
Automatic Management of
Partitioned, Replicated Search Services

Florian Leibert, Jake Mannix, Jimmy Lin, and Babak Hamadani
Twitter

795 Folsom St.
San Francisco, California

@flo @pbrane @lintool @babak_hamadani

ABSTRACT
Low-latency, high-throughput web services are typically a-
chieved through partitioning, replication, and caching. Al-
though these strategies and the general design of large-scale
distributed search systems are well known, the academic lit-
erature provides surprisingly few details on deployment and
operational considerations in production environments. In
this paper, we address this gap by sharing the distributed
search architecture that underlies Twitter user search, a ser-
vice for discovering relevant accounts on the popular mi-
croblogging service. Our design makes use of the principle
that eliminates the distinction between failure and other an-
ticipated service disruptions: as a result, most operational
scenarios share exactly the same code path. This simplic-
ity leads to greater robustness and fault-tolerance. Another
salient feature of our architecture is its exclusive reliance on
open-source software components, which makes it easier for
the community to learn from our experiences and replicate
our findings.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Design, Performance, Reliability

Keywords
information retrieval, distributed retrieval architectures, con-
figuration management, failover, robustness

1. INTRODUCTION
It is widely known that caching, partitioning, and repli-

cation are three primary strategies for scaling up large, dis-
tributed web services (e.g., search) with high-throughput
and low-latency requirements. Although these approaches

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOCC’11, October 27–28, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0976-9/11/10 ...$10.00.

are well-known both in the systems literature as“design pat-
terns” for building large-scale distributed systems [9, 4] and
application fields such as information retrieval (IR) [3, 1]
and database systems [7], we find that the academic litera-
ture is missing discussions of issues that are critical to their
operation in real-world production environments. Focusing
in particular on partitioning and replication, some of these
important questions include:

• How do we manage partition and replica configurations
in a manner that minimizes human involvement and in-
creases robustness?

• How do we coordinate automatic, seamless failover of par-
tition and replica servers in the presence of unreliable com-
modity hardware?

• How do we dynamically adjust configurations in response
to increasing (or decreasing) load in an elastic manner?

• How do we deploy new code and refresh backend indexes
in a robust manner with minimal service disruption?

Our goal is to share experiences in answering the above
questions, in the context of user search, a production service
that has been running since March 2011 at Twitter. We
hope that this paper fills gaps in the academic literature
and provides a foundation on which others can build.

The solution that we describe makes extensive use of Zoo-
Keeper [10], a wait-free coordination system originally devel-
oped by Yahoo! and is now an open-source project. We make
use of the design principle that eliminates the distinction be-
tween failures and other anticipated service disruptions (e.g.,
code deployments, configuration changes, etc.). This philos-
ophy is espoused by Armando Fox, as conveyed by James
Hamilton in his classic article “On Designing and Deploying
Internet-Scale Services” [9]. Erasing the distinction between
anticipated and unanticipated service disruptions simplifies
code paths and ensures that fault-recovery mechanisms are
exercised regularly, thus increasing the robustness of the sys-
tem as a whole.

Another salient feature of our architecture is that it is en-
tirely built on open-source software components. Search ca-
pabilities are provided by the Lucene search engine. Trans-
port and RPC between individual components are handled
by Thrift. Lucene indexes are built from relevance sig-
nals mined using Hadoop, the open-source implementation
of MapReduce [6], via Pig, a high-level dataflow language
for expressing large-data operations [14]. Since our entire
software stack is built on freely available components, it be-
comes easier for others to apply the lessons learned to similar
services and scenarios.

The primary contribution of this paper is the explication
of many production and operational issues associated with
partitioned, replicated search services. Many IR textbooks
(e.g., [12, 5]) provide an overview of how search engines
are scaled up by partitioning the indexes and replicating
the partitions, and IR research papers take this for granted
(e.g. [13]). However, there is scant discussion of how these
general principles are put into practice, for example, the
questions raised above. In a way, the architecture described
in this paper may be viewed as a reference implementation
that fleshes out what many IR researchers and practitioners
think they know, but the details of which may be a bit fuzzy
and have never been thoroughly documented.

The remainder of the paper is organized as follows: Sec-
tion 2 describes design requirements of the service and pro-
vides an overview of the state of knowledge with respect to
building distributed search services. Section 3 details the de-
sign of our architecture and its operational lifecycle. Expe-
riences in production deployment are presented in Section 4.
We discuss future work in Section 5 before concluding.

2. BACKGROUND
The context of our work is user search in Twitter, the

popular microblogging service whereby users can send short,
140-character messages, called “tweets”, to their “followers”
(other users who subscribe to the messages). Conversely,
users can receive tweets from people they follow via a num-
ber of mechanisms, including web clients, mobile clients, and
SMS. As of June 2011, Twitter has over 200 million users
who collectively post over 200 million tweets per day.

We begin this section with a discussion of the requirements
of our application and then proceed to overview well-known
design principles for scaling up distributed search services.
We close with a discussion of gaps in the current academic
literature that we’ve identified—these are questions to which
our work contributes.

2.1 Application Requirements
User search is a recently-introduced functionality in Twit-

ter that allows users to find other users either by name
(i.e., directory search) or by expertise on a particular topic.1

Example of topical queries range from broad ones such as
“sports”, “gardening”, and “wine”, to narrow interests such
as “hadoop” or “cupcake recipes”.

The design goals of Twitter user search include seamless
scaling up to loads on the order of tens of thousands of
queries per second (although the initial launch configuration
handled only a fraction of that). Each individual request has
a target 99th percentile latency of 200ms and a target mean
latency of roughly a tenth of that. We aimed to design a
“zero-configuration” system that minimizes human involve-
ment in all aspects of its operation: setup, error handling,
code deployments, index updates, etc. Finally, we assume a
single datacenter environment.

Early in the design process, we explicitly decided against
real-time or near real-time index updates as a requirement,
which means there may be a noticeable delay between cer-
tain actions and their impact on the service: for example,
the retrieval algorithm considers a user’s profile description,
but edits to it will not be immediately reflected. This deci-

1http://blog.twitter.com/2011/04/discover-new-accounts-and-
search-like.html

sion was made for two main reasons. First, user search, like
general web search, is inherently adversarial, in that there
will always be attempts to “game” the ranking algorithm
so that certain users will be ranked higher than otherwise
warranted. Real-time index updates provides a rapid feed-
back cycle that benefits attackers. Second, a less-stringent
update requirement allows us to compile relevance signals
offline, thus broadening the range of algorithms that can be
brought to bear and the amount of data we can consider.

2.2 General Architecture
Partitioning, replication, and caching are three strategies

for scaling large, distributed search services with stringent
throughput/latency requirements. In more detail, they are:

Partitioning (also called sharding) involves splitting the
document collection into disjoint segments and building sep-
arate indexes over each of these partitions. Each index is
assigned to a separate index server at runtime for serving
queries. A broker is responsible for forwarding requests to all
of the partition index servers and integrating partial results
from each before passing the final output back to the re-
quester. Partitioning is employed primarily for two reasons:
to exploit parallelism in the index construction process, and
to reduce query latency at retrieval time.

In our case, indexes are served from main memory, and
RAM costs on a single machine are nonlinear beyond a cer-
tain point. If the index size doubles, the same performance
(throughput and mean latency) can be maintained by dou-
bling the number of partitions. Without partitioning, the
original hardware requires (quickly nonlinear) upgrade costs
to maintain performance. To a first order approximation,
query execution time is proportional to index size, so a par-
titioned architecture exploits parallelism to reduce latency.
From a fault tolerance point of view, partitioning is also
helpful since service quality degrades gradually as partitions
are knocked offline or timeout under heavy load.

Replication involves multiple instances of the same service
running independently to share the incoming request load.
In a standard distributed search architecture, there will be
multiple replicas serving the same index partition, so that
the broker needs to query only a covering set of all partitions
(i.e., select one from the set of available replicas). Typically,
the broker itself is replicated to eliminate single points of
failure. Replication has little impact on latency and is pri-
marily exploited to increase throughput and fault tolerance.

Caching involves storing request results in a more readily-
accessible manner (e.g., for on-disk data, cache in memory)
to decrease latency and increase throughput. Information
retrieval researchers have explored both caching of postings
lists and caching of results [2]. In the case where indexes are
completely held in memory (e.g., as is the case with our ser-
vice), caching postings becomes mostly unnecessary. Typi-
cally, there will be a number of cache servers, independent
from the index servers: these are consulted by the broker in
lieu of executing a query from scratch.

Partitioning, replication, and caching are typically integrated
into a distributed search architecture in the manner shown
in Figure 1. The partitions are shown in columns and repli-
cas in rows in the main box, with cache servers off to the
side. A number of replicated brokers is responsible for ser-
vicing requests (e.g., from the frontend) by either consulting
the cache or dispatching queries to the partitions servers and

brokers…

partitions caches

…

…

… … … … …

replicas

…

s

…

Figure 1: Illustration of a standard distributed
search architecture that takes advantage of parti-
tioning, replication, and caching.

integrating the results. Note that this organization is logi-
cal as opposed to physical: in the simplest case, there is a
one-to-one mapping between index servers and physical ma-
chines, but this need not be the case. For example, multiple
logical index servers may run on the same physical machine,
either as different processes or mediated through a virtual-
ization layer. Another common pattern is to have a subset
of partition servers (or possibly all of them) perform “double
duty” as brokers, or embed the broker logic directly in client
code, since brokers consume few resources in practice.

In this paper, we primarily focus on partitioning and repli-
cation, and leave aside issues related to caching, which have
been studied in detail [2, 15] and is not directly relevant to
the goals of this work. For simplicity, we opted for a one-to-
one index server to physical machine mapping and use other
techniques to more fully utilize resources: index servers are
multi-threaded to exploit multi-core processors, and parti-
tions are appropriately-sized to fit in memory. However, the
techniques discussed in the paper can be easily adapted to
alternative logical-to-physical mappings. Finally, we assume
a cluster of homogeneous machines—which implies (roughly)
equal partition sizes and that each machine is able to handle
an equal share of the query load.

2.3 Underexplored Issues
So far, everything we have described is considered com-

mon knowledge in building distributed search systems and
can be found in standard IR textbooks [12, 5]. However, we
found that the academic literature is missing discussion of
aspects that are critical for operation in production environ-
ments. Several of these key issues are outlined below:

Configuration management. Naturally, there must exist
some mechanism for managing the mapping between index
servers and the partitions they are serving. The simplest
solution is a static configuration file, whereby these map-
pings are specified explicitly. For convenience, we refer to
this as the static assignment approach. At scale in a produc-
tion environment, this approach becomes difficult to man-
age. Since a service can span dozens to hundreds of servers
(and possibly more), static configuration involves keeping
track of many hostnames, ports, index file locations, and
other configuration data. Provisioning of additional physical
machines would involve manually editing a configuration file
and then “refreshing” the state of the service, which can be
an error-prone process. In contrast, we describe a dynamic

index server assignment strategy that significantly simpli-
fies configuration management: index servers need only one
datum, the location of ZooKeeper. All other aspects of par-
titioning and replication management are handled automat-
ically, as we describe in the next section.

Automatic failover. It is common wisdom that building
web-scale services from commodity machines is significantly
more cost-effective than from high-end servers [3, 9, 4]. How-
ever, commodity machines are less reliable, which places a
greater burden on the software to provide fault tolerance.
Of course, the general approach is to provide replication,
but how exactly? Once again, the academic literature has
surprisingly little to say in this regard.

Failover mechanisms interact with configuration manage-
ment in potentially complex ways—for example, a static as-
signment strategy would require some way to synchronize
the state of the service during normal operation and the ac-
tual state in the presence of machine failures. In contrast,
we describe a coordination system that continuously moni-
tors system state and a robust automatic failover mechanism
that requires no manual intervention.

Code deployments and index updates. A service is
never static, but rather evolves as bugs are fixed and new
features are introduced. Similarly, a distributed search ser-
vice cannot serve the same index for too long, as data rapidly
becomes stale. These two issues require code deployments
and index updates on production systems while the service
is still handling live load. Obviously, code deployments can
be scheduled during off-peak hours, but that comes with
its own drawbacks: off-peak hours means that there are few
engineers around to troubleshoot if something goes wrong.

Although the general design of partitioned, replicated search
services are well-known, we find a dearth of published knowl-
edge on operational issues such as those raised above. This
paper shares our experiences in wrestling with these issues,
which we hope to be broadly useful to the community.

3. DESIGN
To better understand our design, it is necessary to de-

scribe the life cycle of our user search service. At a high
level, the service decomposes into processes for gathering
relevance signals and building the inverted indexes on the
analytics backend and the distributed retrieval architecture
for serving queries in real time. The retrieval architecture
presents an interface to the frontend (e.g., twitter.com site)
that handles the interface, rendering results, etc.

3.1 Index Construction
Before inverted indexes can be built, relevance signals

for ranking users must be gathered, filtered, and analyzed.
These operations are performed on our Hadoop analytics
cluster. Data are written to the Hadoop Distributed File
System (HDFS) via a number of real-time and batch pro-
cesses in a variety of formats (text, delimited records, JSON,
Protocol Buffers, Thrift, etc.). These data can be bulk
exports from databases (tweets, user profiles, the interest
graph), application logs, interaction logs, and more. Note
that the analytics cluster serves a variety of purposes beyond
processing relevance signals for user search; other tasks in-
clude regular batch jobs that feed report generation systems
and online dashboards, as well as ad hoc jobs such as ma-
chine learning experiments by the research group.

The user search algorithm draws from a variety of sig-
nals, including tweets, user profiles, the interest graph, as
well as other sources. These signals are gathered, filtered,
analyzed, and refined by a collection of scripts written in
Pig, a high-level dataflow language that compiles into phys-
ical plans that are executed on Hadoop [14]. Pig provides
concise primitives for expressing common operations such
as projection, selection, group, join, etc. This conciseness
comes at low cost: Pig scripts approach the performance of
programs directly written in Hadoop Java. Yet, the full ex-
pressiveness of Java is retained through a library of custom
UDFs (user-defined functions) that expose core Twitter li-
braries and other custom code. The refined relevance signals
are written back to HDFS to be indexed; information asso-
ciated with each user is treated as a “document”.

We have built a general purpose inverted indexing frame-
work around the open-source Lucene search engine that bet-
ter integrates it with Hadoop. It allows expressing index
construction as MapReduce jobs and provides hooks for ma-
nipulating the document collection, e.g., for controlling doc-
ument sort order, for specifying the partition function, etc.
This framework takes the output of the Pig scripts from the
previous processing stage and constructs partitioned Lucene
inverted indexes. The final output of the workflow is an
operator-specified number of Lucene index partitions resid-
ing at a known location in HDFS, organized according to
the date the index was created. For example:

/processed/usersearch/2011/08/01/indexes

/processed/usersearch/2011/08/02/indexes

...

Each of the subdirectories under the indexes directories
would contain the individual partition indexes. For example:

2011/08/01/indexes/partition0

2011/08/01/indexes/partition1

2011/08/01/indexes/partition2

...

This entire indexing pipeline is coordinated by our internal
workflow manager. The workflow manager tracks depen-
dencies and handles sequencing of Pig scripts and Hadoop
jobs of not only user search, but dozens of other services as
well. It handles job scheduling, checks to make sure that
preconditions have been met before a job is submitted (i.e.,
output from a previous Pig script is present or data import
from an external source has completed), records the state of
execution (success or errors, length of job, etc.), and notifies
the operator in cases of failure.

Currently, our index construction pipeline is set to run on
a daily basis. We are able to accommodate more frequent
refreshes, but the upper limit for this design is on the order
of an hour. In the case of our application, we feel that this
latency is acceptable, since underlying relevance signals do
not generally have a high velocity of change.

3.2 Building Blocks
The basic building block of our distributed search archi-

tecture is an individual index server, which uses the open-
source Lucene search engine to serve a partition index. To
achieve low query latency, the entire index is held in memory.
Each index server exposes an interface that accepts queries,
performs relevance ranking, and returns results. The in-
terface is defined using Thrift, an open-source language-
independent serialization and RPC mechanism.

ZooKeeper
clients

ServerSet

Figure 2: Illustration of the ServerSet abstraction,
which provides a load-balanced, fault-tolerant repli-
cated service. Replicas register at a known znode
in ZooKeeper. Clients query the same znode to ob-
tain hosts providing the service. Load balancing is
provided by the client API.

Higher-level abstractions in our design rely heavily on
ZooKeeper, a robust, wait-free coordination system. It pro-
vides to clients the abstraction of a set of data nodes (called
znodes), organized in a hierarchical namespace, much like a
filesystem. Each znode is identified by a unique path and
can hold a small amount of metadata. Clients manipulate
znodes through the ZooKeeper API, which supports basic
operations such as creating, deleting, checking the existence
of, listing the children of, and setting a watch on znodes.
The watch concept provides a “push notification” mecha-
nism that triggers client callbacks. There are two types of
znodes: regular (persistent) znodes and ephemeral znodes,
which only exist for the duration of a client session. Zoo-
keeper is implemented as a distributed service that achieves
fault tolerance using a variant of Paxos [11].

Our next layer of abstraction is a ZooKeeper-backed soft-
ware load-balanced service called a ServerSet (illustrated
in Figure 2), which provides real-time membership status
for a set of servers.2 The ServerSet abstraction provides
clients the view of a fault-tolerant, replicated service: this is
how we handle replication of an individual index partition.
ServerSet membership is implemented in ZooKeeper by a
znode at a known path (essentially, a rendezvous point).
An individual host joins the ServerSet by creating a child
ephemeral znode under the znode representing the Server-
Set. The znode contains metadata about the host, such as
what port it is serving on, what its serving status is,3 etc.
For example, the following znodes in ZooKeeper represent a
ServerSet foo that presently has three members:

/service/foo/member_0000

/service/foo/member_0001

/service/foo/member_0002

Note that an ephemeral znode is present only when the ses-
sion is maintained; the znode disappears when the index
server is no longer available (deliberate shutdown, unhan-
dled exceptions, hardware failures, or a network partition
between ZooKeeper and the server).

A client wishing to use the service provided by the Server-
Set queries ZooKeeper for its membership and caches the

2Java source available at http://github.com/twitter/commons
3For example: Alive, Starting, Stopping, Warning, Dead.

results; subsequent membership changes are processed via
callbacks (i.e., watches on the znode). Load balancing is
provided on the client-side via a “least-loaded strategy”. A
priority list of members in the ServerSet is maintained based
on number of exceptions—the most lightly-loaded host is
selected to handle the next request. If a server is unavail-
able, the client marks it “dead” for a user-adjustable pe-
riod of time. In the case of a transient error, the client
retries the host later. In the case of a permanent failure, the
host’s ephemeral znode disappears, triggering the callback
for ServerSet membership changes, causing the client to re-
move the dead host from consideration. Similarly, if a new
member joins the ServerSet, the host becomes available to
the client (also notified via the ZooKeeper watch). Thus, the
ServerSet abstraction provides robust, load-balanced access
to a replicated service both in the presence of failure and
the insertion of additional resources.

The task of a search broker is to distribute queries to all
partitions and merge their results. Brokers expose exactly
the same Thrift interface as each of the index servers. Each
partition is backed by a ServerSet (handling the replication),
so the broker simply needs to ensure that each ServerSet
is queried. Discovery of the ServerSets corresponding to
each partition happens automatically through ZooKeeper,
discussed in the next section. Finally, the brokers them-
selves are organized as a ServerSet, providing a replicated
service for the frontend (e.g., twitter.com), which handles
the interface, result rendering, etc.

3.3 Configuration Management
The only piece of configuration information that needs

to be supplied to every component in our distributed search
architecture is the location of ZooKeeper (i.e., hostname and
port). All other aspects of configuration management and
service discovery are handled automatically.

In ZooKeeper, data associated with user search is main-
tained at a fixed, known, permanent location, statically spec-
ified in the codebase.4 The relevant znodes in ZooKeeper are
shown below (slightly simplified):

/twitter/usersearch/bootstrap

/twitter/usersearch/versions/index20110801

ZooKeeper is a production service used by many applications
across Twitter, so all data related to user search are confined
to its portion of the namespace. The “bootstrap” znode acts
as a pointer to the current index layout being served, via its
metadata. The index layout (in this case, index20110801) is
associated with its own znode; children of a partition_list

znode represent the partitions:

index20110801/lock

index20110801/partition_list/0

index20110801/partition_list/1

index20110801/partition_list/2

Here, the current layout has three partitions. Each of these
partition znodes (0, 1, 2) represents a ServerSet. Metadata
attached to each provide the location of the index data (i.e,
URI specifying path on HDFS).

At service startup, each index server contacts ZooKeeper
for the current layout, and then examines that particular

4We argue that hardcoding this path is a reasonable decision since
we do not expect it to change throughout the life of the service.

znode. The index server will attempt to “claim” the least-
replicated partition and join the corresponding ServerSet
(described in Section 3.2). This presents a distributed race
condition: servers starting up at the same time see the same
partition as “least replicated”, and will simultaneously at-
tempt to join that ServerSet. To solve this, we need to es-
tablish a total order in which index servers claim partitions.

Fortunately, ZooKeeper provides a mechanism for exactly
this. We implemented a distributed lock using the sequen-
tial mode for ephemeral znodes. This works as follows: if
multiple clients attempt to create ephemeral children of the
same parent znode (denoted lock), ZooKeeper will assign
them names in sequential order. The client which created
the lowest numbered znode “wins” the race, and is allowed
to join the least replicated ServerSet. At this point, the in-
dex server begins initialization: first, it joins the ServerSet it
selected, setting the znode metadata to the state Starting
(to denote that it is not ready to serve traffic yet), then it
reads the metadata of the partition znode to find the URI
of the associated index. A check is performed to see if the
index already exists on local disk (which may be the case
after recovery from failure). If not, the index is copied from
HDFS.5 After this, the index server loads the index into
memory, switches its ServerSet state to Alive, releases the
distributed lock by deleting its ephemeral sequential locking
child, and begins serving requests. Admittedly, this is a slow
startup sequence for multiple index servers, but we discuss
this point further in Section 5.

One salient feature of our design is that the index server
startup sequence makes no distinction between“normal”and
unanticipated conditions (i.e., failures). We rely on Zoo-
Keeper to coordinate the assignment of partitions to index
servers in all cases. It guarantees that all state update
requests are atomic, serializable, and respect precedence,
which means that each partition will be evenly replicated—
even when multiple index servers make simultaneous at-
tempts to “claim” partitions. Consider the case of an ill-
timed failure: multiple servers have started up at the same
time, and race to serve the least-replicated partition. The
one which wins the race, and holds the lock, then fails during
index download, and the server crashes. Since the znodes
it created are ephemeral, it leaves the ServerSet it joined
and releases the lock, freeing up the remaining operational
servers to continue as if no error occurred. Since each of
the partition znodes correspond to a ServerSet, the mecha-
nisms described in Section 3.2 ensure robustness both with
respect to failures and addition of resources. After recover-
ing from machine failures (which are relatively brief for the
most part [8]), an index server will typically rejoin the same
ServerSet (since it will be under-replicated) and continue
serving requests—all without manual intervention.

Likewise, broker configuration is completely automatic.
The brokers are clients to the partition ServerSets. Upon
startup, the brokers also locate the partitions via ZooKeeper:
by first consulting the bootstrap node, which redirects to
the current layout. The brokers themselves form a Server-
Set (i.e., registering at a known location) that is presented
to the frontend clients.

5There is nothing special about this being HDFS, as the fetch-
ing mechanism uses the schema of the index URI to determine
whether the data should be fetched from HDFS, via scp, or even
from Amazon’s S3 distributed filesystem.

3.4 Operational Lifecycle
As previously mentioned, our architecture makes use of

the design principle that eliminates the distinction between
failure and other anticipated service disruptions. All pro-
cesses are monitored by the open-source tool Monit6 and
restarted on failure. Whatever the scenario (service startup,
recovery from failure, provision of new resources, etc.), the
index server initialization algorithm is exactly the same:
first, consult ZooKeeper to join the most appropriate Server-
Set, then begin serving the correct partition. Because there
is only one code path, it is always exercised, and thus we are
more confident that bugs have been eliminated. In this way,
simplicity breeds robustness. Other aspects of operations
build on the same mechanism, described below.

Code deployments. Code deployment to production is
as simple as pushing out new code and killing each of the
index servers in turn. When an index server goes down, its
corresponding ephemeral znode disappears and clients are
notified. Upon restart, the index server—now running new
code—automatically rejoins the same ServerSet (since the
partition will have the lowest replication) and via the same
notification process begins to share the request load. These
actions are seamlessly coordinated via ZooKeeper.

Index rolls. Another important part of the user search
operational lifecycle is the periodic index roll, the process
whereby newly-created indexes by the Hadoop backend are
pushed to production. Naturally, this process must occur
without service disruption while production traffic contin-
ues. Critically, we make the assumption that our machines
do not have sufficient memory to simultaneously hold two
versions of the partition index. Relaxing this constraint es-
sentially doubles the size of the index that can be served on
a machine. However, this means that the most straightfor-
ward solution—loading the new index in memory alongside
the old version, and then atomically switching the service
over to the new index—is not possible.

Our implementation of index rolling occurs in two steps.
The first step is to create a new layout by creating a new
znode under versions, and children under that which have
metadata pointing to the new HDFS index URIs.7 The cre-
ation of the new layout is a very lightweight process, and is
scripted to run periodically, polling HDFS for new indexes
at the known location.

After the new layout has been created, the actual index
rolling process is triggered. The currently live layout ver-
sion (residing in the bootstrap node) is retrieved, set aside,
and replaced by the newly created version. The layout roll
is quite similar to the process of rolling restarts in code de-
ployments: the process simply kills (using an RPC call via
Thrift) an arbitrary replica of the most highly-replicated
partition. When an index server restarts, it automatically
switches over to serving the new layout (as specified by the
bootstrap znode). This approach essentially yields a round-
robin restart sequence across the partitions; it ensures that
one replica of each partition switches over to the new layout,
and then the second replica of each partition, etc. Note that
this is a relatively conservative approach, and we discuss
alternative designs in Section 5.

6http://mmonit.com/monit/
7This also means that the partitioning scheme can be changed as
frequently as new indexes are created.

Search brokers issue requests only to the single layout they
believe is “current”, and so when index servers have rolled
to the new layout, they are not yet serving traffic since no
broker knows how to connect to them. Once enough index
servers have rolled to the new layout to handle 1

numBrokers
worth of the total cluster traffic, the index rolling process
restarts a broker, which causes it to start sending all of its
traffic to the new layout.8 After that, more index servers
are restarted, until enough of them have rolled to allow for
another broker to switch, and so on.

A few safeguards ensure the robustness of the index rolling
operation. The rolling process is idempotent: if interrupted
for any reason (e.g., network partition, crash of the machine
the process is running on, etc.), the process can be run again
safely. As it turns out, this is a nice feature that simplifies
operational management, as we discuss in Section 4.2. In
addition, before a new layout is created, the existing layout
is preserved. This supports a recovery mechanism in case
any unanticipated errors arise (e.g., a corrupted index). If
the index roll does not complete within a specifiable amount
of time, an automatic rollback is triggered, reverting the
system to its previous layout state.

4. PRODUCTION DEPLOYMENT
The distributed search architecture described here has

been running in production and providing user search for
Twitter since March 2011. We began development of the
service in the summer of 2010. The architecture has worked
as designed, and while there have been service disruptions
due to RAM exhaustion9 and some due to internal bugs,10

we have not experienced a service disruption that can be at-
tributed to distributed system design flaws. In this section,
we share our experiences of having deployed and operated
the service in production.

At launch time, our production setup was modest, con-
sisting of 3 brokers and 12 index servers. The collection was
divided into three partitions with four replicas of each par-
tition. Traffic has steadily increased since launch, and we
have been supplied with additional machines. As of August
2011, we are running 3 brokers and 21 index servers.

4.1 Performance
We note that the single biggest factor affecting the perfor-

mance of the entire service is the speed of the core Lucene
ranking algorithm within each partition index server. Since
we currently employ a relatively simple ranking function, a
modest hardware setup is sufficient to serve a surprisingly
large query load.

Prior to launch, we conducted a series of performance
stress tests. We built infrastructure that is able to take
production query logs and replay them at various speeds,
in real-time and in multiples of real-time. The production

8At this point, frontend clients see results from different indexes
depending on which broker they connect to, although each request
hits indexes only from the same layout. This means that during
the index roll process, it is possible to obtain two different ranked
lists of results for the same query. We are willing to tolerate
these minor inconsistencies since differences between subsequent
versions of the indexes are for the most part minor.
9Don’t forget to raise the memory available to your JVM as the
index grows!

10Rare broken queries causing elevated error counts, leading front-
end safeguards to blacklist the user search service entirely.

setup at launch time could comfortably handle loads up to
15k queries per second (QPS). At around 20k QPS, the ser-
vice begins to experience 95% latency above 250ms and an
unacceptably high number of timeouts. Additional scaling
experiments were conducted on Amazon’s EC2 service, pri-
marily to test the scale-out capabilities of the architecture:
clusters of up to 100 index servers have been launched and
verified to serve replayed production query loads without
any difficulty.11

Despite the growth in traffic since launch, there remains
substantial headroom in the service to handle much larger
query loads. We are currently developing more sophisticated
relevance ranking algorithms which will make fuller use of
available computing capacity.

4.2 Operational Experiences
Since the launch of user search, we have had hardware

upgrades and the provisioning of additional machines. The
architecture adapted to these changes without disruption,
exactly as designed.

Some time after launch, operations engineers added more
memory to our production machines. This upgrade was per-
formed with minimal coordination: the operations staff had
no specific knowledge of the processes running on the ma-
chines. They simply brought down each machine in turn,
performed the upgrade, and returned the machine to ser-
vice. When a machine was brought down, clients accessing
the ServerSet of which the machine was a member imme-
diately blacklisted the host. Due to sustained query load
on the service, this usually happens before the watch on the
ephemeral znode triggers, notifying the clients that the ma-
chine has “officially” left the ServerSet. Load is then redis-
tributed to the remaining replicas, and the service continues
operating. After the machine is returned to service, it re-
joins the same ServerSet (since it’s the least-replicated one);
the clients are notified of its availability.

Similarly, when additional machines were provisioned for
user search, they joined the existing service without fanfare,
as designed. Once the machines were properly configured
and code deployed to them, they went through the same
startup sequence as in all other operational scenarios pre-
viously described. Each machine in turn joined the least-
replicated partition and began sharing the query load.

The configuration management and index rolling aspect
of our architecture has generally worked as designed. Prior
to formal launch, the service underwent a trial period in
which it was serving live traffic, but results were simply dis-
carded by the frontends. During this period, we experi-
mented with 3 vs. 4 partitions. Index rolling between differ-
ent layouts proceeded smoothly. At launch time, we settled
on 3 partitions, which was increased to 5 a few months later
to reduce index creation time on the Hadoop end; due to
natural growth of the Twitter user base, partitions steadily
increase in size. The index rolling process switched between
the different partitioning schemes seamlessly. In fact, the
only change required was a configuration parameter (num-

11Thus, although it may appear that we over-engineered the archi-
tecture for the launch hardware configuration (and that a simple
static assignment strategy would have worked reasonably), the
EC2 experiments verified that our design does work at a scale
where simple static assignment would be unmanageable. Our
architecture provides much room for growth, which is desirable
given Twitter’s overall growth trajectory.

ber of partitions) in the indexer. The index rolling process,
upon consulting the index location on HDFS, is able to infer
the number of partitions based on the number of subdirecto-
ries at that location, each of which corresponds to a partition
index (see Section 3.1).

In the lifecycle of the user search service, the index rolling
process is perhaps the most intricate operation, since it
actively involves configuration changes across all produc-
tion machines and depends on external components (e.g.,
HDFS). Although index rolling generally proceeds smoothly,
we have encountered a handful of failures since the service
launched. While these incidents required operator interven-
tion, none of these failures resulted in a service outage. A
few memorable examples: we encountered a transient failure
of a rack switch, and as a result, the index server was un-
able to contact HDFS, causing the index roll to fail partway
through.12 Another time, we accidentally started an index-
ing job manually, which began by deleting existing indexes.
An index roll was proceeding at the same time, which meant
that partition indexes disappeared midway through the pro-
cess, once again causing it to fail. During index rolling,
partition under-replication alerts are suppressed by a Zoo-
Keeper lock, but when the rolling process died, the lock was
released, which triggered alerts as expected. On-call engi-
neers were then notified to handle the situation.

Recovery from these errors was very straightforward: af-
ter diagnosing the cause, the operator simply restarted the
rolling process, manually specifying the target layout. Re-
call that, by design, index rolling is an idempotent process
(see Section 3.4). Therefore, the error recovery method is
no different from normal operations. Index roll failures are
of course undesirable, but for the most part, not fatal (i.e.,
resulting in a service disruption). If the index rolling process
fails early on, then only a few replicas have switched over to
the new layout, and a broker is unlikely to have rolled over
yet. In this case, only a few replicas would be “stranded” in
the new layout, unable to serve traffic. This would be no
different than a few machines crashing. If the index rolling
process fails midway or toward the end, then it means that
at least one broker has also rolled over to the new layout.
Thus, traffic is being served and the newly-rolled index par-
tition servers are sharing the live traffic load. In this case,
depending on which broker the frontend contacts, results
may be slightly different. However, as we discussed previ-
ously, this was determined to be an acceptable service state.
In short, index rolling failures are causes for concern, but
not panic. This gives the operator the luxury of having ad-
equate time to diagnose the root problem without having to
worry about service disruptions.

5. FUTURE WORK
There are a number of improvements for future work. A

known weakness of our architecture is its dependence on
ZooKeeper. The service itself is distributed and replicated
to ensure robustness, so the most common failure scenario
is a network partition, i.e., failure of network links. Our
system is resilient with respect to transient network errors
since clients cache the location of ServerSet members, but
a significant network outage will make service discovery im-
possible. Index servers cannot select a ServerSet to join
without contacting ZooKeeper.

12Who says network partitions don’t happen?

In general, we see several relatively simple modifications
that would increase the resiliency of our architecture to net-
work failures. Currently, replica assignment is ignorant of
the network topology, so it may be the case that all repli-
cas of the same partition reside on the same physical rack
in the datacenter—in which case, the network link becomes
the single point of failure. Currently, each index sever joins
the least-replicated partition, breaking ties arbitrarily. This
can be improved to take into account the network topology:
for example, ties could be broken by selecting a partition
to place replicas on different racks, thus ensuring the sur-
vivability of the service to partial network outages. One
can imagine a rich set of alternative selection schemes that
balances locality (i.e., taking advantage of higher intra-rack
bandwidth and lower latency) and robustness (i.e., distribut-
ing replicas across physical racks).

A known weakness of our design is the regulated speed at
which our service changes state. Starting up the entire sys-
tem from scratch is slow because the index servers “claim”
replicas sequentially; the next index server “in line” is not
allowed to proceed until the previous has successfully initial-
ized. Similarly, during index rolling, only one index server
rolls at a time, and the process pauses after each to con-
firm success. However, this limitation is more the result of
engineering conservatism and desired to throttle bandwidth
consumption (from copying indexes) than a design limita-
tion. During startup, it would be possible to roll indexes
more aggressively, for example, one replica of each partition
simultaneously.13 We have not explored tradeoffs between
time, robustness, and bandwidth consumption in alternative
designs, but hope to do so in future work. Thus far, we have
found existing mechanisms to be adequate—for example, we
have never experienced a need to restart the entire service
from scratch (thus slow startup has not been an issue).

Presently, we assume a single datacenter environment.
However, as the service expands, for both robustness and
latency reasons, it will become necessary to serve from mul-
tiple geographically-distributed datacenters. Accommodat-
ing this will not significantly alter the design presented here:
instead, our existing architecture will become another build-
ing block and will present a datacenter-level service abstrac-
tion. Its client would most likely be a query-routing layer
that dispatches queries to the most appropriate datacenter.

6. CONCLUSION
This paper describes the architecture that underlies Twit-

ter user search, which is composed entirely of open-source
software components. Building on well-known design prin-
ciples for distributed search in the academic literature, our
goal is to fill in missing gaps about practical, operational
aspects. Our architecture represents a single point in the
design space of partitioned, replicated search services that
encodes a particular set of tradeoffs and assumptions. The
design is simple, robust, and provides a reference point for
future work exploring alternative architectures.

7. ACKNOWLEDGMENTS
We’d like to thank anonymous reviewers and Jeff Dalton

for helpful comments on earlier drafts of this paper. The

13Or more, in the case of a very large cluster. The only constraint
is that the number of replicas remaining while some are out of
service (while rolling) can handle current traffic on their own.

third author is an Associate Professor at the University of
Maryland, and participated in this work while on sabbatical
at Twitter. He is grateful to Esther and Kiri for their loving
support and dedicates this work to Joshua and Jacob. The
second author thanks Helene for her continuing support and
encouragement, without which none of his current career
would be possible.

8. REFERENCES
[1] R. Baeza-Yates, C. Castillo, F. Junqueira,

V. Plachouras, and F. Silvestri. Challenges on
distributed web retrieval. ICDE, 2007.

[2] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock,
V. Plachouras, and F. Silvestri. The impact of caching
on search engines. SIGIR, 2007.

[3] L. Barroso, J. Dean, and U. Hölzle. Web search for a
planet: The Google cluster architecture. IEEE Micro,
23(2):22–28, 2003.

[4] L. Barroso and U. Hölzle. The Datacenter as a
Computer: An Introduction to the Design of
Warehouse-Scale Machines. Morgan & Claypool, 2009.

[5] S. Büttcher, C. Clarke, and G. Cormack. Information
Retrieval: Implementing and Evaluating Search
Engines. MIT Press, 2010.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. OSDI, 2004.

[7] D. DeWitt and J. Gray. Parallel database systems:
The future of high performance database systems.
CACM, 35(6):85–98, 1992.

[8] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A.
Truong, L. Barroso, C. Grimes, and S. Quinlan.
Availability in globally distributed storage systems.
OSDI, 2010.

[9] J. Hamilton. On designing and deploying
Internet-scale services. LISA, 2007.

[10] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for Internet-scale
systems. USENIX, 2010.

[11] L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems, 16(2):133–169,
1998.

[12] C. Manning, P. Raghavan, and H. Schütze. An
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[13] A. Moffat, W. Webber, and J. Zobel. Load balancing
for term-distributed parallel retrieval. SIGIR, 2006.

[14] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A not-so-foreign language for
data processing. SIGMOD, 2008.

[15] G. Skobeltsyn, F. Junqueira, V. Plachouras, and
R. Baeza-Yates. ResIn: A combination of results
caching and index pruning for high-performance web
search engines. SIGIR, 2008.

