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Abstract

Multiphase flow in porous media is strongly influenced by the wettability of the system, which affects the arrangement of the

interfaces of different phases residing in the pores. We present a method for estimating the effective contact angle, which quantifies

the wettability and controls the local capillary pressure within the complex pore space of natural rock samples, based on the

physical constraint of constant curvature of the interface between two fluids. This algorithm is able to extract a large number of

measurements from a single rock core, resulting in a characteristic distribution of effective in situ contact angle for the system, that

is modelled as a truncated Gaussian probability density distribution. The method is first validated on synthetic images, where the

exact angle is known analytically; then the results obtained from measurements within the pore space of rock samples imaged at

a resolution of a few microns are compared to direct manual assessment. Finally the method is applied to X-ray micro computed

tomography (micro-CT) scans of two Ketton cores after waterflooding, that display water-wet and mixed-wet behaviour. The

resulting distribution of in situ contact angles is characterized in terms of a mixture of truncated Gaussian densities.

Keywords: contact angle, multiphase flow, porous media, wettability, micro-CT imaging.

1. Introduction

Multiphase flow in natural or engineered porous materials

is ubiquitous in modern applications involving e.g., chemical

transport, geochemical reactions, seawater intrusion, gas diffu-

sion in fuel cells, conventional and unconventional oil recovery,

and carbon dioxide capture and storage [1–8]. The pore scale

arrangement of multiple fluid phases in such porous materials

is controlled by the topological and geometrical characteristics

of the pore space and the wettability of the system. Wettability

is represented through the spatial distribution of contact angle

at the three-phase contact between two residing fluids and the

host solid matrix and its in situ characterization in complex pore

spaces is still an open challenge. The arrangement of fluids in

a porous medium is governed by the Young-Laplace equation,

which stems from energy balance considerations [1] and defines

the equilibrium capillary pressure Pc, related to the interfacial

List of abbreviations:

• micro-CT: micro computed tomography.

• 2D, 3D: two-three dimensional.

• USBM: United States Bureau of Mines.

• SEM, ESEM: scanning electron microscopy, enviromental SEM.

• ML: maximum likelihood.

• RMSE/RMSD: root mean square error/difference.

tension γ and the principal curvature radii (r1 and r2) of the

interface:

Pc = γ

(

1

r1

+
1

r2

)

= κγ, (1)

where κ is the total curvature of the interface. It can be noted

that Pc, and hence the curvature, is constant when the system

is at equilibrium, i.e., the fluids are at rest: this will be the key

insight used in our approach to characterize the wettability.

The contact angle θ between two-phases (w and n) is related

to the interfacial tension between the two fluids through the

Young equation [9]:

γs−n = γs−w + γn−w cos θ, (2)

where γs−i, (i = n, w) and γn−w respectively are the interfacial

tension between the solid surface and the two fluid phases, and

the interfacial tension between the two fluid phases themselves.

For example, in a water-oil system, wettability is classified on

the basis of the contact angle, as measured through the water

phase. When considering the flow of water and oil in a porous

medium, water- and oil-wet systems are characterized by values

of θ which are respectively less than or greater than 90◦ [10].

A series of studies have documented that the spatial distribu-

tion of wettability - the pore-scale distribution of contact angle

- strongly affects fluid displacement and recovery in rocks [10–

19] as well as the performance of fuel cells [20, 21]. For exam-

ple, fluid snap-off is enhanced in water-wet systems and causes

high residual saturation of the non-wetting phase [1, 2, 22–

24]. As another example, the wettability influences the rela-

tionship between capillary pressure and liquid saturation which
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in turn governs gas diffusion in the porous electrodes of fuel

cells [7, 25].

Measurements of contact angles have been typically per-

formed on flat surfaces at ambient conditions through sessile

drop and/or captive bubble approaches [11, 13, 26–28], for dif-

ferent pressure and temperature conditions [29]. In this con-

text, micro-CT imaging has been used to observe drops of fluid

[30]. Bachmann et al [31] modified the sessile drop method

for the assessment of the contact angle of powered or granular

material. While these methods yield valuable information, they

do not yield indication about the in situ contact angle within

a porous medium, as roughness ot the rock surface and the ir-

regular shape of pores are not taken into account. Another key

drawback of these approaches is that they usually consider pure

mineral surfaces. The ensuing contact angle estimates are then

seldom transferable to settings typical of engineering applica-

tions, such as hydrocarbon reservoirs, where the porous media

have a mix of mineralogy and small-scale pore texture and mor-

phology.

In current petroleum engineering practice the contact an-

gle, or wettability, is indirectly inferred from capillary pressure

curves [14], through the Amott or USBM (United States Bu-

reau of Mines) indices [32, 33]. These are also used for the

characterization of gas diffusion of fuel cells [7]. Other indirect

approaches are documented in the literature, such as the Wil-

helmy plate method [34], the water drop penetration test [35]

and the capillary rise method [36]. These have been applied on

different granular soils to obtain estimates of receding and ad-

vancing contact angles, without the direct visualization of the

microscopic interfaces [37]. All the indirect methods provide

an appraisal of the average behaviour of macroscopic samples

without providing insights on the distribution of local contact

angles.

Scanning electron microscopy (SEM) methods can also be

applied to study contact angles between fluids and a surface

at high resolution [38]. Cryo-SEM methods establish a rep-

resentative in situ distribution of fluids, and then freeze and

cleave the sample followed by imaging to determine contact

angle [38, 39]. However, the freezing process might alter the

contact line between the phases: the method does not there-

fore directly yield contact angle in situ at the conditions un-

der which the fluids flow in reservoir settings. Environmental

SEM (ESEM) methods can study contact angles under a range

of temperature and pressure conditions [40], but again do not

directly observe these angles during displacement [40, 41]. In-

stead what is needed is a way to observe the contact line inside

a rock at representative conditions during, or at the end of, a

multiphase displacement.

Knowledge of effective in situ contact angle is needed for

pore-scale models of multiphase fluid flow to quantify the

fluid configurations and threshold capillary pressures. Aver-

aged quantities, such as relative permeability and capillary pres-

sure can than be predicted using pore-scale modelling - see,

for instance [42–44]. However, at present - in the absence of

direct measurements - a distribution of contact angle is sim-

ply guessed, possibly to match measured capillary pressure or

residual saturation, which adds a significant uncertainty to the

predictions of these pore-scale models.

The advent of pore-scale imaging has allowed the determina-

tion of contact angle in situ from imaged rocks with a micron-

scale resolution. This information can constitute a critical in-

put to advanced direct pore-scale numerical modeling of mul-

tiphase flow because it can account for the effect on rock wet-

tability of solid matrix roughness and mineralogical composi-

tion. Andrew et al [45] were the first to illustrate a procedure to

perform such direct measurements of rock wettability for a su-

percritical CO2/brine system. This approach has been applied

to different fluid systems in porous media by several authors

[42, 46–49] and here it will be used for comparison with the

new proposed algorithm.

The approach of Andrew et al [45] is based on a manual

measure of contact angles. As such, it might be prone to

bias/subjectivity and is time-consuming, thus hampering the

possibility of acquiring extensive data sets to capture spatial

distributions of contact angles. Khishvand et al [46] applied

this method on segmented images to estimate advancing and

receding contact angles under two- and three-phase flow con-

ditions. Klise et al [50] proposed an automatic method, which

was tested only on simple settings: bead packs comprised of

beads of one or two uniform wettabilities. Their method re-

lies on the availability of accurate imaging of the three-phase

(e.g., water-oil-solid) contact line, a feature which is very rarely

available due to the difficulty of obtaining a clear and accurate

discrimination of the three-phases in realistic rocks where there

is inevitable trade-off between resolution and system size.

To overcome the challenge posed by the need to accurately

discriminate each phase at the three-phase contact between two

fluids and the solid, we propose an approach which is grounded

on the physical insight that the fluid/fluid interface has a con-

stant curvature. This will enable us to infer the location of the

interface as well as the contact angle with the solid without the

need to ground the entire analysis on very precise observations

of the fluid/fluid interface.

The estimated angle is effective in the sense that it is the angle

that the fluid/fluid interface would have in the case of a locally

smooth surface: this is the angle we require for pore-scale cal-

culations of fluid configuration and threshold capillary pressure.

Indeed, while the ”true” contact angle, defined at the atomic

scale, provides valuable information on the balance of surface

forces, it is not the value we require for pore-scale modelling

and interpretation: rather we wish to find an effective angle that

incorporates the effects of roughness, flow direction and local

pore geometry.

The method is first tested on simple synthetic two-

dimensional (2D) images where the contact angle is known. It

is then compared against the manual method [45] and is finally

applied to assess the spatial distribution of contact angles asso-

ciated with oil ganglia trapped within water-wet and mixed-wet

rock samples.
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2. Materials and methods

2.1. Materials

The two experimental datasets used to establish and test

our approach were obtained from X-ray micro-CT scans of

two samples of Ketton carbonate that experienced a complete

drainage-waterflooding cycle. The samples were 25 mm long

with a cross-section diameter of 4 and 5 mm, respectively for

a water-wet and an altered wettability medium. Decane was

the oil phase to reproduce a water-wet system while a solution

0.01 M of oleic acid in decane (hereafter called doped-decane)

was used in the second Ketton micro core to permit a wettabil-

ity alteration after drainage due to the sorption of the oleic acid

on the solid surface yielding a mixed-wet system. The aque-

ous phase (or brine) was a solution of 7 wt% potassium iodide

salt in deionized water. This setting was conducive to a clear

contrast between the two fluid phases and the solid matrix. The

core-flooding apparatus and the experimental procedure follow

the same protocols described in [15, 45], to which the reader is

referred for additional details.

1. The samples were first flushed with CO2 to displace air.

Brine was then injected to displace CO2, thus ensuring that

the sample was fully saturated with brine.

2. Oil phase was injected with a flow rate corresponding to a

low capillary number (Nc ≃ 10−7), for a total of 15 pore

volumes (drainage).

3. For the mixed-wet system, the oil phase - doped-decane

- was left in the core overnight to allow the wettability

change to occur.

4. A total of 20 pore volumes of brine were then injected so

that residual oil saturation was attained in the sample.

5. The cores were scanned with a Zeiss Xradia 500 Versa 3D

X-ray microscope, obtaining the three-dimensional (3D)

tomograms with high resolution (voxel size: 2 µm for

water-wet and 2.5 µm for the mixed-wet system) that will

be used to estimate contact angles.

2.2. Imaging process

Raw three-dimensional images were filtered with a non-local

means filter to remove noise and obtain improved demarcation

between phases [15, 45, 51, 52]. The non-local means filter

adopts as the grey-scale value of a certain voxel the average of

those of neighbouring voxels. In addition, a value proportional

to an index that measures the similarity between the neighbour-

ing and the voxel taken into consideration is used to weight the

value taken from each neighbour. This value, called the sim-

ilarity value, ranges between 0 and 1 and should be carefully

chosen as it is a trade-off between acceptable noise removal

(for which it needs to be quite high) and a clear definition of

the borders between the phases, that is crucial to correctly de-

termine the contact angle (in this case, we need a low value

of the similarity value). In the cases studied, the similarity

value is chosen as 0.6, to obtain filtered images where rock,

water and oil phases can be easily distinguished. A range of

values between 0.45 and 0.7 all gave acceptable results. The

image is then segmented, i.e., each voxel is assigned to either

the brine, oil or solid phases. In recent years segmentation

methods have improved significantly [53, 54] to yield a level

of accuracy which enables one to crisply distinguish between

phases even in small corners of the complex pore space. The

approach we used is the seeded watershed algorithm [55], that

in our case was able to distinguish voxels in the image belong-

ing to the different phases with an acceptable degree of accuracy

[15]. When applying the seeded watershed algorithm, the mini-

mum and maximum values for grey-scale intensity and gradient

magnitude of each phase need to be specified; these values are

quite case-dependent and the procedure is iterated until accept-

able results are obtained with visual inspection. Fig. 1 illus-

trates, as an example, the raw, filtered and segmented images

of a slice of 3D data. Calculations are performed using Avizo

(Visual Sciences Group, www.vsg3d.com) and Matlab (Math-

Works, www.mathworks.com) software.

2.3. Manual method for the estimation of wettability

Andrew et al. [45] introduced a method for the identification

of the local contact angle which is based on the series of steps

depicted in Fig. S1 of the Supplementary material and listed in

the following:

1. Raw data are filtered and segmented, as described in sec-

tion 2.2.

2. The contact points between the three (fluid-fluid-solid)

phases are automatically selected from the segmented

three-dimensional images. The set of all these points de-

fines the three-phase contact line.

3. For a given contact point identified at step 2, a slice of the

grey-scale 3D image is taken along the direction perpen-

dicular to the three-phase contact line.

4. The contact angle is then manually measured on this slice.

2.4. New automatic algorithm

The new automatic algorithm we propose differs from the

procedure of Andrew et al [45] in the way steps 3 and 4 are

performed, as described in the following.

2.4.1. Identification of planes locally normal to the three-phase

contact line.

Perpendicular planes of the kind described in section 2.3

are identified using the three-dimensional coordinates of each

three-phase contact-voxel, defined as a voxel characterized by

the presence of two different neighbouring phases; an example

is a water voxel having both rock and oil voxels as neighbours.

By definition, one neighbour has at least one of its six faces in

common with the considered voxel. As such, each three-phase

physical contact point is identified by more than one voxel in

the imaged system, i.e., at least one voxel for each phase. This

observation is consistent with the result that the curve connect-

ing all of the contact points is associated with a complex spatial

pattern (see the red curve in Fig. S2 of the Supplementary mate-

rial). The resulting three-phase contact curve is then smoothed

through a moving average procedure (see the green and blue

curves in Fig. S2 of the Supplementary material). The latter is
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Figure 1: Illustration of the stages of data processing: the raw reconstructed data obtained from the scan (A) are first filtered (B) and then segmented (C; rock, oil

and brine phases are respectively depicted in grey, green, and blue). Phase interfaces are well preserved during the process, even in small corners.

a technique that is commonly used for signal smoothing [56]; it

transforms the original data replacing each value xi with an av-

erage yi which is calculated through the data comprised within

a given interval centred at xi:

yi =
1

N

N−1
∑

j=0

xi− j, (3)

where N is the number of points used to compute the moving

average. The normal direction of each plane perpendicular to

the three-phase contact curve, where the contact angle has to

be estimated, is assessed with vectors vn,k. The components of

these are the differences of the coordinates of two subsequent

points along the smoothed curve, i.e.,

vn,k = (xk+1 − xk)i + (yk+1 − yk) j + (zk+1 − zk)k. (4)

In Eq. (4) xk, yk and zk are the three Cartesian coordinates of

the kth contact point, and vn,k is a three-component vector with

the desired direction, i.e., aligned with the three-phase contact

curve. The normal unit vector nk is then found dividing vn,k by

its modulus |vn|:

nk =
vn,k

|vn,k |
. (5)

To check the accuracy of this approach, some points are ran-

domly selected along the curve, and the plane associated with

the normal direction obtained with the procedure described

above is compared against the plane determined manually ac-

cording to step 3 of the manual method illustrated in section

2.3 [45]. Differences between the results obtained are quan-

tified through the angle φ between the two normal directions.

We assess the consistency of our results by considering the

Npoints mean(φ) mean(θ) Std dev

0 34.7◦ 38.8◦ 19◦

4 17.3◦ 37.7◦ 14◦

6 28.0◦ 36.6◦ 13◦

Table 1: The set of three-phase contact points (three-phase contact line) (in yel-

low in Fig. 2) is smoothed using a moving average: using 4 points to compute

the moving average, the mean angular difference (mean(φ)) between perpendic-

ular planes automatically and manually found is the lowest. mean(θ) and Std

dev are respectively the mean contact angle and standard deviation obtained ap-

plying the algorithm described in the main text to the dataset SSa of Fig. 5 with

the three values listed for Npoints employed to smooth the three-phase contact

line.

moving-average smoothing procedure of Eq. (3) with N = 4

or N = 6, i.e. using the coordinates of 4 or 6 points around

the one to be replaced. Table 1 lists values of the mean angular

difference (mean(φ)) between the automatically and manually

computed normal directions at 23 three-phase points and calcu-

lated by considering the three moving average options N = 0

(no smoothing), N = 4 and N = 6. We also list the resulting

mean contact angle (mean(θ)) and its standard deviation (Std

dev) when completing the algorithm with these parameters. It

can be seen that the best results are obtained using N = 4, with

an associated mean angular difference of φ = 17.3◦. Previous

work has shown that if the plane is tilted from the true value by

less than 40◦, then the measured contact angle is not affected

significantly [45]. This is confirmed by results of mean(θ) in

the table, that are close to each other. For this reason, we do not

expect our selection strategy of a perpendicular plane, which

is hereafter performed by relying on N = 4, to cause a critical

impact on the final estimate of the local contact angle.
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Figure 2: Visualization of a 2D image obtained as a slice of a segmented image

taken along the plane locally normal to the three-phase contact line. The latter

is depicted in yellow. The slices are selected within cubic subvolumes of side

b around each three-phase contact point. Green, blue and grey in the 2D slice

respectively correspond to oil, brine and rock phases.

2.4.2. Contact angle

As described in section 2.4.1, 2D images are obtained as

slices of segmented 3D images whose normal is aligned with

the three-phase contact line delineated with the procedure de-

scribed above. Fig. 2 depicts an example of one of these ex-

tracted 2D slices. The estimated value of the local contact an-

gle is then obtained from such slices according to the following

protocol:

1. Rock surface pixels (circled in black in Fig. 3A) are identi-

fied. These are defined as rock-phase pixels with a neigh-

bour which is not rock.

2. Since we aim at characterizing an effective contact angle,

we consider a locally smoothed rock surface. We do so

through linear regression (identified by a solid black line

in Fig. 3A) performed upon rock surface pixels around the

three-phase contact point. Results of a sensitivity analysis

on the size of the region within which the above mentioned

regression is performed is presented in section 3.3.

3. Fluid-fluid interface pixels (highlighted in white in Fig.

3A) are defined as pixels belonging to one fluid phase with

a neighbouring pixel classified as the other fluid phase.

For the estimation of contact angle, we are interested in

interface pixels located in a region around a three-phase

contact point, hence we partition the 3D data in cubic sub-

volumes of side length b around each three phase contact

point (refer to Fig. 2). We will fit the fluid-fluid interface

to a circle, whose curvature is related to the local capillary

pressure, Eq. (1). The appropriate selection of the size b

of the subvolume is critical. If it is too small, then the local

curvature of the interface cannot be well approximated, as

we do not have enough points to fit the circle. On the other

hand, the selection of a wide search region can violate the

constraint of constant curvature. As we move further from

the contact point we may deviate from the principal plane,

as we can approach another rock surface, that can have a

different orientation and hence a different curvature of the

two-fluids interface. In our study we select b = 40 pixels

(80 µm for a voxel size of 2 µm). Results of a sensitivity

analysis on the effect of this choice are illustrated in sec-

tion 3.3.

4. A constant curvature for the interface between two flu-

ids under equilibrium conditions is defined through the

Young-Laplace Eq. (1). This constraint enables us to con-

struct a circle (in white in Fig. 3A) constrained by the se-

lected fluid-fluid interface points. The coordinates of the

centre of the circle and its radius are fitted using the least

square method [57].

5. The contact angle is computed as the angle between two

straight lines: the tangent to the circle at the three-phase

contact point (in yellow in Fig. 3A) and the rock surface

line (in black in Fig. 3A). Since the contact angle is con-

ventionally defined as measured through the denser phase,

one needs to select one of the two angles that are defined

by these two secant straight lines. We term the acute an-

gle as α and construct the line normal to the circle at the

three-phase contact point. The result of this procedure is

depicted in Figure 3B,C, where this normal line is dashed.

Upon examining the pixels crossed by this line, we can see

the following:

• If these pixels do not belong to the denser phase, the

contact angle to be selected is acute, i.e. α, as shown

in Fig. 3B.

• If some of these pixels belong to the denser phase,

the contact angle is obtuse, i.e. π − α, as we can see

in Fig. 3C.

2.5. Method of analysis of the results

Application of the approach described in section 2.4 yields

a set of spatially distributed values of contact angles. These

are then interpreted in a probabilistic framework. A probabil-

ity distribution of the contact angle is inferred and interpreted

according to a truncated Gaussian model or a mixture thereof,

depending on the experimental scenario investigated. The pa-

rameters of the interpretive models are estimated via a max-

imum likelihood (ML) approach [58, 59]. A comparison be-

tween the sample probability distribution of contact angle ob-

tained for two different ganglia from the same water-wet core

is performed upon relying on an established metric such as the

Kullback-Leibler divergence (DKL) [60–62]. This quantifies the

discrepancy between two probability distributions P and Q. For

continuous variables it is defined as:

DKL(P‖Q) =

∫ ∞

−∞
p(x) log

p(x)

q(x)
dx. (6)

Interpretive model for the probability distribution of contact an-

gles. The empirical probability density function, f , of contact

angles for the water-wet system analyzed is interpreted through
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Figure 3: A: Representation of the 2D slice of 3D segmented images where

contact angle θ is computed. Oil is green, brine blue and rock grey. A circle

(in white) is fitted on coordinates of the interface between two fluids. θ is the

angle between the yellow tangent to the circle in the contact point and the black

solid line representing the rock surface. The correct angle is selected as the one

measured through the denser phase (water, in blue). The dashed line is normal

to the fluid/fluid interface at the contact point and is used for the identification

of the correct angle in panels B and C. In this case θ = α in B and θ = π− α for

case C.

a truncated Gaussian model. The latter is defined on the sup-

port [a = 0◦, b = 180◦] and is characterized by a location and a

scale parameter, respectively denoted as µ and σ, i.e.,

f (x; µ, σ, a, b) =

1
σ
φ(

x−µ
σ

)

Φ(
b−µ
σ

) − Φ(
a−µ
σ

)
, (7)

where φ(x) is the normal Gaussian distribution function, and

Φ(x) the Gaussian cumulative distribution function, respec-

tively defined as

φ(ξ) =
1
√

2π
exp

(

−1

2
ξ2

)

, (8)

Φ(x) =
1
√

2π

∫ x

−∞
e−t2/2 dt. (9)

For the dataset with altered wettability, we will show that

the sample density of contact angles is well approximated by

a mixture (with weight w) of two truncated Gaussian distribu-

tions, i.e.,

(10)
g(x; µ1, σ1, µ2, σ2,w, a, b) = w f (x; µ1, σ1, a, b)

+ (1 − w) f (x; µ2, σ2, a, b).

where µi and σi (i = 1, 2) respectively are the location and

shape parameters of the two distributions constituting the mix-

ture.

3. Testing of the approach

3.1. Analysis of synthetic 2D images

We validate the method we propose by relying on simple 2D

images where the contact angle is known a priori. All of these

are characterized by the presence of a circular droplet of oil

phase located at the centre of the image. For the first set of

images a horizontal solid surface scans the droplet from top to

bottom, defining contact angles ranging from 0◦ to 180◦. The

second set of images is characterized by a solid phase which is

tilted of 135◦ from the horizontal. The two sets of figures are

produced with different voxel sizes relative to the diameter d of

the droplet, and the method is applied to each of them.

The results shown in Fig. S3 of the Supplementary material

as scatter plots of actual versus calculated angles demonstrate

that increasing the resolution produces results closer to the true

value. We used images with increasing resolution from 14 to

112 pixels/d and compute the root mean square error RMSE

for each set of results as

RMSE =

√

√

1

n

n
∑

i=1

(yi − ŷi)2, (11)

where n is the number of measurements, ŷi and yi respectively

being the estimated and the true (analytical) value of the contact

angle.

As for the 3D images, we need to partition a region around

each three-phase contact point. In these 2D cases, the side

length b of the cubic subvolume is represented by the side of

a squared region of interest (ROI). In our tests on 2D synthetic

images we use a default value of ROI size corresponding to

50% of d, and the results show an RMSE lower than 4◦ for res-

olutions with at least 28 pixels/d. From Fig. S4 of the Supple-

mentary material it is clear that increasing resolution and ROI

dimension, RMSE lowers down to 0.5◦ (for resolution higher

than 56 pixels/d and ROI size higher than 50% of d).

3.2. Comparison between manual and automatic methods on

the same slices, from images of real systems

The tomograms obtained from the X-ray micro-CT scan of

the Ketton-brine-decane system with the procedure described in

section 2.1 are post-processed with the Avizo software: the im-

ages are filtered and segmented with the techniques mentioned

in section 2.2 and illustrated in Fig. 1. One ganglion of oil is

selected from the water-wet dataset and the manual method de-

scribed in section 2.3 is used to obtain contact angle estimations

in a total of 44 of its three-phase contact points, on grey-scale

images. The automatic algorithm is applied on slices of seg-

mented images with the same orientation as those used for the

manual method, on the very same points. A comparison be-

tween contact angle values obtained through the manual and

automated methods is rendered by the scatterplot depicted in

Fig. 4. Overall, the agreement between the results obtained

with the two methods can be considered as mutually consistent.
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Figure 4: Scatter plot comparing manual and automatic measurements of con-

tact angles associated with the water-wet system considered.

3.3. Sensitivity analysis

Our automatic algorithm requires tuning two key parameters:

1. The length ℓ of the line representing fluids/rock interface.

2. The dimension b of the side of the cubic subvolume con-

sidered within which the fluid/fluid interface is represented

by a circle through a fitting procedure against the experi-

mental data.

An analysis on the impact of b and ℓ on the quality of the re-

sults is performed by (a) considering the results depicted in Fig.

4 and associated with the manual method as reference values,

(b) sampling b and ℓ on a regular grid in the space within which

these parameters are defined, and (c) computing the resulting

root mean square difference (RMSD) between manual and au-

tomatic measurements, with the same Eq. (11) used for RMSE,

considering yi as the manual measurements. The results of this

analysis depicted in Fig. S5 of the Supplementary material sug-

gest that considering b ranging between 30 and 50 pixels and a

value of ℓ ranging between 100 and 400 pixels yields the low-

est values of RMSD. For our applications, we use b = 40 and

ℓ = 200.

3.4. Limitations of the method

As already discussed in section 3.1, the resolution of the

imaged rock affects the accuracy of the results. The compar-

ison with the manual method illustrated in the previous section

demonstrates that, in our case, the results are acceptable with a

2 µm voxel size. It is currently possible to produce micro-CT

images on mm-sized samples with a 1.5 µm voxel size [46],

and according to the tests (refer to Fig. S4 of the Support-

ing material) this would yield in even more accurate results

(lower RMSE). In addition, a lower radius of curvature may

rise RMSE, increasing the ratio pixels/d. The curvature of the

interface is influenced by several factors, including the size of

the throats and the wettability of the system. Further tests of the

method with different rock types and wettability grades would

give indications about the robustness of the new algorithm.

The quality of the image segmentation also influences the re-

sults. The seeded watershed segmentation technique adopted

in our work gives accurate results, as long as the interfaces are

well preserved (Fig. 1). Due to the key role of segmentation in

many fields, improvements are continuously being studied, so

that future work will likely have access to higher quality seg-

mented images [63–65].

4. Results

4.1. Water-wet system

We consider here the water-wet system illustrated in sections

2.1 and 2.2. The two oil ganglia depicted in Fig. 5 are identified

and isolated for the application of our automated methodology.

These are characterized by different shape, dimension and topo-

logical structure. Ganglion SSa (Fig. 5C) is relatively regular,

as opposed to the bigger ganglion SSb (Fig. 5B), which is char-

acterized by a complex three-dimensional pattern.

Figure 5: Trapped oil ganglia SSa (C) and SSb (B) isolated from the water-

wet system with the procedure described in sections 2.1 and 2.2 and employed

for the demonstration of the new automated method. In panels B and C, the

three-phase contact line is depicted in yellow.

Application of the automatic algorithm leads to the identi-

fication of the spatial distribution of the contact angle at a set

of points located along the contact lines highlighted in yellow

in Fig. 5B,C. A total of 1652 and 4025 points are selected
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along the contact lines of samples SSa and SSb, respectively.

As an example of the results obtained, Fig. 6 depicts a three-

dimensional view of the contact angle values obtained from

the analysis of sample SSa. These values are then interpreted

through the truncated Gaussian model, Eq. (7), yielding ML

estimates of the distribution parameters as well as associated

confidence intervals. The modelled probability densities asso-

ciated with the two ganglia are compared through the Kullback-

Leibler divergence, Eq. 6. The very small value of the asso-

ciated Kullback-Leibler divergence (i.e., DKL = 0.06) suggests

that the two samples are very similar from a probabilistic stand-

point. The results of the analyses are collected in Table 2. The

latter lists the samples considered for the application, the num-

ber of points (Npoints) at which the contact angle is assessed, as

well as the ML estimates µ̂ and σ̂ (see Eq. (7)) and the associ-

ated 95% confidence intervals. Results obtained by interpreting

the empirical probability density function obtained by jointly

considering the two datasets are also listed. Fig. 7A comple-

ments our results by depicting the empirical and modelled den-

sity of the contact angle sample obtained by jointly considering

measurements associated with samples SSa and SSb.

Figure 6: Three-dimensional view of the contact angle values evaluated by our

automated algorithm at Npoints = 1652 points identified along the contact lines

of sample SSa.

4.2. Mixed-wet system

The automated method is also applied to the analysis

of a ganglion extracted from the dataset obtained from the

wettability-altered Ketton carbonate sample. The affected con-

tact angle is here estimated at a set of 2657 contact points. Fig.

7B depicts the empirical and modelled density of the result-

ing contact angles. In this setting we observe the clear effect

of ageing, as the mixed condition is represented by a bi-modal

distribution. The latter is well interpreted by a mixture of two

Gaussian distributions, whose estimated parameters are listed in

Table 2 together with the associated 95% confidence intervals.

Here we find a wider distribution of contact angles with values

both less than and greater than 90◦, meaning that parts of the

pore space are water-wet while others are slightly oil-wet: this

Dataset Npoints Par Value Confidence interval

SSa 1652 µ̂ 37.5◦ [ 36.9◦ 38.2◦ ]

σ̂ 13.7◦ [ 13.2◦ 14.2◦ ]

SSb 4025 µ̂ 42.2◦ [ 41.7◦ 42.6◦ ]

σ̂ 14.6◦ [ 14.3◦ 14.9◦ ]

SSa
⋃

SSb 5668 µ̂ 40.8◦ [ 40.4◦ 41.2◦ ]

σ̂ 14.5◦ [ 14.2◦ 14.8◦ ]

Mixed-wet 2657 ŵ 0.75 [ 0.73 0.77 ]

µ̂1 57.5◦ [ 56.4◦ 58.5◦ ]

σ̂1 21.5◦ [ 20.8◦ 22.2◦ ]

µ̂2 85.5◦ [ 85.3◦ 85.6◦ ]

σ̂2 1.84◦ [ 1.71◦ 1.97◦ ]

Table 2: Samples considered for the application, number of points (Npoints) at

which the contact angle is assessed, ML estimates of parameters (Par) µ̂ and

σ̂ (see Eq. 7) and ŵ, µ̂1, σ̂1, µ̂2 and σ̂2 (see Eq. 10). The width of the 95%

confidence interval associated with the estimate of each parameter is also listed.

is what we mean by a mixed-wettability. There is not a single

contact angle with some variation around a typical value, but

two peaks for areas that have been affected to different degrees

by the ageing procedure.

5. Conclusions and future work

The new algorithm for the estimation of contact angle pre-

sented in this work, based on the constraint of constant curva-

ture defined by Young-Laplace Eq. (1), allows the automatic

computation of thousands of reliable estimates of contact an-

gle from a rock core. The method is validated with synthetic

images and through comparison with results obtained using the

manual method proposed by Andrew et al [45]. Manual and

automatic estimates are in good agreement.

Several methods available in the literature infer wettabil-

ity indirectly from capillary pressure curves [14, 32, 33] or

with capillary rise and Whielmy plate methods and water drop

penetration test [7, 34–37], without the direct visualization

of contact angle. Direct measurements of contact angle are

widely performed with sessile drop method on simple settings

[11, 13, 26–31], while the only direct assessment of in situ con-

tact angle within the complex pore space of natural rocks was a

manual method proposed by Andrew et al [45]. The new auto-

matic algorithm adds a step forward with an automation of the

process using the physical constraint of constant curvature of

the fluid/fluid interface.

This method is applied on two different ganglia of a water-

wet Ketton/brine/decane system, obtaining effective contact an-

gle distributions modelled as truncated Gaussian proability den-

sity functions (Eq. (7)) with estimated location parameters

µ̂ = 37.5◦ and µ̂ = 42.2◦ respectively. These are slightly

lower than a mean value of 47◦ found for a similar system in

[15]. Lastly, a ganglion from a mixed-wet Ketton/brine/doped-

decane system is considered, obtaining the more spread distri-

bution of Fig. 7, shifted towards higher values of effective con-

tact angle [15, 66, 67]: this sample has contact angles that are

8



Figure 7: Final result of contact angle distribution for the water-wet case (A), merging data from the two different ganglia SSa and SSb, and for the mixed-wet

case (B). Dots represent empirical probability density distribution values, while solid lines are defined by function of Eq. (7) and Eq. (10) for the water- (A) and

mixed-wet (B) system respectively.

both less than and greater than 90◦, indicating the presence of

both water-wet and oil-wet surfaces.

These results lead us to the following conclusions:

1. The automatic algorithm is a reliable method to estimate

the distribution of in situ effective contact angle.

2. This new approach returns a number of estimates that is

large enough for an interpretation of results in a proba-

bilistic framework.

3. The probability density distribution of effective contact an-

gles of a water-wet system can be modelled as a truncated

Gaussian density function, characterized by a location pa-

rameter µ and a scale parameter σ.

4. The data from two ganglia of a Ketton-brine-decane water-

wet system can be merged together with a resulting over-

all distribution of effective contact angle with location and

scale parameter µ̂ = 40.8◦ and σ̂ = 14.5◦ respectively.

5. The use of decane doped with an oleic acid can alter the

wettability through ageing of the rock, producing a dif-

ferent distribution of contact angle, bimodal and shifted

towards higher values, that can be modelled with the

weighted mix of two truncated Gaussian density functions

of Eq. (10).

Future work is planned to further test the robustness of the

algorithm and extend this method to the study of different rock

types, rocks with spatially variable wettability and different

mineralogies, and to measure contact angles during a displace-

ment.
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