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Automatic mandibular 
canal detection using a deep 
convolutional neural network
Gloria Hyunjung Kwak  1,7, Eun-Jung Kwak  2,7, Jae Min Song  3, Hae Ryoun Park4,  
Yun-Hoa Jung5, Bong-Hae Cho5, Pan Hui1,6 & Jae Joon Hwang  5*

The practicability of deep learning techniques has been demonstrated by their successful 

implementation in varied fields, including diagnostic imaging for clinicians. In accordance with the 
increasing demands in the healthcare industry, techniques for automatic prediction and detection are 
being widely researched. Particularly in dentistry, for various reasons, automated mandibular canal 
detection has become highly desirable. The positioning of the inferior alveolar nerve (IAN), which is one 
of the major structures in the mandible, is crucial to prevent nerve injury during surgical procedures. 
However, automatic segmentation using Cone beam computed tomography (CBCT) poses certain 
difficulties, such as the complex appearance of the human skull, limited number of datasets, unclear 
edges, and noisy images. Using work-in-progress automation software, experiments were conducted 
with models based on 2D SegNet, 2D and 3D U-Nets as preliminary research for a dental segmentation 
automation tool. The 2D U-Net with adjacent images demonstrates higher global accuracy of 0.82 
than naïve U-Net variants. The 2D SegNet showed the second highest global accuracy of 0.96, and the 
3D U-Net showed the best global accuracy of 0.99. The automated canal detection system through 
deep learning will contribute significantly to efficient treatment planning and to reducing patients’ 
discomfort by a dentist. This study will be a preliminary report and an opportunity to explore the 
application of deep learning to other dental fields.

�e inferior alveolar nerve (IAN), the third branch of the trigeminal nerve, is one of the major structures in the 
mandible that supplies sensation to the lower teeth. Moreover, it forms the mental nerve a�er passing through 
the mental foramen and supplies sensation to the chin and lower lip1. Finding the position of the IAN is a crucial 
step in implant installation, third molar extraction, and various other craniofacial surgeries including orthog-
nathic surgery. Any injury to the IAN could result in temporary or permanent damage, where patients experience 
numbness and discomfort2–4. Locating the mandibular canal is not only important in the diagnosis of vascular 
and neurogenic diseases associated with the nerve5, but also in the diagnosis of lesions adjacent to the mandibular 
canal, and planning of oral and maxillofacial surgeries.

�erefore, preoperative treatment planning and simulation are necessary to prevent nerve injury. �is can 
be achieved by identifying the exact location of the mandibular canal, that contains the IAN surrounded by thin 
cortical bone5,6.

Cone beam computed tomography (CBCT) is the most commonly used three-dimensional (3D) imaging 
modality for preoperative treatment planning and postoperative evaluation in dentistry7. �e CBCT volume is 
reconstructed using projection images obtained from di�erent angles with a cone-shaped beam and stored as a 
series of axial images8. CBCT can be used for observing and positioning anatomical structures with lower doses 
of radiation and lower costs, when compared to multi-detector computed tomography (MDCT)9. However, in 
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practice, there are certain challenges associated with mandibular canal segmentation from CBCT images, such as 
inaccurate density and large amount of noise10.

Recently, deep learning has been utilized to precisely classify lesions and segment medical or dental images11. 
Furthermore, performance can be enhanced, surmounting the limitations of datasets, varied images, low reso-
lution, etc., by using pre-trained models with multi-stream (multi-angle, multi-scale, multi-modality) and 3D 
image learning. In particular, it is considered that transfer learning enables training without over�tting on small 
target datasets to boost generalization, and initializing with transferred features is considered a useful technique 
to improve deep neural network performance12,13. �ough processing 3D medical scans is a computational bur-
den, multi-stream learning and 3D convolutional neural network (CNN) has also been widely used by research-
ers, in accordance with clinicians’ standard practice of rotating, zooming in/out of 3D images and checking 
adjacent images during diagnosis14. Although low-dose CT (LDCT) is compromised by lower image quality and 
diagnostic performance similar to CBCT, this method is widely used, owing to the lower X-ray dose than that in 
normal-dose CT (NDCT). Recently, researchers have successfully performed segmentation of LDCT by denois-
ing images using 3D CNN15.

In the �eld of dentistry, a method to segment mandibular canal in panoramic radiography using deep learning 
was explored, which reported highly accurate results (0.847)16. �is high accuracy re�ects the bene�ts of learning 
2D images, as the canal occupies a large portion of the overall image in 2D panorama and the resolution of pano-
ramas is higher when compared to that of CBCT. However, the panorama has a limitation that it is challenging to 
reveal the actual three-dimensional rendering of a complex canal structure as the panorama highlights the canal 
from just one point of view. �erefore, detection and segmentation of the mandibular canal on CBCT images 
using various deep learning networks were attempted in this study to investigate the possibility of its clinical 
application. 2D17 and 3D U-Nets18, and 2D SegNet14,19, that are commonly used in the medical �eld to segment 
anatomical structures or pathological lesions, were utilized to segment the mandibular canal and analyzed from 
the perspective of time complexity and performance.

Materials and method
Ethics statement. �is study was approved by the Institutional Review Board (IRB) of the University Dental 
Hospital (Approval number: PNUDH-2019-009). �e IRB of the University Dental Hospital waived the need for 
individual informed consent, and thus, a written/verbal informed consent was not obtained from any participant, 
as this study had a non-interventional retrospective design and all the data were analyzed anonymously.

Materials. In this study, images of 102 patients (aged 18–90 years) undergoing CBCT for TMJ diagnosis 
between 2008 and 2017 at the University Hospital were used. CBCT scans were performed using a PaX-Zenith 
3D system (VATECH Co., Hwaseong, Korea) with 5.0–5.7 mA, 105 kV, a 24-s exposure time, a voxel size of 0.2–
0.3 mm, and a �eld of view of 16 × 16 or 24 × 24. Patients presenting previous surgical history, malformation, or 
diseases of the oral and maxillofacial region were excluded.

Two trained researchers traced the mandibular canal in cross-sectional images using INVIVOTM (Anatomage, 
San Jose, CA, USA) dental imaging so�ware to generate a ground truth image. For the practical annotation 
processing, the INVIVO’s cross-sectional view was annotated at 1 mm intervals, following the restoration of the 
original interval of 0.2 mm using 3D cubic interpolation. An oral and maxillofacial radiologist, with 6 years of 
experience, clari�ed the positions of any uncertain mandibular canals. �e original image was stored with a 
tracing image. �e tracing image was then replaced with the ground truth label that consisted of the mask for 
the mandibular canal (white) and background (black). �e canal mask was extracted using the color information 
from the tracing image.

Methods. Preprocess. �e size of all dimensions was resized by half before the preprocess. In order to 
increase accuracy and at the same time reduce the volume that the network learns, preprocessing was performed 
such that automatically only the 3D mandibular part from the raw data remained (Fig. 1). First, the center 
one-third of the reconstructed panoramic view (2D) (A) was binarized with teeth threshold (B) and then dilation 
was performed, leaving only the largest object (C). �e resulting image, con�ned to the tooth height (D), was 
binarized with bone threshold (E). Leaving the two largest images a�er complementing the image (F), a buccal 
corridor between the ramus and jaw bone was obtained. Next, this buccal corridor and the tooth part (C) was 
combined (G), the maxillary part was obtained by extending the image (H) upwards. �e maxillary region was 
removed from the 3D binarized jaw bone image, and a 3D closing operation was performed to obtain a binarized 

Figure 1. Preprocessing steps such that just the mandibular part remained.
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mandibular image (I). A�er con�ning the area within the bounding box of this image, the mandible image was 
�nally obtained, thus leaving only the inner part of the mask in the original image (J). In (A) and (D), the bina-
rization coe�cients of the teeth and bone were accurately calculated by limiting the area, and the binarization 
coe�cients were obtained using the multi-level Otsu’s method. �e bone threshold used the �rst level and the 
teeth used the third level threshold. In the case of inaccurate mandibular segmentation result, the threshold of the 
bone and tooth were manually readjusted.

Networks. 2D Networks. First, two image segmentation architectures, U-Net and SegNet, that share similar 
encoder and decoder network architectures, except for some di�erences, were implemented. SegNet uses the 
basic architecture from VGGNet20 with the pre-trained convolutional layer and batch normalization, while its 
decoder uses the max pooling indices to up-sample the feature map instead of learning like Fully Convolutional 
Network (FCN)21. With dental images, the same number of �lters were used as illustrated in Fig. 2A. In contrast, 
U-Net had up-sampling operators by learning to deconvolute the input feature map and combine it with the cor-
responding encoder feature map for a high-resolution feature map as the decoder output.

In this study, the original architecture of 2D U-Net was modi�ed as follows: �rst, the feature maps were pad-
ded with zeros using the ‘same padding’ instead of the ‘valid padding’ in the convolutional layers, so that an input 
image was fully covered by speci�ed �lter and stride; next, the cropping process was removed before copying the 
drop-out or convolutional layer outcomes as shown in Fig. 2B,C. Even though the valid sampling and cropping 
processes were key points originally used in the U-Net algorithm to �nd the hidden pattern and convey to the 
deep network, in this study, the number of pixels of the desired detection area (mandibular canal) was very small 
and was located partially on the edge. Hence, padding feature maps �lled with zeros were applied to maintain 
the same dimensions, to avoid over-�tting via class imbalance and information loss of the edge surrounding the 
mandibular canal at the corner22. �e 2D U-Net was �rst studied with both small and original number of �lters 
as the original U-Net and SegNet. �e 2D U-Net architecture with original �lters was then experimented with 
pre-trained weights from 2D VGG net. Additionally, 2D U-Net pre-trained from 2D VGG net was examined 
with 4 adjacent images. Given the fact that doctors see adjacent images when diagnosing 3D images, this network 
structure was expected to obtain more contextual information from 2D adjacent images and simultaneously cir-
cumvent the computation burden of 3D training.

3D network. A 3D U-Net18 fully convolutional network for 3D canal segmentation was also used. It is an exten-
sion of the 2D U-Net layers in 3D (Fig. 2D), which was learned by randomly selecting 64 3D patches with each 
image of the size 132 × 132 × 132 pixels. �e 3D U-Net used the same 2D U-Net architecture, with corresponding 
3D operations (3D convolutions, 3D max pooling, and 3D up-convolutional layers)18, batch normalization addi-
tion, and dropout layer removal. Since 3D network gets more contextual information, it maintains valid padding 
as its original 3D architecture.

Training options. With binary cross entropy, class weight of 5.3:1000 was used in all networks to compensate 
class imbalance by using the pixel label counts. We used median frequency balancing23 for calculating the class 
weight as proposed in SegNet. Of the 49094 images, the dataset was divided into train:valid:test sets with the ratio 
of 6:2:2, and train:valid:test datasets had equal class images. Each image originally had 545 × 900 pixels, and it was 
used as 256 × 256 pixels for 2D and 132 × 132 × 132 pixels for 3D. NVIDIA Titan RTX GPU with cuDNN version 
5.1 acceleration was used for 3D network training.

2D network. �e U-Net and SegNet were trained with and without a pre-training class weight individually. �e 
U-Net was �rst studied with 1) fewer �lters than retaining the original U-Net architecture and 2) larger number 
of �lters (deeper network) of the original U-Net and SegNet. Moreover, with the original SegNet architecture, 

Figure 2. Architecture of deep learning networks. (A) SegNet; (B) U-Net with fewer �lters than the original 
U-Net (C) U-Net with the original number of �lters; (D) 3D U-Net.
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pre-trained weights from VGG net could be used not only for SegNet but also for U-Net. �erefore, U-Net and 
SegNet with 1 image, U-Net with 4 adjacent images were studied with transfer learning. �e models were trained 
for 600 epochs with Adam optimizer24 with a learning rate and decay (0.01, 0.005) for SegNet and (0.0001, 5e−4) 
and a momentum of 0.9 for U-Net instead of 0.99 from U-Net’s original proposed momentum. We trained the 
2D variants until the training loss converged. �e model with the best performance on a validation dataset was 
selected.

3D network. �e models were trained for 100 epochs using Adam optimizer24 with a learning rate of 5e−4 
decayed by a factor of 5 a�er 5 epochs, and a batch size of 8.

Metrics for accuracy comparison. �e canal and background pixel accuracy, global accuracy, class accu-
racy, and mean IoU (intersection over union) were assessed to evaluate the accuracy. Each de�nition is as follows:

=
+

Pixel accuracy of canal
TP

TP FP

=
+

+ + +
Global accuracy

TP TN

TP TN FP FN

=Class accuracy average of pixel accuracy of canal and background

=
+ +

IoU of canal
TP

FN TP TN

=Mean IoU average of IoU of canal and background

TP: true positive, FP: false positive, FN: false negative, TN: true negative

Results
�e quantitative results in Table 1 show the importance of class balancing, pre-training, and the performance of 
each network. �e �nal pre-trained 2D U-Net with the original number of �lters achieved a global accuracy of 
0.84 and 0.82 and class average accuracy of 0.63 and 0.68 for each network using 1 image and 4 adjacent image 
cases. �e SegNet was also tested with and without pre-trained layers with class weights, and the pre-trained 
SegNet model showed the highest accuracy of 0.96 and class accuracy of 0.90 among 2D networks. 3D U-Net 
showed the best results on all accuracy indexes including global accuracy (0.99) and class accuracy (0.96).

As seen in Fig. 3, there was a fast convergence of global loss of the training data set in all the charts within 600 
epochs. Particularly, as the authors highlighted the speed of model, 2D and 3D U-Nets used graphic processing 
unit (GPU) memory more than SegNet, but provided a quick model with the 0.2 level-loss in 20 epochs. With 
respect to performance, SegNet with pre-training approached the 0.2 error rate in 30 epochs, and the models 
gradually converged to the 0.1 level of error rate.

A�er the validation set con�rmed each model’s convergence, all 9818 test images were used for testing and 
the results are shown in Figs. 4 and 5. �e ground truth mask for the mandibular canal was small (Figs. 4A, 5A), 
and the SegNet sensed the area and segmented it more accurately than 2D U-Net. However, in contrast to the 
high-resolution purpose of the up-sampling section, the prediction area of 2D U-Net was heavily emphasized and 
its performance was notably lower than SegNet, especially when the cortical layers beside the canal is thicker and 
more clear (Figs. 4B,C, 5B,C). �ough 3D U-Net demonstrated the best performance, it was not able to detect the 
canal when the surrounding cortical layer was ambiguous (Figs. 4D, 5D).

BG MC Global acc Class acc mIoU

2D SegNet*,^ 0.96265 0.84278 0.96254 0.90271 0.49116

2D U-Net 0.76764 0.50470 0.76741 0.63617 0.38462

2D U-Net* 0.91744 0.26388 0.91686 0.59066 0.45984

2D U-Net*,^ 0.83897 0.42008 0.83859 0.62953 0.42043

2D U-Net 
(adjacent 2 
images)*,^

0.82013 0.54608 0.81988 0.68310 0.41125

3D U-Net 0.99972 0.92738 0.99922 0.95915 0.57721

Table 1. �e performance comparison of test results using background (BG), mandibular canal (MC), global 
accuracy, class average accuracy, and mean of intersection over union (mIoU). *�e same number of �lters 
(same as the original SegNet and UNet). ^Pre-trained weights with natural images.
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Discussion
While detection of the IAN is a crucial step in dentistry for implant treatment planning and any other oral 
and maxillofacial surgery, it is usually identi�ed by manual positioning in each cross-section of CBCT images. 
Although CBCT is widely used to detect the mandibular canal and analyze the relationship with other important 
structures, it has the following limitations:

 1) Unlike CT, though CBCT has high resolution, it does not measure the density accurately (Houns�eld unit) 
and is more susceptible to noise10. Furthermore, the contrast is lower than that of CT, which makes detect-
ing anatomical structures25 automatically, comparatively harder.

 2) Since the mandibular canal travels in various directions in three dimensions26,27, it is di�cult to know the 
exact shape of the canal in a single direction. �e challenging part is the change in the location and shape 
of the mandibular canal in cross-section images due to changes in the head position.

 3) If the cortical layer around the mandibular canal is thin or the medulla pattern is not clear, it may be di�-
cult to distinguish the canal shape28.

 4) It is di�cult to clearly distinguish from the root of teeth, when in contact or overlapping with the adjacent 
teeth such as 3rd molar29.

 5) It is a time-consuming task to manually annotate the canal mask from each transverse slice at the pixel 
level.

Figure 3. Training progress of each network. (A) 2D SegNet; (B) 2D U-Net; (C) 3D U-Net Each model was 
stopped when its training loss converged (A) Training loss of pre-trained SegNet with 600 epochs; (B) Training 
loss of non-pre-trained SegNet with 600 epochs; (C) Training loss of U-Net with 600 epochs. (D) Training loss 
of 3D U-Net with 100 epochs.

Figure 4. Segmentation result in the slice containing 2nd molar. From le� to right, test input image (A) ground 
truth mask; (B) 2D SegNet segmentation result; (C) 2D U-Net segmentation result; (D) 3D U-Net segmentation 
result.
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Despite these di�culties, various algorithms have been proposed, that can be categorized into two methods: 
statistical shape methods (SSM) and atlas-based segmentation (ARS) methods30. SSM uses parametric variable 
shape models for canal segmentation31, while ARS deforms the atlas image into object images with non-rigid 
registration and segments the canal area from the scanned image32. �e principal di�erence between ARS and 
SSM is that the former is independent of prior knowledge, whereas the latter achieves segmentation by explor-
ing prior knowledge such as shape information. �e limitation of ARS is that it may fail to handle new forms of 
data beyond the atlas. In particular, ARS registers and segments the mandible slice by slice, that partly solves the 
problem of the non-standard position. In contrast, SSM utilizes some prior knowledge to reconstruct a 3D model 
based on CBCT images, and its performance largely depends on the 3D reconstruction method that is adopted. 
Both SSM and ARS depend on either prior knowledge or other preprocessing techniques, and thus may fail in 
handling new incoming data that do not satisfy the prede�ned assumptions.

To increase accuracy to the extent where clinical application is feasible, it is preferable to adopt a new method 
that is fully data-driven and conducts the end-to-end segmentation. Deep learning satis�es the aforementioned 
conditions, and in recent years, it has demonstrated high accuracy in medical image recognition and segmenta-
tion33. �erefore, in this study the mandibular canal was segmented automatically using 2D and 3D deep learn-
ing networks. With reference to intervention from the authors, the background class dominated majority of the 
pixels in an image, and the mandibular canal occupied a very small part of the image and appeared infrequently. 
However, by applying a class weight, preprocessed (cropped) datasets, and batch normalization, the authors tried 
to overcome the class imbalance issue in this paper.

�e results from 2D network suggest that deep learning can be applied to the segmentation of a small object 
such as the mandibular canal. �e results also demonstrated that pre-training and optimization of a class weight, 
in conjunction with each network’s unique characteristics, can improve segmentation accuracy. Speci�cally, 
SegNet with a class weight of 5.3:1000 with pre-training showed the highest global and class accuracy among 2D 
networks, which can be useful to a certain extent at detecting �ne segments. Unlike SegNet that re-uses pooling 
indices for up-sampling, batch normalization, and transfer learning, the predicted mask of U-Net has a noted 
tendency to converge to zero with a high contribution of segmentation towards the background. In worst cases, 
the middle kernels in the network merely leave black or big white region all over the jaw bones. Pooling indices 
and batch normalization of SegNet helped overcome this over�tting problem to some extent. Although U-Net 
was suggested by the medical image community to overcome the lack of annotated images with medical image 
specialized architecture, the results of this study suggest that 2D U-Net is not a desirable choice when detecting 
small 3D anatomical structures surrounded by thin or unclear cortical layer.

It is generally expected for 3D CNN to generate more accurate results as it is able to learn contextual infor-
mation between image slices of complex 3D anatomical structures18. However, there needs to be two questions 
answered for 3D network to be clinically applied to mandibular canal segmentation. �e �rst question is with 
reference to the computing power and time needed for training 3D CNN, sometimes 8 to 32 times34 as long. �e 

Figure 5. Segmentation result in the slice containing mandibular foramen area. From le� to right, test input 
image (A) ground truth mask; (B) 2D SegNet segmentation result; (C) 2D U-Net segmentation result; (D) 3D 
U-Net segmentation result.
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GPU memory requirement is especially high for 3D medical images of 512 × 512 × 512 pixels. �e authors tried 
to overcome this obstacle by con�ning the training volume to a mandibular part and successively reducing it to 
almost one-third of the original volume. �e second question is with reference to the usefulness of the 3D net-
work when applied to very small structures while we trade-o� computation power and complexity. As there has 
been no obvious evidence of the performance gain of 3D CNN over its 2D counterpart for very small and complex 
structures such as the mandibular canal, three step experiments were conducted to evaluate the performance: the 
original 2D network, 2D network with adjacent images, and 3D network. 2D naïve U-Nets in this study showed 
comparatively high global accuracy but recorded lower class and mean IoU primarily because they are compelled 
to ignore the spatial contexts in the third dimension18. Using transferred features from natural images results in 
better output than naïve 2D architecture. �e information from adjacent images with sharing weights also helped 
to learn the task, which exhibits promising results for future research. 3D U-Net recorded the highest accuracy in 
every index (Table 1) and about 18% higher mean IoU than the best 2D model of SegNet considered in this study.

14When comparing the high and low IoU area of the deep learning network (Figs. 4 and 5), it was found that 
the IoU was low where the cortical layer around the canal was not clear to the naked eye. As the cortical layer 
itself is a key feature, the network performance was poor in instances when the cortical structure was too thin or 
ambiguous. Even a�er conveying the path of U-Net for capturing high resolution objects, unclear parts of cortical 
layers’ edges surrounding the canal a�ected the performance of information transfer from encoder to decoder. 
3D networks also exhibited limitations when the cortical layer around the canal was not clear (Fig. 5). In such 
cases, the 3D network soon lost the information about the canal and focused on other distinct cortical area during 
convolutional and pooling layer.

�ough 3D U-Net showed signi�cantly better results than 2D Networks, the GPU memory requirement for 
3D CNN a�er volume reduction is still considerably high for local hospital and clinical environments. 2D U-Nets 
and SegNet demonstrated the potential of 2D networks for higher accuracy by combining improved network 
architecture and semi-contextual information. Future research on further improving e�ciency is expected using 
projected 2D images such as reformatted panoramic views. �ese projected 2D images can be a key to reducing 
the computation burden using compressed information.

Once the mandibular canal is detected automatically and accurately by the dental imaging so�ware through 
deep learning, which will be further explored in a future study, the authors expect that it will be signi�cantly 
useful in everyday clinical diagnosis and treatment planning. �is study could be viewed as a preliminary report 
to encourage a new opportunity to apply deep learning in segmentation of small and complex structures using 
CBCT images.

Data availability
�e data that support the �ndings of this study are available on request from the corresponding author, JJH. �e 
data are not publicly available because they contain information that could compromise the privacy of research 
participants.
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