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Abstract

The frequency response of vibro-acoustic systems can be improved by using various forms
of damping materials. Their material properties are typically varying with the excitation
frequency and are introduced by one or multiple complex-valued functions. Numerical
models of such systems are typically large and require efficient solving strategies. In
this contribution, a workflow to reduce the numerical complexity of systems containing
frequency-dependent damping materials is presented. The functions modeling the mate-
rial’s frequency-dependent behavior are approximated in rational form and the resulting
transfer function is used in a Krylov based moment matching method. The approxima-
tion is performed automatically using the adaptive Antoulas-Anderson algorithm. As
robust and efficient automatic reduction algorithms are vital for an efficient design pro-
cess of vibro-acoustic structures, we also show an adaptive procedure to automatically
find a reasonably sized reduced model for a given system under a certain tolerance. The
algorithms are tested for two forms of damping materials common in vibro-acoustic sys-
tems: poroelastic materials following the Biot theory and a constrained layer damping
material.

Keywords: Higher-order Krylov subspace, Nonlinear damping, Adaptive model order
reduction, Vibro-acoustic systems

1. Introduction

The reduction of unwanted noise and vibration is a key issue in the design of vehi-
cles and machines in order to ensure a safe and comfortable operation. Many of these
structures are required to withstand high loads but at the same time have a low weight.
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However, materials with a high stiffness to mass ratio, such as fiber reinforced composites,
are not optimal regarding their vibrational properties. The interaction between vibrating
structural parts and the surrounding acoustic fluid can cause noise, making the use of a
vehicle or machine uncomfortable for passengers or operators, while material fatigue can
affect parts of the structure vibrating constantly with relatively high amplitudes, leading
to safety issues. Various methods, both active and passive, to reduce unwanted noise and
vibrations exist [1–3] and are an important part of the design in many fields of engineer-
ing. The effect of energy dissipation mechanisms is typically depending on the excitation
frequency of the vibro-acoustic system and is often represented by frequency-dependent
material properties [4]. Such material models exist, for example, for constrained layer
damping [5, 6] or poroelastic materials described by the Biot theory [7–10].

The finite element method (FEM) is frequently employed in the numerical discretiza-
tion of mathematical models of vibro-acoustic problems in the low to mid frequency range.
In such a setting, the effects of the frequency-dependent materials are often modeled by
a combination of scalar functions and constant matrices. In order to be able to resolve all
wave phenomena correctly, a fine spatial discretization is required, often leading to very
large models with high memory requirements and long computation times. To be able
to solve vibro-acoustic problems under reasonable computational effort, different model
order reduction methods, for example based on rational interpolation, have been estab-
lished. They reduce the size of the original numerical model by projecting it onto a lower
dimensional subspace using an appropriate reduction basis [11]. Projection-based model
order reduction has been successfully applied to different kinds of physical systems in
general and also to vibro-acoustic systems [12–15]. Vibro-acoustic systems are typically
described by differential equations of second order. Principally it is possible to convert a
vibro-acoustic system to an equivalent first-order system of larger size and to employ one
of the many available model order reduction methods for first-order systems. Apart from
increasing the computational complexity of the original model, which may be prohibiting
in some cases, it is desirable for many applications to retain the second-order structure
for a reduced order model. A reduced order model with the original matrix structure
may preserve spectral properties and allows a physical interpretation of its matrices. If
the reduced order model is coupled to other systems, preserving the matrix structure is
beneficial as the same coupling conditions for the full and the reduced order models can
be applied [16].

However, classic reduction methods have to be adapted in order to consider the
behavior of frequency dependent materials also in reduced space. If the damping mech-
anism can be described by analytic functions, a reduced system of the same structure
as the original system can be computed by considering the derivatives of the frequency-
dependent functions in the creation of the reduction basis [17]. Such strategies have been
applied to vibro-acoustic systems in [12], where a quadratic term in the system excita-
tion has been considered. In extension to the iterative rational Krylov algorithm IRKA
[18], general forms of frequency-dependent nonlinear terms in the transfer function have
been considered in [19], where optimal expansion points for a rational interpolation of
the system’s transfer function are iteratively found using the Loewner framework [20].
An analytic derivative of the transfer function is required for this structure-preserving
method. The Loewner framework itself has also been used for model order reduction [21].
Contrary to the other model order reduction methods summarized in this paragraph, it
only utilizes input and output data of a system and does not require access to the sys-
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tem states or its matrices. Operator inference is a data-driven approach constructing a
reduced order approximation of the system operators from input and output data and
trajectories of the system states and can therefore also be employed for systems with
frequency-dependent material properties [22, 23]. Other data-driven methods, such as
proper orthogonal decomposition (POD) [24] or dynamic mode decomposition (DMD)
[25] can also be employed. Note, that a large amount of data from the full-scale numeri-
cal model can be required for an efficient application of data-driven methods. The mode
displacement method, typically used for classically damped systems, can be extended to
vibro-acoustic systems with nonlinear damping behavior as presented in [14]. The modes
of such systems have been used to compute the coefficients for a Padé expansion around
specific frequencies of interest in [26, 27]. A method to find the eigenvalues of systems
with nonlinear frequency dependency using a linearized matrix pencil is presented in [28].
Here, the nonlinear contributions are approximated by the adaptive Antoulas-Anderson
(AAA) algorithm [29] and the matrix pencil is augmented by the higher order terms of
the approximation, changing the original structure of the problem. A classic model or-
der reduction method is to use an Arnoldi method to approximate the original system’s
transfer function and some of its derivatives around certain frequency shifts. Arnoldi
methods for second-order systems [30, 31] have been used in [32] to compute a reduction
basis for systems with frequency-dependent damping. Here, the frequency-dependent
functions are approximated by a Taylor series which is truncated after the quadratic
term in order to fit the second order structure of the Arnoldi method. Again, analytic
derivatives are required for this approach.

In the following, we present a workflow to compute reduced order models for systems
whose transfer functions contain functions which are nonlinear regarding the driving fre-
quency. The gist of the method is a reformulation of the system’s transfer function, such
that it contains only polynomial terms up to a certain order, and to use a Krylov space
of the same order to compute a reduction basis. In the first step, AAA [29] is used to
automatically find a rational approximant of the non-polynomial function. Following, a
series expansion of the approximant about the same shift that shall be used for computing
the Krylov subspace is performed, leading to a polynomial representation of the approx-
imated function. After replacing the original function in the transfer function by this
approximation, the modified transfer function contains only polynomial terms. A series
expansion about an expansion point can easily be computed from this representation,
leading to a higher order Krylov subspace, as shown, for example, in [17, 33]. Depending
on the desired accuracy, the resulting polynomial, which is determining the order of the
employed Krylov subspace, can be truncated at an arbitrary order. One or more of these
subspaces are then used to compute the projection basis for model order reduction. A
similar polynomial approximation of the transfer function terms can also be obtained us-
ing, for example, a Taylor expansion [32]. Contrary to this Taylor-based approach, AAA
requires only function evaluations to find a rational approximant and neither analytic
expressions nor derivatives of the nonlinear functions are required. Therefore, damping
effects described by data which has been obtained from measurements can potentially
be used in this procedure. Additionally, the proposed workflow is directly applicable
to any problem exhibiting a frequency dependency in the transfer function as long as
this function can be represented by a AAA approximant of appropriate order. Nonlinear
effects not described by a combination of scalar functions and constant matrices are not
in the scope of this workflow.
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In order to efficiently use reduced order models in a design process or in optimization
tasks, automatic methods to reduce the original model under a specified accuracy are
required. The approximation error of the reduced system is typically unknown and has
to be estimated, as the solution of the full problem is assumed to be unavailable prior to
the simulation. Different kinds of error estimators or bounds exist in literature and are
the basis for adaptive methods, which find a reasonable reduced order and locations for
expansion points in an iterative procedure. Such heuristic algorithms have been proposed,
for example, in [32, 34–39]. The structure of these algorithms is similar to reduced basis
(RB) approaches, where suitable locations for expansion points are often obtained from
a greedy method [40, 41]. Reduced basis methods have also been successfully applied
to vibro-acoustic systems in, for example, [42]. Error estimators required for adaptive
algorithms are often based on residual expressions or the comparison of multiple reduced
models having different orders or with different expansion points [35, 43–45]. Algorithms
employing such techniques have been found suitable to reduce systems with frequency-
dependent material properties: The residuals of the intermediate reduced models of
systems with general nonlinear damping effects are used as an error estimate in [46]; two
independent reduced models of vibro-acoustic systems with poroelastic material damping
are computed based on different expansion points and compared to obtain an estimate for
the approximation error in [47]. Most of the mentioned algorithms are based on increasing
the size of the reduced order model between iterations. Similarly, we suggest an adaptive
algorithm to find a reasonable distribution of expansion points using a greedy method,
in order to compute an appropriately sized reduced order model valid in a specified
frequency range. Additionally to increasing the size of the reduced order model, the
algorithm also increases the order of the employed Krylov subspaces adaptively. This
can increase the accuracy of the resulting reduced order model without enlarging its
size. The iterative algorithm estimates the reduction error by comparing the individual
subspaces around the expansion points as well as the transfer functions of reduced order
models coming from subsequent iterations.

Combining the reformulation of the frequency-dependent function with the adaptive
algorithm results in an intrusive and structure-preserving model order reduction strategy.
The workflow is started by providing a frequency range in which the reduced order model
should be valid, the full-order model with the frequency-dependent functions given either
explicitly or as data points, and a desired approximation accuracy. The following steps
are then performed without user input, particularly: (i) approximating the frequency-
dependent functions using AAA and considering them in the computation of the Krylov
spaces; (ii) estimating an appropriate order of the involved Krylov spaces and the size of
the final reduced order model. We therefore refer to this workflow as being automatic.

The remainder of the article is structured as follows: The reduction method based
on higher-order Krylov subspaces and the AAA algorithm is presented in section 2. The
adaptive algorithm is presented in section 3. Section 4 contains numerical experiments
showing the performance of the model order reduction method and the adaptive algo-
rithm by the example of two vibro-acoustic systems. Concluding remarks are drawn in
section 5.
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2. Model order reduction for systems with nonlinear frequency dependency

2.1. Model order reduction using a higher-order Krylov subspace

We first revisit a method for model order reduction using a higher-order Krylov
subspace, originally proposed in [33]. It can be applied to single input, single output
(SISO) dynamical systems with a maximum derivative order of k. Such systems of
differential equations have the following form

Σ :

Ak
dk

dtk
x(t) + · · ·+A1

d

dt
x(t) +A0x(t) = bu (t)

y (t) = cTx (t) ,
(1)

with constant system matrices Ai ∈ Rn×n, i = 0, . . . , k, input and output mapping
b, c ∈ Rn, state x(t) ∈ Rn, and scalar inputs and outputs u(t), y(t). t denotes the
time variable. In a vibro-acoustic context, k = 2 for classically damped systems and A0

corresponds to the stiffness matrix, A1 is the viscous damping matrix, and A2 is the
mass matrix. A transformation to frequency domain yields

Σ :


(

k∑
i=0

siAi

)
x̃ (s) = bũ (s)

ỹ (s) = cTx̃ (s) ,

(2)

with the Laplace transforms of the state x̃(s) ∈ Cn, input ũ(s), and output ỹ(s). The
complex frequency is typically given by s = iω, where i2 = −1 and ω is the driving
frequency. The corresponding transfer function is

H (s) = cT

(
k∑

i=0

siAi

)−1

b. (3)

As this transfer function contains only polynomial terms, we will refer to such systems
as “polynomial systems” in the remainder. For vibro-acoustic systems and many other
types of dynamical systems, n is large and we want to find a reduced system Σr of order
r ≪ n preserving the original system’s matrix structure:

Σr :


(

k∑
i=0

siAi,r

)
x̃r (s) = brũ (s)

ỹr (s) = cTr x̃r (s) .

(4)

Here, the subscript r denotes a reduced quantity. The reduced model is considered
accurate, if its transfer function approximates the original model’s transfer function in a
certain frequency range of interest; so we require Hr (s) ≈ H (s) for some s. The reduced
system’s transfer function is given by

Hr (s) = cTr

(
k∑

i=0

siAi,r

)−1

br. (5)

This reduced representation can be achieved by projecting the original system onto a
lower dimensional subspace using a Petrov-Galerkin projection. Two subspaces Vr, Wr
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spanned by two matrices V,W ∈ Cn×r are required for the projection [11, 12] and are
selected, such that

WH

((
k∑

i=0

siAi

)
Vx̃r (s)− bũ (s)

)
= 0. (6)

It follows
ỹr (s) = cTVx̃r (s) . (7)

The reduced vectors and matrices in eq. (4) are thus given by

Ai,r = WHAiV, br = WHb, cTr = cTV, (8)

where (•)H denotes the Hermitian transpose of a matrix. For symmetric systems (2),
setting W = V preserves the symmetry in the reduced space [48]. If both subspaces
Vr, Wr are closed under conjugation, a real valued representation of the reduced matrices
and vectors in eq. (4) can be obtained [11].

A classic choice for the projection subspaces are Krylov spaces [11]. For systems
with k = 2 given by eq. (2), a second-order Krylov subspace can be employed [49, 50].
Lin et al. [33] extended this idea for an arbitrary order k. Both methods are special
cases of a general structure preserving reduction framework introduced by Beattie and
Gugercin [17].

A kth order Krylov space is defined by k matrices Z1, . . . ,Zk and a vector v0 and is
spanned by the recursive vector sequence

r0 = v0

r1 = Z1r0

r2 = Z1r1 + Z2r0

...

rr−1 = Z1rr−2 + Z2rr−3 + · · ·+ Zkrr−k−1.

(9)

Here, Z1 = −A−1
0 A1, Z2 = −A−1

0 A2, . . . , Zk = −A−1
0 Ak, and v0 = −A−1

0 b. The
resulting space

K(k)
r (Z1, . . . ,Zk,v0) = span {r0, r1, . . . , rr−1} (10)

is called the rth Krylov subspace of order k [33]. An orthonormal basis V of the Krylov

space K(k)
r is found using, for example, an Arnoldi procedure [31, 49, 51] and can be used

for projection as in eq. (6) [30]. The subspace for basis W is found similarly by setting

Z1 =
(
−AT

0

)−1
AT

1 , Z2 =
(
−AT

0

)−1
AT

2 , . . . , Zk =
(
−AT

0

)−1
AT

k, and v0 =
(
AT

0

)−1
c.

The resulting reduced model matches the first r moments of the original transfer function
around s0 = 0. If all system matrices Ai are symmetric and this symmetry is preserved
in the reduced order model by choosing W = V, the first 2r moments are matched [30].
Often the approximation around a specified frequency s0 ̸= 0 is desired. To achieve this,
the transfer function is rewritten to include the shift s0

H (s) = cT

(
k∑

i=0

(s− s0)
i
Âi

)−1

b, (11)
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with Âi =
∑k

j=i

(
j
i

)
Aks

j−i
0 . The binomial operator is given by

(
j
i

)
= j!

i! (j−i)! . The choice

of subspace size r and location of the shift has a large influence on the approximation
quality of a reduced model. To increase the reduced model’s accuracy for a wide range of
frequencies, it can be beneficial to not only increase the size of the Krylov subspace, but
to combine multiple subspaces with different shifts s0 in a global basis [43, 52]. Adding
a new shift to the projection basis involves the solution of up to two linear systems of
equations of order n. Increasing the order at an already established shift only requires
matrix vector products if the factorization of Z0 is stored for each shift and a suitable
Arnoldi strategy is chosen [49].

2.2. Dynamic systems with nonlinear frequency dependency

We now consider dynamical systems having general nonlinearities regarding the ex-
citation frequency s = iω. The nonlinearity is introduced by l complex-valued scalar
functions ϕj (s) , j = 1, . . . , l, which are assumed to be known in the following, and are
applied to the system according to l corresponding constant matrices Gj ∈ Rn×n. In the
frequency domain, such systems are given by

Σ :


 k∑

i=0

siAi +

l∑
j=1

ϕj (s)Gj

 x̃ (s) = bũ (s)

ỹ (s) = cTx̃ (s) ,

(12)

with the corresponding transfer function

H (s) = cT

 k∑
i=0

siAi +

l∑
j=1

ϕj (s)Gj

−1

b. (13)

The application of the Krylov method described in the last section requires a series
expansion of the transfer function in order to incorporate all effects of the nonlinear
function; see, for example, Theorem 2 in [17]. As these factors may not be easy to obtain
for some functions ϕi (s) in eq. (12), we want to find a representation of the system
approximating the nonlinear function with a polynomial of degree d. This leads to a
system with the transfer function

H (s) ≈ Ȟ (s) = cT

(
k∑

i=0

siAi +

d∑
ℓ=0

sℓǦℓ

)−1

b. (14)

In this case, each matrix Ǧℓ incorporates the series expansion factors of the original
function for the corresponding order; the strategy to obtain these factors is presented in
the following section. If multiple functions ϕ (s) are approximated, Ǧℓ is a linear com-
bination of all matrices Gj and their expansion factors corresponding to order ℓ. The
modified transfer function eq. (14) can be shifted similarly to eq. (11), if an approxi-
mation around s0 ̸= 0 is desired. Using a Krylov subspace of order max {k, d} allows
considering also higher-order terms of the polynomial, increasing the frequency range
where an accurate approximation of the original function ϕ (s) is acquired. While typi-
cally k = 2 for vibro-acoustic systems, d can be arbitrary and depends on the function

7



to be approximated. Note, that the maximum polynomial order in eq. (14) determines
the order of the employed Krylov space. Although the structure of the original transfer
function (13) is reformulated to eq. (14) to be able to apply the Krylov method from
section 2.1, the projection is performed on the original matrices from eq. (13). Thus the
original structure of the full-order model is preserved.

A similar approach has been proposed by Xie et al. [32] which employs expansion
factors obtained from a Taylor series approximating a nonlinear function. Contrary
to the workflow presented here, this expansion is truncated after the quadratic term
in order to use the second-order Krylov subspace from Bai and Su [49]. However, this
yields reduced order models potentially showing a stagnating approximation quality with
increasing distance from the frequency shift. If the quadratic approximation of ϕ (s) is
not able to represent the original function well, increasing the order r does not improve
the approximation quality. A possible remedy is establishing new expansion points, but
this involves solving at least one linear system of full order n per shift.

Therefore, we evaluate the benefits of applying higher-order Krylov subspaces which
are able to consider higher-order series expansion factors. This potentially increases the
frequency range in which ϕ (s) is approximated with high accuracy, thus requiring a
lower reduced order r and less expansion points for an accurate reduced order model.
Additionally, the number of required matrix factorizations is independent of the order
of the Krylov subspace k. Increasing order k and size r of the subspace requires only
matrix vector multiplications.

2.3. Automatic approximation of frequency dependent nonlinearities

In the following, we outline a workflow to automatically find approximations to the
scalar functions ϕi (s) and add them to a shifted transfer function given by eq. (14). The
adaptive Antoulas-Anderson (AAA) algorithm [29] is used to find a representation for
ϕi (s) in a frequency range of interest, given data points rather than an analytic function.
It can therefore also be applied in cases, where only discrete data, for example from mea-
surements, is available. As AAA is an adaptive algorithm, it ensures a certain accuracy
of the approximant upon convergence without the need for manually optimizing its order
or the location of the support points. Therefore it can be used in the automatic approxi-
mation of ϕi (s) given only the function values, a tolerance, and a maximum order. AAA
has been successfully used to solve nonlinear eigenvalue problems [28] and to linearize
dynamic systems with nonlinear frequency dependency [16, 53]. Such linearization allows
the direct use of standard model order reduction methods, but the system’s structure is
changed and the order is increased from n to n (d+ 1) prior to the reduction, d being
the maximum polynomial order of the nonlinear terms.

In the following, the nonlinear functions in eq. (12) are approximated up to an ar-
bitrary order d and a Krylov subspace of the same order is subsequently used to find a
suitable reduction basis. An enlargement of the original system is not necessary and the
reduced system retains the structure of the original system. Contrary to approximating
the nonlinear frequency contributions with, for example, a Taylor series, this method can
be employed without the need for analytic derivatives. Therefore it can be applied to
different kinds of problems with an affine representation of frequency dependent behavior
without the need of problem-specific changes.
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AAA, originally introduced by Nakatsukasa et al. [29], finds a rational approximation
ri (s) of ϕi (s) in barycentric form

ϕi (s) ≈ ri (s) =

m∑
j=1

wi,jfi,j
s− si,j

/
m∑
j=1

wi,j

s− si,j
, (15)

where m ≥ 1 is the order of approximation, wi,j are weights, fi,j are data points, and si,j
are support points. Note, that eq. (15) can also be expressed as a quotient of polynomials.
In the case of a successful AAA iteration, these polynomials are each of degreesm−1 [29].
The support points are found using a greedy method and the weights are obtained by
solving a least-squares problem [29]. Following [28], the barycentric form of ri (s) can be
written in matrix notation as

ri (s) = pi (Ri + sT)
−1

q

with pi =
[
wi,1fi,1 · · · wi,mfi,m

]
, q =

[
1 0 · · · 0

]T
,

Ri =



wi,1 wi,2 · · · wi,m−1 wi,m

−si,1 si,2

−si,2
. . .

. . . si,m−1

−si,m−1 si,m

 , T =



0 0 · · · 0 0
1 −1

1
. . .

. . . −1
1 −1

 .

(16)

Shifting the system about s0 results in

ri (s) = pi

(
I− (s− s0) R̂i

)−1

q̂i, (17)

with R̂i = − (Ri + s0T)
−1

T, q̂i = (Ri + s0T)
−1

q and identity I. As m is typically
small, the computational cost of the matrix operations required for shifting the system
can be neglected. In the vicinity of s0, the matrix inverse in eq. (17) can be approximated
with a Neumann series

ri (s) = piq̂i + pi

(
(s− s0) R̂i

)
q̂i + pi

(
(s− s0) R̂i

)2
q̂i + . . . . (18)

To obtain the transfer function of the shifted system (14) including the nonlinearity,
we shift the AAA approximations about the same shift s0 as the polynomial terms and
truncate the Neumann series after the dth term. After inserting the approximations into
the transfer function and shifting everything, we arrive at a shifted variant of eq. (14)

H (s) = cT

(
k∑

i=0

(s− s0)
i
Âi +

d∑
ℓ=0

(s− s0)
ℓ ̂̌Gℓ

)−1

b, (19)

with Âi =
∑k

j=i

(
j
i

)
Aks

j−i
0 , ̂̌Gℓ =

∑l
j=1 pjR̂

ℓ
jq̂jGj . Now, the max {k, d}th Krylov

subspace can be found using an Arnoldi method as described in section 2.1.
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3. Automatic model order reduction with higher-order Krylov subspaces

In order to find an accurate reduced order model with the proposed framework, the
locations and orders of the expansion points need to be set properly. This cannot always
be achieved without prior knowledge of the full system’s response, so adaptive meth-
ods determining reasonable locations and orders of expansion points are required. Such
methods should find a reasonably small reduced order model without being too computa-
tionally demanding. For a successful error assessment, the exact relative approximation
error of the reduced model’s transfer function compared to the original system

ε (ω) =
|H (iω)−Hr (iω)|

|H (iω)|
(20)

is required for frequencies ω where the reduced order model should be valid. As this
error is not available without the solution of the full system, which is not desirable
to compute, it has to be estimated as ε̂ (ω) ≈ ε (ω). In the following algorithm, we
use an error estimation technique presented by Grimme in [43] to identify frequency
regions where the approximation quality of the reduced order model is not sufficient. The
approximation error is estimated by the difference of the transfer functions of two reduced
order models approximating the same full order system but having different expansion
points, reduced orders, or are computed using different orders of Krylov subspaces. Their
transfer functions are denoted by Hr,1 and Hr,2 and the estimated error is given by

ε̂ (ω) =
|Hr,1 (iω)−Hr,2 (iω)|

|Hr,1 (iω)|
. (21)

If the difference between the transfer functions of such two models is sufficiently small
with respect to a specified tolerance, it is assumed that the original system response is
approximated well by both reduced models in the considered frequency range. Further
increasing the order has presumably little effect on the approximation quality. The
difference between the two compared reduced order models has to be chosen adequate,
such that the two models are different enough from each other and the error is not
underestimated.

In the following, we present an adaptive method for automatic model order reduction
of systems with frequency-dependent properties. It computes a reduced order model
valid in a specified frequency range without requiring a priori knowledge of the original
model’s solution. The algorithm is based on increasing the order of the employed Krylov
spaces and enlarging the size of the reduced model until the estimated error in the
frequency range of interest is below a defined threshold. The reduced order is increased
by adding new expansion points. Appropriate locations for new expansion points are
found using a greedy method. The method to obtain an approximation for frequency
dependent functions described in section 2 is used to obtain all involved reduction bases.
The complete algorithm is given in pseudo code in Algorithm 3.1.

The adaptive algorithm starts with one or more locations for initial expansion points
distributed in the frequency range of interest provided by the user. For each expansion
point, a local subspace and the corresponding reduced order model is computed. Subse-
quently, the approximation error in the frequency range between each pair of adjacent
expansion points is estimated according to eq. (21). If both local reduced order models
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Algorithm 3.1 Adaptive reduction algorithm.

Require: Original system Σ, initial expansion points s0,i, i = 1, . . . , ns with corre-
sponding initial sizes r0,i and subspace orders ki, frequency range ς = [ωmin, ωmax],
minimum and maximum subspace order kmin,kmax, order increment kincr; tolerance
εtol, maximum size of the reduced system rmax

Ensure: Reduced system Σr

1: while max
ω∈ς

(ε̂ (ω)) > εtol and rglob < rmax do

2: Compute Σr,i for each s0,i and corresponding ki
3: Compute ε̂ij(ω) for each pair of adjacent s0,i and s0,j following eq. (21)
4: if ε̂ij(ω) < εtol then
5: Combine subspaces for Σr,i and Σr,j

6: Flag combined subspaces inactive
7: end if
8: Compute global subspace from all active local subspaces and reduce Σ
9: Update rglob

10: Compute global error estimator ε̂(ω) in range ς
11: Find s0,j whose location is next to max ε̂(ω)
12: if kj < kmax then
13: kj = kj + kincr
14: else
15: Add new expansion point at iωnew, ωnew = max

ω∈ς
ε̂1(ω) and initialize with r0, kmin

16: end if
17: end while
18: Compute Σr with the global subspace

have, under a specified tolerance, similar transfer functions in this region, the reduced
model is considered sufficiently accurate in this frequency region and both local sub-
spaces are combined to a single subspace. The involved subspaces are now flagged as
inactive. This means the subspace orders associated to the respective expansion points
are not increased anymore, as this would not lead to a better approximation in the area
between them. After all pairs of subspaces have been processed, a global reduction basis
is computed from all active local subspaces and ε̂(ω) is evaluated for the complete fre-
quency range of interest. If the estimated error is higher than the specified tolerance, the
subspace order k of the subspace with the corresponding expansion point located next to
the highest estimated error is increased by kincr. If the highest estimated error is next to
an expansion point with maximum order kmax, a new shift is introduced here. Also if all
local subspaces are combined and flagged as inactive and the estimated error is higher
than the specified tolerance, a new expansion point is established at the location where
ε̂(ω) has its maximum value. If the estimated error is below the defined tolerance or
the size of the global reduced order model is larger than a specified value rmax, the final
reduced model is computed using the current global basis.
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4. Numerical experiments

The combination of a higher-order Krylov subspace using series expansion factors
obtained from AAA is evaluated by the example of two numerical models of different
complexity incorporating frequency dependent material properties. All following numer-
ical experiments were conducted on single nodes of the MPI Magdeburg’s computing
cluster Mechthild. Each node is equipped with two Intel® Xeon® Silver 4110 (Skylake)
CPUs with eight cores per CPU and a maximum clock rate of 3.0GHz. 192GB memory
are available per job. The algorithms have been implemented and run using Matlab®

R2020b. All code and data used to produce the results in the following section is available
from doi:10.5281/zenodo.6225761 [54].

The complex-valued reduction bases used in the following experiments are obtained by
single-sided projection regarding the system input, i.e. settingW = V in eq. (8). In order
to assess the approximation quality of the reduced models, the relative difference between
the absolute values of original and reduced transfer functions eq. (20) is evaluated. To
be able to compare multiple reduced models at once, the relative error regarding original
and reduced transfer functions under an approximation of the L∞-norm

ε =

max
ω∈[ωmin,ωmax]

∥H(iω)−Hr(iω)∥2

max
ω∈[ωmin,ωmax]

∥H(iω)∥2
≈

∥H −Hr∥L∞

∥H∥L∞

, (22)

is used to obtain a single value showing the approximation quality of a reduced model.

4.1. Viscoelastic sandwich beam model
As first example, we consider a system with one frequency dependent function. It

models a symmetric sandwich beam with length l = 0.21m, consisting out of two layers of
cold rolled steel surrounding a viscoelastic ethylene-propylene-diene core [6]. The beam
is clamped at one side, a sketch is given in fig. 1.

Figure 1: A sketch of the sandwich beam with viscoelastic core. The steel face sheets are depicted gray,
the viscoelastic core orange.

The system is discretized using finite elements and has an order of n = 3360; the
matrices have been taken from [55]. Due to the relatively small size of the original
model, the computation times are not considered in this example. The beam is excited
by a single load at its free end and the displacement is measured at the same location; the
frequency response function is given in fig. 3. The dissipation behavior of the constrained
layer damping can be described by a fractional derivative (FD) model extending a Zener
model and is added by a nonlinear function depending on s [5, 56]. The resulting system’s
transfer function is of the shape

H (s) = cT
(
s2A2 +A0 +

G0 +G∞ (sτ)
α

1 + (sτ)
α G1

)−1

b, (23)
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Figure 2: The complex-valued function governing the fractional derivative damping model.

where A0,G1 are the stiffness distributions of the elastic and viscoelastic parts and
A2 is the mass distribution of the system. The parameters for the FD model are
G0 = 350.4 kPa, G∞ = 3.062MPa, τ = 8.230 ns, α = 0.675. The FE model is eval-
uated in the frequency range ω = [10, . . . , 10000]. 100 function evaluations on points
distributed equidistantly on the imaginary axis in the range iω are used to obtain a AAA
approximation of the FD model function, as only the function values in this region are of
interest for the application. AAA converges at an order of 12 given a tolerance of 1·10−14;
the original function and the support points chosen by AAA are given in fig. 2a. A section
of the phase portrait [57] of the approximant is plotted in fig. 2b. It can be seen, that the
branch cut along the negative real axis is not present in the approximated function. This
is, however, not hindering the application of the approximant in this setting, as only the
behavior of the function along the imaginary axis needs to be approximated. The poles
and zeros of the approximant are alternating in direction of the negative imaginary axis.
AAA converges without computing spurious poles, so the cleanup step proposed in [29]
is not performed. The application of AAA to functions with branch cut singularities, as
the FD model function, has been recently examined in [58].

Figure 3 shows the impact of approximating and expanding the frequency dependent
function in eq. (23) to the result of the transfer function. Here, the function ϕ (s) is
approximated using AAA and expanded about the shift s0 = 100i up to order k. Orders
higher than k are truncated. While increasing the truncation order leads to a wider range
of accurate approximation, all approximated transfer functions substantially deviate from
the original with increasing distance to the frequency shift. However, a reduced order
model computed using a Krylov space about this shift is able to approximate the full
order model’s transfer function over the complete considered frequency range, as will be
shown in the following.

The reduction basis is computed using the same expansion point s0 = 100i near the
first peak in the original transfer function and using different expansion orders k. For
k < 2 a second-order Krylov subspace is used for computing the reduction basis in order

13
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Figure 3: The sandwich beam model’s transfer function, where the frequency dependent function gov-
erning the fractional derivative damping model is approximated by expansions of different orders shifted
about s0 = 100i.

to incorporate the effects linked to the matrix A2 in eq. (23). However, the expansion
of the AAA approximant of the FD function is truncated at k. The benefit of a higher
subspace order k can be observed in the relative approximation error plot in fig. 4. Here,
the original model is reduced to r = 15 using Krylov spaces of different orders k. The
relative errors of all models are low in the vicinity of the shift. The approximation error
of the reduced order model computed by linearizing the frequency-dependent function
(i.e. k = 0) is substantially higher in the considered frequency region than for the
models considering higher-order expansion factors. Note, that the approximation quality
of the reduced order model is better than the approximation of the frequency dependent
function regarding the full order model shown in fig. 3.
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Figure 4: Relative approximation error of the sandwich beam model. Approximation with different
orders k of the Krylov subspace expanded about s0 = 100i with reduced order r = 15.

Increasing the reduced order r yields reduced models being sufficiently accurate for
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all values of k > 0. Figure 5 shows the approximated relative L∞-errors for reduced
models of different sizes r compared to the order of the respective Krylov subspace k.
All reduced models with k > 0 achieve a reasonable approximation quality in the desired
frequency range, suggesting that the automatic approximation of the FD model function
in eq. (23) is successful. Choosing a higher subspace order k tends to lead to an earlier
drop in the maximum relative error, showing the potentially higher accuracy of models
based on a higher k given a certain size of the reduced order model r. The observation
that all models with k > 0 reach a similar accuracy shows that the damping introduced
by the FD model can be approximated well by a linear function. However, a constant
function cannot capture the behavior of the FD model over the complete frequency range.
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Figure 5: Relative errors in the frequency range ω = [10, . . . , 10000] of reduced models of the sandwich
beam regarding different sizes r and Krylov subspace orders k. All subspaces are expanded around
s0 = 100i.

4.2. Poroelastic material coupled to an acoustic cavity

We now consider a three-dimensional interior acoustic problem with poroelastic ma-
terials. The system models an acoustic cavity measuring 1.122m×0.82m×0.982m with
two layers of different poroelastic materials covering one side. All walls surrounding the
acoustic fluid are considered rigid and a sliding boundary condition is employed between
the porous materials and the walls. The system is excited by an acoustic point source
inside the cavity at the point (1.03, 0.12, 0.30) and the sound pressure level Lp is eval-
uated at another location inside the cavity at (0.35, 0.80, 0.10). A sketch of the system
and its transfer function are given in fig. 6. The transfer function of this example is
plotted over the frequency f = ω

2π . Please note the peak in the transfer function near
the zero frequency. This behavior can be observed in the numerical analysis of various
acoustic settings and is caused by an internal mode of the acoustic fluid volume inside
the cavity [59]. Detailed information about the geometry and material parameters for
the poroelastic material are available in [60].

Each porous material consists out of an elastic skeleton which is filled by an acoustic
fluid. The ratio between elastic and fluid phase is defined as the porosity ϕ and is
the main characteristic of such materials. Their damping behavior is mainly caused by
viscous and thermal effects of the fluid inside the pores and the structural damping of
the elastic skeleton. This microscopic behavior is described by the Biot theory on a
macroscopic level [7, 8] and has been adapted specifically for poro-acoustic systems by
the Johnson-Champoux-Allard model [9, 26]. The dissipation mechanism is governed by
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Figure 6: A sketch of the poro-acoustic system and the transfer function measuring the sound pressure
level Lp at the receiver location. The dotted lines represent the maximum extents of the cavity in each
axis (1.122m× 0.82m× 0.982m), the solid lines show the actual walls of the box.

frequency-dependent, complex-valued functions for viscous drag b̃ (s) and effective bulk

modulus of the fluid phase K̃f (s):

b̃ (s) = σϕ2

√
1 +

4sα2
∞ηρf

σ2Λ2ϕ2
, (24)

K̃f (s) =
γP0

γ − (γ − 1)
[
1 + 8η

sPrΛ′2ρf

√
1 + sPrΛ′2ρf

16η

]−1 . (25)

Additionally to porosity ϕ and frequency s, they depend on the porous material’s static
flow resistivity σ, tortuosity α∞, and viscous and thermal characteristic lengths Λ and
Λ′. The interstitial fluid is described by its density ρf , viscosity η and heat capacity γ and
is referenced to the standard pressure P0. Pr is the Prandtl number. The parameters for
eqs. (24) and (25) used in the numerical model are also given in [60]. Figure 7 plots the

real and imaginary parts of the two parameters K̃f (s) and b̃ (s) for one of the considered
poroelastic materials [60].

A finite element formulation using mixed degrees of freedom in the porous material,
the so called (u, p) formulation, is used to discretize the problem [62]. Here, the fluid
phase is described by its pressure pf and the solid phase by its displacement vector us.
Thus each node has four degrees of freedom in the 3d case. The acoustic pressure pa
inside the acoustic cavity is governed by the Helmholtz equation for a linear inviscid
fluid. Off-diagonal coupling terms ensure the continuity between the poroelastic and
acoustic domains and between the two poroelastic materials. After discretization with
finite elements, the coupled system’s transfer function is given by
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Figure 7: Real and imaginary parts of viscous drag b̃ and K̃f for a polyurethane foam with parameters
ϕ = 0.93, σ = 80·103 kgm−3 s−1, α∞ = 2.5, Λ = 10·10−6 m, Λ′ = 100·10−6 m, ρf = 1.205 kgm−3,
η = 1.8208·10−5 Nsm−2, γ = 1.4, P0 = 1.0128·105 Pa, Pr = 0.712 [60, 61].

H (s) = cT

(
A0,p1

− γ̃p1
G1,p1

−
ϕ2
p1

R̃p1

G2,p1
−

ϕ2
p1

s2ρ̃22,p1

G3,p1
+ s2ρ̃∗p1

G4,p1
− ξp1

G5,p1

+A0,p2
− γ̃p2

G1,p2
−

ϕ2
p2

R̃p2

G2,p2
−

ϕ2
p2

s2ρ̃22,p2

G3,p2
+ s2ρ̃∗p2

G4,p2

+A0,a −
1

s2
G1,a

)−1

b, (26)

where the indices p1 and p2 identify the matrices and functions associated with the two
porous materials and index a marks the quantities associated with the acoustic cavity.
The factors γ̃, R̃, ρ̃22, and ρ̃∗ contain viscous drag b̃ and effective bulk modulus K̃f of
the respective porous material; they are given, for example, in [9]. The coupling between

the poroelastic and acoustic domains is given by ξp1
= (1−ϕ)2

ϕ K̃f,p1
and leads to non-

symmetric matrices due to off-diagonal coupling terms. Thus, the discretized system
contains ten frequency dependent functions: four for each poroelastic material, one for
the acoustic cavity, and one for the coupling of poroelastic material and acoustic fluid.
Given a tolerance of 1·10−14, AAA computes rational approximations of all involved
frequency-dependent functions with orders of 40 or less. The numerical model considered
in the experiments is of size n = 56 374 and is evaluated in the frequency range from 1
to 800Hz. The evaluation of the full model in steps of 1Hz took tc ≈ 5.6·104 s ≈ 15.6 h.

4.2.1. Influence of the expansion error on the reduced order model

The influence of the approximation of the matrix inverse in eq. (17) by a Neumann
series expansion is examined in the following. This approximation can become unstable
for s far away from the shift s0. However, the approximation error of the reduced model
can still be acceptable in these regions, as it is shown in fig. 8. Here, reduced models
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shifted about s0 = 2πi ·400 with r = 400 and different Krylov subspace orders k are com-
pared. Additionally, the highest approximation error of the Neumann series compared to
the respective original function is given for each k. The function with the highest error
is chosen from the ten frequency dependent functions considered in the model. It can be
seen, that increasing the subspace order k also widens the frequency range around the
chosen shift, where the reduced model is accurate (solid lines in fig. 8). Accordingly, the
accuracy of the series expansion increases with increasing order k (dashed lines in fig. 8).
This expansion has very high relative errors for low frequencies, which does not impair
the approximation quality of the reduced model, as the influence of the function is ap-
parently low in this frequency region. However, an approximation based on an expansion
point located in this frequency region might have a large influence on the approximation
quality of the reduced model in the higher frequency region. As this is problem depen-
dent, the employed series expansions should be examined prior to the reduction process
in order to avoid placing expansion points in such regions. Note, that the relative error
εe considering the expanded approximation and the original function is identical to the
error of a Taylor series expansion with same shift and order.
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Figure 8: Reduction errors ε for different k and the Neumann expansion error εe for the respective
function with the highest error regarding the poroacoustic model. The reduced models are expanded
about s0 = 2πi · 400 with r = 400.

We found that especially the polynomial expansions of the functions associated to
G3,p1

and G3,p2
in eq. (26) are prone to instabilities if an expansion point in the low

frequency region is chosen. Multiplying all terms in eq. (26) by s2 cancels out 1/s2 terms
in the corresponding frequency-dependent functions, which was found to increase the
approximation quality of the reduced order models in most of the considered frequency
range. This behavior is shown in fig. 9 and this modified formulation is used in the
following numerical experiments. Again, this is problem dependent and a thorough
investigation of the behavior of the Neumann expansion before the reduction process can
be beneficial.

4.2.2. Influence of subspace order k on the accuracy

We now investigate the influence of the Krylov subspace order k on the approximation
quality of reduced order models with different sizes r. The models are computed using
reduction bases with a single expansion point at s0 = 2πi ·400. The approximate relative
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Figure 9: Approximation error of the original and modified poroacoustic models. A single Krylov
subspace of order k = 5 with expansion point s0 = 2πi · 400 is considered. The reduced model has an
order of r = 200.

L∞-errors in the frequency range f = [1, . . . , 800] for all combinations of r and k are given
in fig. 10. It can be seen, that a higher order k leads to more accurate reduced models
if the reduced order r is kept constant. The error of the models based on subspaces
with k = 2 is nearly a magnitude higher than the other reduced models’, especially for
higher reduced orders r. This suggests that by truncating after the quadratic terms
of the AAA approximation, important parts of the frequency-dependent functions are
neglected. However, the effect of further increasing the subspace order has a smaller
effect in terms of accuracy, suggesting that all functions are sufficiently approximated for
k > 3.
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Figure 10: Relative errors in the frequency range f = [1, . . . , 800] of reduced models of different sizes r
and Krylov subspace orders k. All subspaces are expanded around s0 = 2πi · 400.

The better accuracy of the higher-order Krylov subspace comes with increased com-
putational cost. Figure 11 plots the required computation times for the same models
as above with increasing r against their approximate relative L∞-errors. The curves
begin at r = 1 at their leftmost points, while the rightmost data points correspond to
r = 400. While increasing k leads to lower maximum errors, the computation time is
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also increased. It can be seen, that using lower orders of k in combination with a higher
reduced order r has the potential to yield as accurate reduced order models in the same
time as employing a higher k in combination with a lower r. In this example, the re-
duced order r is the limiting factor regarding accuracy, as it has a larger influence on the
transfer function of the reduced models than the accurate representation of the frequency
dependent functions. The results suggest, that the benefit of higher orders k is small if
the computation times are crucial for the application. However, the computation times
for all models are still much lower than the time required for the evaluation of the full
model.
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Figure 11: Relative errors in the frequency range f = [1, . . . , 800] of reduced models of different sizes
r and Krylov subspace orders k over the required computation time. All models are computed using
a single expansion point s0 = 2πi · 400. The curves begin at r = 1 at their leftmost points, while the
rightmost data point corresponds to r = 400.

4.2.3. Multi-point moment matching

In order to obtain a reduced order model of reasonable size with high accuracy over
a wide frequency range, multiple Krylov spaces can be combined to a single projection
basis. We again consider different orders k of the employed Krylov spaces while their
size r remains constant. We start with a model computed from four expansion points
s0,i = 2πi [100, 300, 500, 700] distributed linearly in the frequency range of interest. An
order r0 = 100 is considered for each subspace, thus the resulting reduced model has
an order of r = 400. Their relative errors are given in fig. 12. Again, the influence of
higher orders k can be observed in an increased accuracy between the expansion points.
Comparing the relative errors to the reduced models computed from a single expansion
point reported in fig. 8, the benefit of multiple expansion points is obvious. Despite
having the same reduced order, the relative error is lower for a wider frequency range if
more than one expansion point is chosen. An uninformed a priori choice of expansion
point locations and reduced order may, however, not be ideal and result in too large or
inaccurate reduced models.

4.3. Adaptive model order reduction

Therefore, the adaptive procedure given in algorithm 3.1 is now used to compute
reduced models of the poroacoustic system. The reduced order models should be valid
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Figure 12: Approximation error of reduced order models approximating the poroacoustic system. Ap-
proximation with different orders k of the Krylov spaces around s0,i = 2πi [100, 300, 500, 700] with
reduced orders r0 = 100 each. The resulting model is of order r = 400.

in the frequency range f = [1, . . . , 800]. As algorithm 3.1 allows variation in the input
parameters, different starting conditions are considered for the numerical experiments:

• Experiment A: Varying kmin = [2, 3, 4], fixed kmax = 6 and kincr = 1,

• Experiment B: Varying kmin = [2, 3, 4], fixed kincr = 1, setting kmax = kmin + kincr,

• Experiment C: Varying kmin = [2, 3], setting kincr = kmin and kmax = kmin + kincr.

kmax = 6 was chosen for all experiments because the expansion factors obtained from
eq. (18) are close to zero for higher orders. The local subspace size r0,i, i = 1, . . . , ns is
set to 50 for all experiments. The algorithm stops, if an error smaller than εtol = 1·10−5

is estimated or the reduced model reaches the maximum order of rmax = 1000. Each
experiment is performed with a varying number of initial expansion points ns = [1, . . . , 6]
distributed linearly in the range s = 2πi [100, . . . , 800]. Expansion points corresponding
to lower frequencies are not considered in this example, as they would excite the unstable
pole near the zero frequency [59] and resulting reduced order models might also exhibit
this instability. Additionally, the expanded frequency-dependent functions tend to be
unstable if an expansion point in the low frequency range is chosen, as reported in
section 4.2.1. For each ns a reference solution obtained from using standard second-
order Krylov subspaces is computed. This solution is also obtained from algorithm 3.1
by setting kmin = kmax = 2, such that the same error estimation process and greedy choice
of new expansion points is performed during all experiments. The resulting computation
times and sizes of the reduced order models are reported in graphical form and grouped
by the considered kmin in figs. 13 to 15. Here, the reduced order r encodes the number
of considered expansion points at convergence by ns,conv = r/50, as the algorithm does
not increase the size of the individual Krylov spaces. Tables 1 and 2 present these results
in tabular form, the approximation errors of the obtained reduced order models are also
given there.

Most numerical experiments resulted in reduced order models having a maximum
error lower than or comparable to the defined threshold εtol = 1·10−5 and all initial
configurations converged before the reduced order model reached the maximum size of
rmax = 1000. Comparing the adaptive algorithm with variable k to the reference employ-
ing a second-order Krylov subspace shows that using a variable k yields smaller reduced
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Figure 13: Comparison of the computation times tc (bars) and resulting reduced orders r (circles) for
experiments with kmin = 2 to the reference second-order Krylov space.

Reference Experiment A Experiment B Experiment C
0

2,000

4,000

c
[s
]

ns = 1 ns = 2 ns = 3 ns = 4 ns = 5 ns = 6 r

0

300

600

R
ed

uc
ed

or
de

r
r

Figure 14: Comparison of the computation times tc (bars) and resulting reduced orders r (circles) for
experiments with kmin = 3 to the reference second-order Krylov space.
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Figure 15: Comparison of the computation times tc (bars) and resulting reduced orders r (circles) for
experiments with kmin = 4 to the reference second-order Krylov space.

order models at the cost of longer computation times. Especially Experiment A has
considerably longer computation times than the reference solution, while the algorithm
often finishes in comparable time to the reference case given the settings of Experiments B
and C. The longer computation times for Experiment A can be explained by the fact
that for increasing k at a specific shift, no previous results can be reused. Incrementing
k a few times before reaching kmax as in Experiment A thus involves some redundant
computations.

The reduced order models obtained from all experiments are considerably smaller than
the ones computed by the reference experiment. The reduced order models obtained from
Experiment A tend to be the smallest, their size is mostly not affected by the number of
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Table 1: Detailed results of the adaptive algorithm applied to the poroacoustic model regarding the
three initial configurations with ns = [1, 2, 3] for the reference solution and the three experiments A, B,
and C. Given are the order of the reduced order model, the maximum relative approximation error in
the frequency range of interest, and the computation time tc.

ns Exp. kmin kmax kincr r ns,conv max ε tc[s] tc[min]

1 Ref. 450 9 4.01·10−6 1476.0 24.6
A 2 6 1 250 5 1.86·10−6 3632.3 60.5

3 6 1 250 5 1.02·10−6 3482.6 58.0
4 6 1 250 5 1.96·10−6 3217.8 53.6

B 2 3 1 350 7 6.16·10−6 1864.0 31.1
3 4 1 300 6 1.46·10−6 2362.1 39.4
4 5 1 250 5 1.83·10−6 2418.3 40.3

C 2 4 2 300 6 9.04·10−7 1912.2 31.9
3 6 3 250 5 1.29·10−6 2415.2 40.3

2 Ref. 400 8 5.57·10−6 1323.8 22.1
A 2 6 1 250 5 1.91·10−6 3328.5 55.5

3 6 1 250 5 2.40·10−6 3308.4 55.1
4 6 1 250 5 1.43·10−6 2961.1 49.4

B 2 3 1 300 6 6.24·10−6 1855.5 30.9
3 4 1 250 5 5.01·10−6 1974.9 32.9
4 5 1 250 5 5.67·10−6 2159.6 36.0

C 2 4 2 250 5 7.07·10−6 1554.6 25.9
3 6 3 250 5 2.61·10−6 2388.4 39.8

3 Ref. 450 9 4.22·10−6 1483.4 24.7
A 2 6 1 250 5 2.27·10−6 3344.1 55.7

3 6 1 250 5 1.07·10−6 3436.8 57.3
4 6 1 250 5 1.49·10−6 2668.7 44.5

B 2 3 1 300 6 4.36·10−6 1847.9 30.8
3 4 1 300 6 2.04·10−6 2194.5 36.6
4 5 1 250 5 2.22·10−6 2198.3 36.6

C 2 4 2 300 6 9.52·10−7 1887.8 31.5
3 6 3 300 6 5.45·10−7 2624.6 43.7

ns. The sizes of the reduced order models obtained from Experiments B and C also do not
differ much. No benefit regarding size or computation time can be observed by choosing
a higher increment kincr in Experiment C as compared to kincr = 1 in Experiment B.

Increasing the number of initial expansion points ns shows a tendency for decreasing
computation times, especially for Experiment A. For ns = 5 and ns = 6 some experiments
with settings A and B converged without establishing an additional expansion point. In
the reference experiments at least two additional expansion points, each of local order
r0 = 50, are required to obtain a reduced order model of comparable accuracy for ns = 6.
The smaller size of the reduced order models computed from Experiments A and B with
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Table 2: Detailed results of the adaptive algorithm applied to the poroacoustic model regarding the
three initial configurations with ns = [4, 5, 6] for the reference solution and the three experiments A, B,
and C. Given are the order of the reduced order model, the maximum relative approximation error in
the frequency range of interest, and the computation time tc.

ns Exp. kmin kmax kincr r ns,conv max ε tc[s] tc[min]

4 Ref. 500 10 3.68·10−7 1664.0 27.7
A 2 6 1 250 5 3.10·10−5 2812.2 46.9

3 6 1 300 6 5.65·10−7 3433.3 57.2
4 6 1 250 5 2.62·10−5 2515.2 41.9

B 2 3 1 350 7 1.51·10−6 1894.7 31.6
3 4 1 300 6 2.00·10−6 2399.0 40.0
4 5 1 300 6 1.53·10−6 2183.2 36.4

C 2 4 2 300 6 6.94·10−7 1928.4 32.1
3 6 3 300 6 2.27·10−6 2041.6 34.0

5 Ref. 450 9 5.35·10−6 1454.2 24.2
A 2 6 1 250 5 4.82·10−6 2510.7 41.8

3 6 1 300 6 1.25·10−5 2071.2 34.5
4 6 1 250 5 1.42·10−6 1437.9 24.0

B 2 3 1 350 7 1.38·10−6 2166.7 36.1
3 4 1 300 6 1.32·10−5 1579.3 26.3
4 5 1 250 5 1.42·10−6 1441.6 24.0

C 2 4 2 350 7 9.05·10−6 1670.4 27.8
3 6 3 300 6 1.58·10−5 1735.4 28.9

6 Ref. 400 8 2.77·10−6 1300.2 21.7
A 2 6 1 300 6 5.76·10−6 1605.2 26.8

3 6 1 300 6 2.06·10−6 1406.4 23.4
4 6 1 300 6 2.00·10−6 1689.4 28.2

B 2 3 1 350 7 3.07·10−6 1563.2 26.1
3 4 1 300 6 2.06·10−6 1398.4 23.3
4 5 1 300 6 2.00·10−6 1700.8 28.3

C 2 4 2 350 7 3.48·10−6 1700.0 28.3
3 6 3 300 6 1.48·10−6 1484.5 24.7

computation times comparable to the reference case shows a benefit of employing higher-
order Krylov subspaces.

The computation times and reduced order model sizes observed in all three experi-
ments are not heavily influenced by the initial Krylov subspace order kmin, although the
computation times tend to be a bit shorter with increasing kmin. Increasing the Krylov
subspace order by more than kincr = 1 seems not to be beneficial, shown by the very sim-
ilar results of Experiments B and C. However, this shows the robustness of the workflow
regarding a perhaps not always optimal choice of the parameters kmin and kincr.

Starting with fewer expansion points typically requires longer computation times in
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order to obtain accurate reduced order models when incrementing the Krylov subspace
order by kincr = 1 to kmax = 6 in Experiment A. However, the reduced models are
small compared to the reference case. This investment in longer computation time can
be reasonable, if, for example, the goal of the reduction process is a model being as
small as possible. Experiments B and C show nearly the same computation times for all
configurations of initial expansion points. The fact that accurate reduced order models
can be obtained from one initial expansion point for the reference case as well as all
experiments considering higher-order Krylov subspaces shows the robustness of the error
estimation and the greedy approach.

5. Conclusions

We have presented a workflow to reduce the numerical complexity of dynamic sys-
tems with frequency-dependent material properties. Additionally, we have presented an
adaptive algorithm to automatically compute such reduced models with a defined accu-
racy requiring as little a priori information as possible about the original system. The
employed reduction framework automatically converts the original transfer function con-
taining frequency-dependent functions to a purely polynomial transfer function, which
can be employed in a moment matching method afterwards. This conversion is performed
automatically and is not limited to specific types of functions. Using a higher-order
Krylov space for moment matching allows to consider also higher-order polynomials and
potentially yields smaller reduced models compared to a low-order Krylov space, while
reaching a similar accuracy. This, however, requires more computational resources and if
the runtime of the reduction process is crucial, a standard second-order Krylov space may
be sufficient. If the reduced order model should be as small as possible, a higher-order
Krylov space may be beneficial.

In order to compute reasonably-sized reduced order models of systems with frequency-
dependent damping effects, we have presented an adaptive algorithm. Its only input
parameters are the frequency range in which the reduced model should approximate the
original system and a tolerance. It automatically chooses a reasonable Krylov subspace
order and only increases the size of the reduced order model if necessary. The result-
ing reduced order models are usually smaller than the models obtained employing only
second-order Krylov spaces. The employed error estimator is prone to slightly underes-
timate the exact approximation error, but the reduced models are mostly as accurate as
required. In order to reduce the computation time of the adaptive algorithm, it would
be beneficial to modify the higher-order Arnoldi algorithm such that it can be restarted
at a previously computed order k.

The reduction framework can be applied to any system whose transfer function con-
tains nonlinear functions depending on the excitation frequency. The method’s per-
formance should be evaluated by applying it to more types of systems with frequency
dependent functions. One example also from the vibro-acoustic context would be the
application of radiating boundary conditions. A perfectly matched layer (PML), for ex-
ample, can be formulated as a dissipative material with frequency dependent properties.
As systems modeling radiation problems are typically very large, a complexity reduction
is beneficial here [63, 64].
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