily average and 317 million for the year [1]. The companies that

analyze malware have been distributing technologies to quickly collect and respond

to the numerous new malicious codes that appear every day. However, most of the

one million new malicious codes on the average daily basis are not new types of

malware, but are mutants of malicious codes already collected and managed. Aside

from analyzing each malicious code and responding to it, analyzing the malware-

mutant relationship will make it possible to intelligently analyze the significance,

which was not possible in the past [2].

The benefits of intelligent analysis can be summarized as follows: first, static analy-

sis and dynamic analysis are used to determine the maliciousness of malware, but

there is the limitation of being able to accurately detect it. If an analyzed code is

found to be similar to tens of known malicious codes, it will help lower the rate of

incorrect/missed detection of malicious malware. Second, since a malware mutant

is produced by reusing and varying the existing code, the analysis result of mal-

ware mutants provides the grounds to estimate if an intrusion attack is the action of

the same attacker. Third, it can provide the priority to analyze and respond to the

one million malicious codes that appear each day. When a malware with significant

destructive force is registered in advance, an alarm can be automatically activated to

enable a priority response when its mutant is identified among so many malicious

codes. In the same way, a low priority can be assigned to malware, such as down-

loader and dropper, that is not as destructive. Fourth, observing the change of all the

analyzed malware groups over time can lead to the analysis of the nature of recent

malwares and the trend in changes regarding production techniques. Such malware

mutant analysis technology makes it possible to not only respond to each malware but

also to understand the overall meaning of analyzed malwares and to respond to them

intelligently.

This paper is organized as follows: Sect. 2 introduces previous studies on the

analysis of malware similarity, and Sect. 3 proposes the malware similarity and

grouping technology developed in this study. Section 4 presents the test results

of the developed system and typical malwares, while Sect. 5 summarizes the sig-

nificance of the test results and describes the future work that we will carry

out.

2 Related work

There are many ongoing studies on the analysis of malware similarity being carried

out, and they can be mainly divided into the categories of static analysis and dynamic

analysis. Xin Hu reported on the static analysis of the similarity of a call flow graph

123

Automatic malware mutant detection… 3491

Table 1 Comparison of related works and proposed model

Author Approach Proposed Model

Xin Hu Call flow graph-based analysis Behavior-based analysis

M. Alazab Malicious API list extraction-based

malware mutant analysis

Can detect malware mutant

regardless of new malicious APIs

L. Wu Regular expression-based analysis The sequence of all and the subset

are considered, as well as the

frequency of APIs

Inoue Element behavior-based analysis Do not need to recognize the basic

element of malicious behavior

Natani Representative API and

frequency-based analysis

API sequence and cosine

similarity-based approach

with the original malware [3–5]. M. Alazab statically analyzed the malicious codes

to extract a list of APIs that can call and measure the similarity based on it [6–

8]. Although these studies apply some detection performance, their effectiveness is

limited as the majority of malwares are packed (Table 1). Even if the known packer

is unpacked in advance, it is still difficult to respond to a custom packing set by the

attacker [9].

In the dynamic analysis of malware, there have been various studies based on the

called API sequence [10]. U. Bayer cataloged the malicious behaviors of more than

90,000 malwares to provide the foundation to analyze the behaviors generated by many

malwares [11], while L. Wu transformed the API sequence into a regular expression

and detected the malicious code when a similar pattern of regular expressions occurred

[12]. Inoue and Daisuke analyzed the unit function and malicious behavior of called

API sequences in advance and determined the maliciousness based on the generation

of the same pattern [13–16]. Although such studies enable the analysis based on the

elemental malicious behavior identification data of malwares, there is the significant

possibility of the incorrect identification of elemental malicious behaviors, and there

is the limitation of not being able to detect new malware that is different from the

known pattern. Natani and Pratiksha identified APIs that are frequently called by

malicious codes and their frequencies in advance and analyzed malwares based on

them [17,18]. There has also been a study that compared the calling sequence in

the edit-distance method. The method of using leading APIs and their frequencies is

limited in that API selection is not easy as normal files also use the APIs used by

malicious codes and that the simple frequency can often result in incorrect detection.

In addition, although the edit-distance-based similarity comparison can be effective

for identifying the similarity of an entire API sequence of malicious code. However,

the malware mutants not only reuse the known codes, but also include the additional

malicious functions. Thus, comparing the whole sequence can be limited in measuring

the accurate result. Furthermore, these studies only address the comparison of the

similarity between two malwares but do not include the automatic identification of

malware groups. In this paper, Sect. 3 presents the technology to group the malware

similarities.

123

3492 T. Lee et al.

Fig. 1 System overview

Fig. 2 API extraction and code generation

3 Proposed scheme

3.1 System overview

This section describes the overall structure of the proposed technology. When a mal-

ware attacks, the system uses the Cuckoo Sandbox method to collect the API behavior

data that are present when the malware is executed [19–21]. As the APIs are typically

called in 2000–20,000 sequences, they are transformed into the formatted codes and

the sequences of the transformed API data are grouped using an n-gram. The sim-

ilarities between malicious codes are then calculated according to the frequency of

the API sequence and the malware mutant groups are created based on them. Figure 1

shows the structure of the system.

3.2 Malware mutant detection

The malware similarity analysis is based on the API calls generated when the malware

is executed. The API calls are collected using Cuckoo Sandbox. For effective calcula-

tion, the call data are separately stored and managed according to the API codes and

parameters. Figure 2 shows an example of API call data and its codification.

Since the performance of a similarity comparison algorithm depends on how much

it reflects the characteristics of the malware mutant, the following facts must be con-

123

Automatic malware mutant detection… 3493

Fig. 3 n-gram-based comparison set extraction

sidered: first, since a malware mutant is produced reusing the same code, the same

API call sequences appear in the reused model. However, additional codes, such as the

additional functions, are added to the common part. Thus, the sequence similarity of

the subset and not the entire API sequence is important. Second, there is a limitation

when using pattern-based detection since each malicious code uses different common

API sequences. Therefore, the common subset must be automatically identified in all

API sequences. Moreover, the system should also consider the fact that there can be

multiple such subsets in different locations. Third, if the common API sequence occurs

frequently, the weight factor in exponential form should be reflected in consideration

of the statistical value of the frequency. In this paper, we reflect these characteristics

and analyze the similarity among malicious codes in an n-gram-based comparison

of the cosine similarities between API sequence subsets. The n-gram extracts the

comparison sets as shown below (Fig. 3).

The cosine similarity method, which is used for comparing the similarity of two

vectors, is used to compare the API sequences extracted in the n-gram method. The

cosine similarity reflects the characteristics of the malware mutant described above.

The calculated similarity has the value between 0 and 1, and the similarity mutant is

determined based on the threshold value. As I described, malware mutant is generated

with the same codes belong to the original malware. There is no clear definition but

it is tightly related to the code reuse. Therefore, similarity threshold may be changed

according the purposes. In the real world, if we want to find the same attacker’s malware

mutant for the particular malware, it needs the tight threshold. If we want to analyze

the entire malware group trends, the lower threshold is appropriate. The equation for

calculating the similarity between two malicious codes is shown as:

Similarity = cos (θ) =
A · B

||A| |B||
=

∑n
i=1 Ai × Bi

√

∑n
i=1 A2

i ×

√

∑n
i=1 B2

i

.

3.3 Malware group classification

The method of measuring the similarities among the malicious codes is described

above. The method enables a total comparison of a large volume of malicious codes.

Although the result of the total comparison of each malicious code is useful for listing

123

3494 T. Lee et al.

Fig. 4 Group generation step

Table 2 Group generation algorithm

the codes in a manner similar to a malicious code, it does not provide much more

significance than that. This paper presents a technique of grouping the malicious code

groups based on the malware mutants. Figure 4 shows how the malware mutants are

grouped.

First, all “n” malicious codes that are similar to a malicious code are grouped. Then,

if a malicious code is similar to any of the malicious codes in the group, the similar

malicious code is added to the group. If a malicious code is not similar to any other

malicious codes, it is then categorized into a new group. Table 2 provides a summary

of the malicious code grouping algorithm.

A malware mutant group means that all malicious codes in the group are in mutant

relations and that the group has common characteristics. This algorithm analyzes how

closely each group member is related to the group and filters out the insignificant

malicious cods. It uses the local clustering coefficient to analyze the closeness of a

malicious code to the group. The local clustering coefficient indicates how close a

member of a group is to all other nodes in the same group.

The graph G = (V, E) formally consists of a set of vertices, V , and a set of edges,

E , between them. Here, a vertex means each malicious code, while Si, j means the

similarity value obtained by the cosine similarity calculation of the malicious codes

vi and v j . The symbol, t, means the threshold of the similarity value to determine the

malware mutant. For example, if Si, j is larger than t , the malicious codes vi and v j are

considered to be the malware mutants. When two malicious codes are determined to

be the malware mutants, the vertices are connected by an edge. This can be expressed

as follows:

ei, j = {ei, j : Si, j ≥ t} for every i, j

123

Automatic malware mutant detection… 3495

Now, the equation for the local clustering coefficient is used to calculate the closeness

of a malicious code to the group. Assuming that the vertex determined to be the mutant

is Ni and that the number of all vertices to be connected to vi is ki , Ni can be expressed

as follows:

Ni = {v j : ei, j ∈ E and e j,i ∈ E} for every j

ki means the number of edges that can be connected with vi and the number of all the

edges is ki ×(ki −1)
2

. Therefore, the local clustering coefficient of vi can be defined as

follows:

Ci =
1

n

n
∑

i=1

2|{e jk : v j , vk ∈ Ni , e jk ∈ E}|

ki (ki − 1)
C̄ =

1

n

n
∑

i=1

Ci

Ci is a value between 0 and 1, which indicates how close vi is to the group. If Ci of

a malicious code is 0.9, the malicious code is clearly qualified to be a member of the

group, while Ci of 0.4 means that the malicious code should be excluded from the

group. If the average C̄ of all the vertices of a group is 0.9, it indicates that the group is

properly formed of the members of a group. If C̄ is 0.5, it indicates that the malicious

codes are incorrectly grouped. So far, we have described the grouping of malwares and

indexes indicating the suitability of each member of the group. Grouping is determined

by t, which is the threshold that confirms the similarity between malicious codes. In

other words, there are groups that are formed by the value of t and the vertices existing

in each group. Assuming that G1, G2. . .Gn are the top n members of a malware group

and that CG,ı is the average local cluster coefficient of Gi , the suitability of grouping

can be determined by CG . Moreover, assuming that the number of malicious codes in

a group is Gratio, CG can be expressed as follows:

CG =
1

n

∑n

i=1
CG,ı Gratio =

the number of malwares belonged to any group

the number of all the malwares

Here, CG increases, while Gratio decreases as t increases. Therefore, the optimum

value of threshold t needs to be set.

The next section describes the system development and the verification results from

dealing with malicious codes.

4 Experimental results

4.1 Malware similarity analysis

We tested the system to check if it can automatically detect financial extortion mali-

cious codes, which are known to be the malware mutants. The detection result is

represented by a total comparison of 39 malicious codes. Table 3 shows examples of

the similarity results amongst 39 malicious codes. It indicates that most of them have

similarities.

123

3496 T. Lee et al.

T
a

b
le

3
S

im
il

ar
it

y
re

su
lt

s
b
et

w
ee

n
d
if

fe
re

n
t

m
al

w
ar

es

ja
v
a.

ex
e_

d
b

5
..

lb
.e

x
e_

7
c2

..
ll

p
.e

x
e_

1
5

2
..

n
n

.e
x
e_

2
3

3
..

o
p

s.
ex

e_
2

9
a.

.
o

p
s.

ex
e_

4
ce

..
o

p
y.

ex
e_

8
2

d
..

p
o

p
.e

x
e_

cd
d

..
p

o
p

.e
x
e_

f2
3

..
p

o
s.

ex
e_

3
b

2
..

ja
v
a.

ex
e_

d
b

5
..

1
0

.3
0

9
0

.3
3

2
0

.8
6

8
0

.8
6

6
0

.1
9

9
0

.2
8

8
0

.8
6

7
0

.8
6

7
0

.1
9

1

lb
.e

x
e_

7
c2

..
0

.3
0

9
1

0
.6

4
6

0
.1

9
8

0
.2

5
8

0
.3

0
.7

0
6

0
.1

9
6

0
.1

9
6

0
.1

4
5

ll
p

.e
x
e_

1
5

2
..

0
.3

3
2

0
.6

4
6

1
0

.3
2

4
0

.3
0

7
0

.5
8

7
0

.7
7

9
0

.3
2

2
0

.3
2

2
0

.6
8

6

n
n

.e
x
e_

2
3

3
..

0
.8

6
8

0
.1

9
8

0
.3

2
4

1
0

.8
8

2
0

.2
5

7
0

.2
6

6
0

.9
9

9
0

.9
9

9
0

.2
8

4

o
p

s.
ex

e_
2

9
a.

.
0

.8
6

6
0

.2
5

8
0

.3
0

7
0

.8
8

2
1

0
.1

7
0

.2
4

0
.8

8
2

0
.8

8
2

0
.1

9
2

o
p

s.
ex

e_
4

ce
..

0
.1

9
9

0
.3

0
.5

8
7

0
.2

5
7

0
.1

7
1

0
.7

0
.2

5
2

0
.2

5
2

0
.8

o
p
y.

ex
e_

8
2

d
..

0
.2

8
8

0
.7

0
6

0
.7

7
9

0
.2

6
6

0
.2

4
0

.7
1

0
.2

6
1

0
.2

6
1

0
.5

3
3

p
o

p
.e

x
e_

cd
d

..
0

.8
6

7
0

.1
9

6
0

.3
2

2
0

.9
9

9
0

.8
8

2
0

.2
5

2
0

.2
6

1
1

1
0

.2
8

p
o

p
.e

x
e_

f2
3

..
0

.8
6

7
0

.1
9

6
0

.3
2

2
0

.9
9

9
0

.8
8

2
0

.2
5

2
0

.2
6

1
1

1
0

.2
8

p
o

s.
ex

e_
3

b
2

..
0

.1
9

1
0

.1
4

5
0

.6
8

6
0

.2
8

4
0

.1
9

2
0

.8
0

.5
3

3
0

.2
8

0
.2

8
1

p
o

s.
ex

e_
5

f7
..

0
.1

7
9

0
.3

6
3

0
.5

1
9

0
.2

2
4

0
.1

4
8

0
.8

4
6

0
.8

4
4

0
.2

1
8

0
.2

1
8

0
.7

p
o

s.
ex

e_
8

3
8

..
0

.1
7

9
0

.3
6

3
0

.5
1

9
0

.2
2

4
0

.1
4

8
0

.8
4

6
0

.8
4

4
0

.2
1

8
0

.2
1

8
0

.7

p
o

s.
ex

e_
ca

9
..

0
.1

9
9

0
.3

0
.5

8
7

0
.2

5
7

0
.1

7
1

0
.7

0
.2

5
2

0
.2

5
2

0
.8

p
o

s.
ex

e_
fe

5
..

0
.1

9
9

0
.3

0
.5

8
7

0
.2

5
7

0
.1

7
1

0
.7

0
.2

5
2

0
.2

5
2

0
.8

p
u

p
.e

x
e_

6
0

9
..

0
.1

7
9

0
.1

4
1

0
.2

7
3

0
.2

5
9

0
.1

7
5

0
.2

3
2

0
.2

4
2

0
.2

5
8

0
.2

5
8

0
.2

5
5

si
.e

x
e_

3
3

7
..

0
.8

7
1

0
.4

7
4

0
.5

2
4

0
.9

2
9

0
.8

4
7

0
.2

6
5

0
.4

2
5

0
.9

2
9

0
.9

2
9

0
.2

7

si
.e

x
e_

7
1

c.
.

0
.8

6
6

0
.1

9
6

0
.3

2
2

0
.9

9
9

0
.8

8
2

0
.2

5
2

0
.2

6
1

0
.9

9
9

0
.9

9
9

0
.2

8

si
.e

x
e_

7
2

7
..

0
.8

6
7

0
.1

9
6

0
.3

2
2

0
.9

9
9

0
.8

8
2

0
.2

5
2

0
.2

6
1

1
1

0
.2

8

st
u

p
.e

x
e_

0
eb

..
0

.5
5

4
0

.0
2

8
0

.0
7

5
0

.4
6

4
0

.6
9

2
0

.0
8

2
0

.0
5

4
0

.4
6

4
0

.4
6

4
0

.1
0

6

x
x

.e
x
e_

f6
7

..
0

.8
6

7
0

.1
9

6
0

.3
2

2
0

.9
9

9
0

.8
8

2
0

.2
5

2
0

.2
6

1
1

1
0

.2
8

123

Automatic malware mutant detection… 3497

T
a

b
le

3
co

n
ti

n
u

ed p
o
s.

ex
e_

5
f7

..
p
o
s.

ex
e_

8
3
8
..

p
o
s.

ex
e_

ca
9
..

p
o
s.

ex
e_

fe
5
..

p
u
p
.e

x
e_

6
0
9
..

si
.e

x
e_

3
3
7
..

si
.e

x
e_

7
1
c.

.
si

.e
x
e_

7
2
7
..

st
u
p
.e

x
e_

0
eb

..
x

x
.e

x
e_

f6
7
..

ja
v
a.

ex
e_

d
b

5
..

0
.1

7
9

0
.1

7
9

0
.1

9
9

0
.1

9
9

0
.1

7
9

0
.8

7
1

0
.8

6
6

0
.8

6
7

0
.5

5
4

0
.8

6
7

lb
.e

x
e_

7
c2

..
0

.3
6

3
0

.3
6

3
0

.3
0

.3
0

.1
4

1
0

.4
7

4
0

.1
9

6
0

.1
9

6
0

.0
2

8
0

.1
9

6

ll
p

.e
x
e_

1
5

2
..

0
.5

1
9

0
.5

1
9

0
.5

8
7

0
.5

8
7

0
.2

7
3

0
.5

2
4

0
.3

2
2

0
.3

2
2

0
.0

7
5

0
.3

2
2

n
n

.e
x
e_

2
3

3
..

0
.2

2
4

0
.2

2
4

0
.2

5
7

0
.2

5
7

0
.2

5
9

0
.9

2
9

0
.9

9
9

0
.9

9
9

0
.4

6
4

0
.9

9
9

o
p

s.
ex

e_
2

9
a.

.
0

.1
4

8
0

.1
4

8
0

.1
7

0
.1

7
0

.1
7

5
0

.8
4

7
0

.8
8

2
0

.8
8

2
0

.6
9

2
0

.8
8

2

o
p

s.
ex

e_
4

ce
..

0
.8

4
6

0
.8

4
6

1
1

0
.2

3
2

0
.2

6
5

0
.2

5
2

0
.2

5
2

0
.0

8
2

0
.2

5
2

o
p
y.

ex
e_

8
2

d
..

0
.8

4
4

0
.8

4
4

0
.7

0
.7

0
.2

4
2

0
.4

2
5

0
.2

6
1

0
.2

6
1

0
.0

5
4

0
.2

6
1

p
o

p
.e

x
e_

cd
d

..
0

.2
1

8
0

.2
1

8
0

.2
5

2
0

.2
5

2
0

.2
5

8
0

.9
2

9
0

.9
9

9
1

0
.4

6
4

1

p
o

p
.e

x
e_

f2
3

..
0

.2
1

8
0

.2
1

8
0

.2
5

2
0

.2
5

2
0

.2
5

8
0

.9
2

9
0

.9
9

9
1

0
.4

6
4

1

p
o

s.
ex

e_
3

b
2

..
0

.7
0

.7
0

.8
0

.8
0

.2
5

5
0

.2
7

0
.2

8
0

.2
8

0
.1

0
6

0
.2

8

p
o

s.
ex

e_
5

f7
..

1
1

0
.8

4
6

0
.8

4
6

0
.2

1
8

0
.2

2
9

0
.2

1
8

0
.2

1
8

0
.0

7
1

0
.2

1
8

p
o

s.
ex

e_
8

3
8

..
1

1
0

.8
4

6
0

.8
4

6
0

.2
1

8
0

.2
2

9
0

.2
1

8
0

.2
1

8
0

.0
7

1
0

.2
1

8

p
o

s.
ex

e_
ca

9
..

0
.8

4
6

0
.8

4
6

1
1

0
.2

3
2

0
.2

6
5

0
.2

5
2

0
.2

5
2

0
.0

8
2

0
.2

5
2

p
o

s.
ex

e_
fe

5
..

0
.8

4
6

0
.8

4
6

1
1

0
.2

3
2

0
.2

6
5

0
.2

5
2

0
.2

5
2

0
.0

8
2

0
.2

5
2

p
u

p
.e

x
e_

6
0

9
..

0
.2

1
8

0
.2

1
8

0
.2

3
2

0
.2

3
2

1
0

.2
6

3
0

.2
5

8
0

.2
5

8
0

.0
7

1
0

.2
5

8

si
.e

x
e_

3
3

7
..

0
.2

2
9

0
.2

2
9

0
.2

6
5

0
.2

6
5

0
.2

6
3

1
0

.9
2

9
0

.9
2

9
0

.3
9

5
0

.9
2

9

si
.e

x
e_

7
1

c.
.

0
.2

1
8

0
.2

1
8

0
.2

5
2

0
.2

5
2

0
.2

5
8

0
.9

2
9

1
0

.9
9

9
0

.4
6

4
0

.9
9

9

si
.e

x
e_

7
2

7
..

0
.2

1
8

0
.2

1
8

0
.2

5
2

0
.2

5
2

0
.2

5
8

0
.9

2
9

0
.9

9
9

1
0

.4
6

4
1

st
u

p
.e

x
e_

0
eb

..
0

.0
7

1
0

.0
7

1
0

.0
8

2
0

.0
8

2
0

.0
7

1
0

.3
9

5
0

.4
6

4
0

.4
6

4
1

0
.4

6
4

x
x

.e
x
e_

f6
7

..
0

.2
1

8
0

.2
1

8
0

.2
5

2
0

.2
5

2
0

.2
5

8
0

.9
2

9
0

.9
9

9
1

0
.4

6
4

1

123

3498 T. Lee et al.

Fig. 5 Malware mutant relations

Figure 5 depicts the mutant relations of all compared samples. Each node represents

a malicious code, and the nodes are connected with a line if they were found to be

mutants of each other.

The detected result indicates that most of the 39 malicious codes were more than

just similar and, thus, this result confirms that the financial extortion malwares can be

further categorized into subgroups. We collected 2639 malwares randomly in addition

to the tested 39 malware test samples and compared them to check if there are malicious

codes that are similar to the test samples. The comparison detected many malwares

that are in mutant relations with the 39 test samples. Table 4 shows the malwares that

were identified to be in mutant relations with smss.exe and msn.exe.

4.2 Malware group classification analysis

The results of the similarity analysis of malicious codes have been described above.

Multiple malwares were totally compared to manually group the malwares. If there

are hundreds of thousands of malwares to be analyzed, the automatic malware group-

ing system is needed. This study analyzed 2639 malwares for grouping. The analysis

showed 210 groups, and the top 10 groups contained 1121 malwares, which constitute

around 42.8 % of the total malwares. That means that around 40 % of all malwares

can be automatically categorized into 10 leading groups, and the characteristics of

these groups can be analyzed in advance. This will be very useful in deducing the

behavior and significance of malwares. CG , which represents the suitability of group-

ing, is affected by t. Figure 6 shows the grouping of 2639 malwares according to the

threshold t.

As the threshold t increases, the number of members in each group decreases, but

the accuracy of the members of the malware group increases. By the same token,

as the threshold decreases, the number of members in each group increases, but the

123

Automatic malware mutant detection… 3499

T
a

b
le

4
M

al
w

ar
e

m
u
ta

n
t

d
et

ec
ti

o
n

re
su

lt
s

N
o

.
H

as
h

(M
D

5
)

C
o

m
p

o
n

en
t

ID
C

lu
st

er
in

g
co

ef
fi

ci
en

t

sm
ss

.e
x
e’

s
m

u
ta

n
t

li
st

1
sm

ss
.e

x
e_

c9
3

9
b

d
9

6
d

0
d

ca
4

2
8

ae
1

d
1

6
1

7
c6

9
ff

9
d

7
2

0
.8

9
8

9
0

7
1

0
4

2
fd

d
b

5
b

cb
b

c7
1

6
5

0
2

0
d

5
4

e6
4

a3
4

1
d

6
8

7
9

2
0

.9
3

9
3

9
3

9
3

9

3
fd

8
3

3
f1

f0
d

1
ec

0
7

ac
d

4
fb

2
fb

2
2

8
c7

6
3

b
2

0

4
fc

8
8

6
1

e7
c5

0
b

2
d

8
8

e0
a6

a0
f7

2
1

ab
b

3
7

e
2

0
.8

6
0

8
8

7
0

9
7

5
f9

4
c3

fd
f0

2
f5

4
4

0
d

d
f5

2
6

7
1

2
a0

e9
b

1
ff

2
1

6
f7

5
e8

1
3

9
9

7
7

d
1

e9
3

9
cd

a9
5

7
0

4
1

6
e0

3
4

e
2

0
.7

9
6

5
3

6
7

9
7

7
f7

3
9

d
a8

ad
9

cd
e9

4
5

0
0

c8
d

b
a1

3
d

b
b

0
5

6
1

2
0

.8
5

7
1

4
2

8
5

7

8
f7

1
e7

2
7

d
6

9
a4

9
c7

d
1

9
b

d
ff

2
8

ea
7

1
e5

ee
2

0
.6

9
f1

8
b

a9
f4

c4
e9

ef
f3

ff
4

6
2

c1
af

ae
cd

c8
e

2
1

1
0

ef
c4

ac
3

1
7

6
0

8
e7

9
1

0
f3

eb
4

b
0

2
3

d
0

6
cb

7
2

1

1
1

ea
3

9
8

ab
7

0
2

4
e4

3
e5

ad
7

3
4

fd
2

9
e1

e7
7

f6
2

0
.5

1
2

ea
2

4
9

8
e8

1
9

1
1

7
ee

1
0

f9
7

8
7

9
4

f5
fd

b
c2

5
2

0
.6

6
6

6
6

6
6

6
7

1
3

e7
a9

b
f8

9
8

7
5

af
5

3
6

9
a6

f3
8

ee
ad

1
c3

0
b

d
2

0
.9

0
2

2
5

9
8

8
7

1
4

e6
6

a9
af

5
d

2
c1

f2
4

0
8

c3
eb

7
0

fe
b

4
5

3
d

f1
2

0
.8

1
7

9
5

6
3

4
9

1
5

e6
3

5
0

3
d

d
5

d
6

e3
e9

f2
5

5
b

3
d

9
f0

cd
4

d
e9

9
2

0
.8

3
3

3
3

3
3

3
3

1
6

e4
ce

3
af

8
9

8
d

7
4

c5
6

ad
3

fe
d

ae
ab

7
ee

9
8

6
2

1

1
7

e3
3

b
4

4
aa

7
d

3
a2

f2
5

6
2

f8
3

e6
2

2
0

8
2

c0
3

7
2

0
.8

9
8

9
0

7
1

0
4

1
8

e2
b

7
3

6
4

4
2

5
1

3
3

6
9

8
2

3
6

ed
e4

6
4

6
0

d
1

f2
7

2
0

.7
5

1
9

e2
7

ef
4

6
9

e6
ae

b
4

f8
c3

d
0

6
a3

1
2

6
b

a9
9

9
7

2
0

.3
3

3
3

3
3

3
3

3

2
0

d
fa

9
0

d
3

7
4

d
a6

4
7

6
4

8
6

1
b

4
1

3
f3

ff
a4

1
a9

2
0

.8
3

3
3

3
3

3
3

3

123

3500 T. Lee et al.

T
a

b
le

4
co

n
ti

n
u

ed

n
o

.
H

as
h

(M
D

5
)

C
o

m
p

o
n

en
t

ID
C

lu
st

er
in

g
co

ef
fi

ci
en

t

m
sn

.e
x
e’

s
m

u
ta

n
t

li
st

1
x

.e
x
e_

6
c5

2
4

d
4

b
4

0
b

c7
2

2
b

1
9

eb
2

3
d

5
b

6
5

2
5

0
1

7
1

3
0

.8
2

4
5

6
1

4
0

4

2
m

sn
.e

x
e_

6
8

b
d

7
8

fd
0

1
c1

1
7

b
ca

8
b

9
fe

6
1

9
3

a4
9

d
7

c
1

3
0

.8
2

4
5

6
1

4
0

4

3
m

ed
ia

.p
h

p
_

sm
ss

.e
x
e_

1
0

c8
9

fb
b

b
d

6
7

8
ad

1
6

8
fb

e3
6

a2
7

1
4

8
8

d
7

1
3

0
.8

2
4

5
6

1
4

0
4

4
k

b
s.

ex
e_

e8
eb

7
5

d
8

0
7

0
1

d
ad

5
4

9
ea

e4
2

9
3

9
6

ca
1

e5
1

3
0

.8
2

4
5

6
1

4
0

4

5
e7

4
2

f1
f7

2
3

1
f0

2
8

ca
3

7
6

3
1

6
9

7
3

9
4

1
9

5
8

1
3

1

6
cb

cf
1

8
e5

5
9

b
8

7
af

d
d

0
5

9
ca

e1
f0

3
b

1
8

d
1

1
3

1

7
ca

4
e5

3
1

d
1

1
1

a5
8

b
8

a5
c9

d
9

0
2

e3
7

4
3

0
3

a
1

3
1

8
ca

3
1

6
b

0
fb

d
ad

5
c9

3
9

3
2

ab
b

b
4

6
2

6
8

2
8

6
d

1
3

1

9
9

1
4

d
6

8
1

7
7

8
6

0
ef

4
1

8
2

0
eb

6
6

9
e1

7
2

6
d

cd
1

3
0

.8
2

4
5

6
1

4
0

4

1
0

8
d

9
5

0
b

0
d

cd
f1

9
8

b
4

2
3

7
7

d
c8

4
7

ca
c4

6
c1

1
3

1

1
1

8
d

1
4

6
c1

5
c5

6
7

3
6

3
7

3
f0

2
2

cf
eb

3
2

ed
7

3
c

1
3

1

1
2

7
5

6
d

cd
2

6
3

0
ad

f6
b

3
2

8
0

5
ad

eb
7

8
8

3
b

9
9

f
1

3
1

1
3

6
f7

3
1

9
2

d
0

ab
2

3
b

ea
e5

f7
4

9
e9

8
4

0
2

b
8

6
9

1
3

1

1
4

5
b

5
2

b
7

ce
3

d
d

4
b

3
5

9
9

5
9

5
d

3
2

2
6

7
1

8
1

7
2

7
1

3
0

.8
2

4
5

6
1

4
0

4

1
5

4
5

f9
8

7
8

9
a0

ae
0

1
8

5
ea

1
f2

7
1

2
4

d
a6

1
2

2
b

1
3

1

1
6

4
1

6
8

a3
7

9
af

3
6

d
8

2
6

6
8

3
e0

2
4

9
0

8
a4

5
7

5
6

1
3

1

1
7

3
a4

1
4

6
b

9
6

f7
5

c7
2

1
5

0
9

0
f0

2
e7

a7
4

1
9

ca
1

3
1

1
8

2
7

.e
x
e_

d
0

e5
4

fe
a4

6
b

9
a4

e2
a9

6
4

e5
b

ce
1

7
2

4
9

6
e

1
3

0
.8

2
4

5
6

1
4

0
4

1
9

2
1

d
0

5
7

8
7

1
2

3
3

2
6

b
5

8
9

ac
8

2
d

4
e4

4
3

7
5

5
7

1
3

0
.8

2
4

5
6

1
4

0
4

2
0

0
5

cc
f1

e2
9

3
f4

0
ec

1
d

8
1

1
e3

b
5

1
9

e3
fd

8
9

1
3

0
.8

2
4

5
6

1
4

0
4

123

Automatic malware mutant detection… 3501

t = 91% t = 95% t = 99%

Fig. 6 Malware group visualization. t = 91 %, t = 95 %, t = 99 %

Table 5 Gratio, CG relation according to the threshold t

Threshold t (%) No. of group members No. of groups Gratio (%) CG

99 1827 246 69.231 0.9963

98 1932 243 73.210 0.9585

97 2005 232 75.976 0.9341

96 2065 213 78.249 0.9065

95 2065 213 78.249 0.9065

94 2100 195 79.576 0.8979

93 2203 172 83.479 0.8615

92 2240 156 84.881 0.8695

91 2265 152 85.828 0.8712

90 2285 138 86.586 0.8804

accuracy of the members of the malware group decreases. Table 5 shows the changes

of the Gratio and CG according to the threshold t through the test.

For example, if 90 % of the CG is needed, the threshold t can be set to 95 %, and

this means that 78 % of malicious codes can be grouped. With a 2.5 GHz CPU server,

it took an average of 0.0097 seconds to compare the similarities of malicious codes,

which means that approximately nine million malicious codes can be analyzed daily.

5 Conclusions

Malware is the key cause of cyber intrusion incidents. Since malware is continu-

ously enhanced and concealed, its countermeasures are also being constantly studied.

The malware similarity analysis and automatic grouping technology play the very

important role of making the countermeasures more effective. They can automatically

identify the key malwares from amongst a huge volume of malicious codes, a million

of which are collected each day, and can automatically filter out the less destructive

malicious codes, such as the downloader and dropper, and the malware mutants are

useful in studying the trends and patterns of the same attackers. Although malware

analysis companies manage them in their own ways, the development of a general

123

3502 T. Lee et al.

purpose technology is still far-off. This paper has confirmed the usefulness of the pro-

posed technology through verification, but the development of technology for selective

comparison instead of total comparison is needed to analyze new malicious codes, so

that it can be utilized in the general environment. We are considering the following

approaches. We will select the representative malwares of each group and it is updated

periodically according to the each malware’s local clustering coefficient. If the new

malware arrives, it is compared the representative malwares of the each group and it

is compared entirely within only one group. This paper also analyzed the accuracy of

grouping using CG according to the threshold t. However, further studies are required

since it does not represent the individual accuracy of each group member [22,23].

We intend to continue operating the developed system in general environments and to

improve the system.

Acknowledgements This work was supported by the Institute for Information and communications

Technology Promotion(IITP) grant funded by the Korea government (MSIP) (No.R0101-15-0175, The

Development of Cyber Attacks Detection Technology based on Mass Security Events Analysing and Mali-

cious Code Profiling).

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict of interests regarding the publication of

this paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Symantec. http://www.symantec.com

2. Mohaisen A, Alrawi O (2013) Unveiling zeus: automated classification of malware samples. In: 22nd

international conference on world wide web companion, pp 829–832

3. Xin H, Tzi-cker C, Shin Kang G (2009) Large-scale malware indexing using function-call graphs.

CCS’09, November 9–13

4. Elhadi AAE, Maarof BB (2013) Improving the detection of malware behavior using simplified data

dependent api call graph. Int J Secur Appl

5. Dullien T, Rolles R (2004) Graph-based comparison of executable objects. In: IEEE conference on

detection of intrusions and malware & vulnerability assessment (DIMVA-2004), pp 161–173

6. Alazab M et al (2010) Towards understanding malware behaviour by the extraction of API calls. In:

CTC 2010 second. IEEE, New York

7. Galal Hisham S, Mahdy YB, Atiea MA (2015) Behavior-based features model for malware detection.

J Comput Virol Hack Techniq

8. Miao Q, Liu J, Cao Y et al (2015) Malware detection using bilayer behavior abstraction and improved

one-class support vector machines. Int J Inf Secur, pp 1–19. doi:10.1007/s10207-015-0297-6

9. Moser A, Kruegel C, Kirda E (2007) Limits of static analysis for malware detection. In: Proceedings

of the 23rd annual computer security applications conference

10. Youngjoon K, Eunjin K, Huy Kang K (2015) A novel approach to detect malware based on API call

sequence analysis. Int J Distrib Sens Netw

11. Bayer U et al (2008) A view on current malware behaviors. In: USENIX workshop on large-scale

exploits and emergent threats (LEET)

12. Wu L et al (2011) Behavior-based malware analysis and detection. In: 2011 first international workshop

on complexity and data mining (IWCDM). IEEE, New York, pp 39–42

123

http://creativecommons.org/licenses/by/4.0/
http://www.symantec.com
http://dx.doi.org/10.1007/s10207-015-0297-6

Automatic malware mutant detection… 3503

13. Inoue D et al (2008) Malware behavior analysis in isolated miniature network for revealing malware’s

network activity. In: IEEE international conference on communications, ICC’08. IEEE, New York

14. Cesare S, Xiang Y (2012) Software similarity and classification. In:Springer Briefs in Computer

Science 2012. Springer Science & Business Media, Berlin

15. Sathyanarayan VS, Kohli P, Bruhadeshwar B (2008) Signature generation and detection of malware

families. In: Information security and privacy. Springer, Berlin

16. Kephar JO, Arnolod WC (1994) Automatic extraction of computer virus signatures. In: 4th virus

bulletin international conference, pp 179–194

17. Pratiksha N, Deepti V (2013) Malware detection using API function frequency with ensemble based

classifier. In: Security in computing and communications. Springer, Berlin

18. Shankarapani MK, Ramamoorthy S, Movva RS, Mukkamala S (2011) Malware detection using assem-

bly and API calls sequences. J Comput Virol

19. VirusTotal. https://www.virustotal.com

20. National Software Research Library. http://www.nsrl.nist.gov

21. Cuckoo Sandbox. http://www.cuckoosandbox.org

22. Rieck K, Trinius P, Willems C, Holz T (2011) Automatic analysis of malware behavior using machine

learning. J Comput Secur, pp 639–668

23. Mojtaba E, Zeinab KH (2013) HDM-analyser: a hybrid analysis approach based on data mining

techniques for malware detection. Sattar J Comput Virol Hack Techniq

123

https://www.virustotal.com
http://www.nsrl.nist.gov
http://www.cuckoosandbox.org

	Automatic malware mutant detection and group classification based on the n-gram and clustering coefficient
	Abstract
	1 Introduction
	2 Related work
	3 Proposed scheme
	3.1 System overview
	3.2 Malware mutant detection
	3.3 Malware group classification

	4 Experimental results
	4.1 Malware similarity analysis
	4.2 Malware group classification analysis

	5 Conclusions
	Acknowledgements
	References

