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Automatic Model Selection
for Linear Time-Invariant Systems – Practical Issues

Gyula Simon, Johan Schoukens and Yves Rolain

Abstract– A completely automatic identification
system is described which uses the latest results of
the frequency domain identification approach to
provide an easy-to-use and reliable tool to the
inexperienced users. The proposed system accepts
periodic measurement data and performs the
whole identification procedure automatically from
the data-preprocessing step to model and
parameter selection. The validation phase provides
information on the results at the level of the non-
expert user. The performance of the system is
illustrated by results obtained from real measure-
ment data.
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I. INTRODUCTION

The theory of estimation of linear time-invariant
(LTI) systems and systems with a dominant LTI
behavior perturbed by nonlinear disturbances is well
defined and available in the literature [1,2,3,4]. The
system identification process, however, is so
complicated that the proper usage of the theoretical
results (or even the usage of the available tools [5,6])
requires a solid theoretical background, signal
processing skills, and know-how on the identification
field. While some parts of the identification process
can be (and have been) automated, some parts still
require decisions of human experts. To allow users
that are experienced in their own field to use
identification – and hence extract high quality
validated models – without having to become an
identification expert, the process should be fully
automated. The final goal is that users “drop in the
measurement results, have a coffee, and get the final
validated model” without further intervention.
Many new contributions have been published lately in
the identification field [1,2,3,4,8,9], which can serve
as fundamental elements in the construction of a fully
automated identification process.
Based upon these results in this paper an automatic

model selection and validation system is described.
The flowchart of the system identification process can
be seen in Fig. 1. After the measurement, that is set up
to obtain repeated measurements (at least 4 repeated
measurements or 4 periods of the signal) a non-
parametric noise model is extracted out of the data by
calculating the non-parametric variances [7]. This
preprocessing step can easily and automatically be
accomplished by using periodic excitation signals, as
will be discussed in Section II.
The solution of the complete identification problem is
then further split into two parts: a model order
estimation part and a parameter estimation part.
The model selection phase estimates the order of the
LTI model, which can adequately describe the linear
dynamic behavior of the system. Note that many
practical systems contain perturbations that avoid the
system to be fully described by a LTI model. Hence,
no exact model order will exist as the system falls out
of the chosen model class. Other small perturbations,
such as device non-linearities, unmodeled device
dynamics, instrumentation errors or calibration
residuals will further contribute to the lack of
identifiability of “the exact model” even if it exists.
The method proposed will hence deliver a model
which describes the system dynamics adequately, and
in this sense is “close” to this ideal model order. In
any case, at some moment modeling errors may
require a user decision to be made.
In some cases, there is a priori knowledge upon the
system: the order determination may then be
straightforward through the analysis of the underlying
physical phenomena. In most cases, however, the
knowledge of the system is too idealized, and hence
enough only to an approximate estimation of the
correct model order. In many situations, there may not
be any a priory information about the system’s order.
In these cases, the model order must be determined
either by guess-and-trial methods (which are very
commonly used), or by systematic order selection
methods, which to the best knowledge of the authors,
do not exist in the literature.
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Fig.1. The identification process and the tasks of the Automatic Model Selection System
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A systematic order selection method can use either
bottom-up (from simple to complex) or top-down
(from complex to simple) approach.
A bottom-up approach starts the search from a simple
model and tries to improve the fit by adding
additional degrees of freedom until the desired (user
defined) precision is reached. The main advantage of
this approach is that the complexity of the model
during the estimation process remains always below
the final complexity, which is a useful property from
the viewpoint of the numerical stability of many
widely used algorithms. The top-down approach starts
from a high-order system and the complexity is
reduced while the fit is still satisfactory. Practical
experience shows that this approach can avoid local
minima with higher probability, and thus the top-
down models can provide better estimations than their
bottom-up counterparts, especially in the cases when
the model order is high. Since top-down methods
must be able to cope with high orders and common
pole-zero pairs, the numerical stability is a key issue
for the considered application.
The parameter estimation phase is a very deeply
examined field and thus many theoretical results are
available [1,2,3,4]. The main problem of all the
known algorithms is that they tend to find local
minima of different quality, depending on the initial
conditions. Therefore, these algorithms require a good
initial guess in order to provide “optimal” results. The
determination of the initial values of the algorithms
and the parameterization of the sophisticated search
methods to make the best of their capabilities requires
a great deal of know-how from the users of these
algorithms.
The heart of the described system is a top-down
mixed order and model approximation algorithm. In
an initialization phase, an appropriate starting value is
determined, based upon [8]. This initial order is first
determined by a coarse order estimation step, and then
using this as an initial guess, the final order and model
are determined in an iterative way. To provide the
necessary numerical stability orthogonal polynomials
are used in the representation of the LTI model, and
during the iterative estimation loop sophisticated
initial values are provided for the model estimation
algorithm.
Since the model estimation should serve the
requirements of the user, the proposed system is able
to provide a set of models to fulfill strict requirements
with higher model orders and loosen the requirements
with lower complexity as well. The high order models
extract all linear dynamics from the data, while a low
order model is assumed to have errors below a user
defined value. Note that although the system gives
reasonable models, it is possible that personal
experience leads to a better decision. The full process
will be described in Section III.
The calculated models are useless unless the user
knows their quality, thus the automatic validation and
qualification of the models is as important for the user

as the model itself. Since the model quality strongly
depends on the goal of the user, the final decision is in
his/her hands. The proposed system can give useful
hints and tips in addition to the global qualification of
the provided model, which is based on different
numerical and statistical properties. The additional
textual information helps the inexperienced user to
understand and interpret the meaning of the validation
tests, as described in Section IV.
The performance of the proposed system is illustrated
by examples based on real measurement data in
Section V.

II. AUTOMATIC DATA PREPROCESSING

To make automatic processing easy, the measurement
must be made with periodic excitation signals. The
described approach uses frequency domain methods,
so each period of the measured input and output
signals is transformed to the frequency domain by the
DFT. Using these input and output spectra, the sample
mean ( ))( ),( kk YU ωω , the sample variance

( ) ( )( )kYkU ωσωσ 22  , , and the sample covariance

( )( )kYU ωσ 2  of the input and output spectra are

calculated [7].

III. MODEL SELECTION AND PARAMETER

ESTIMATION

The inputs of the automatic model and order selection
algorithm are the preprocessed data with the non-
parametric noise model (i.e. the mean value, the
sample variances and covariance of the input and
output). The process can be divided into four major
components:
A. coarse order estimation,
B. parameter estimation and model validation,
C. order reduction #1, and
D. order reduction #2.
The coarse order estimation step gives a rough (and
usually conservative) estimation of the model order
alone. Step B determines the model parameters with
the estimated order and tries to validate it. If the
validation fails, the model order is increased until the
validation is successful. The first order reduction step
produces a validated good quality model with the
lowest possible order, while the second order
reduction step tries to further decrease the order at the
expense of a minor diminution of the model quality.
The components of the automatic model and
parameter estimation system are explained below.
Step A: The coarse order detection algorithm is based
upon the method proposed in [8], which is able to
reduce the initial model order using stochastic
methods, without any parameter estimation.
Since this step does not require parameters to be
estimated, it is faster than a full estimation run.
Therefore, it is worthwhile to refine this step, to
obtain maximal accuracy for the model order, as it
will reduce the number of subsequent runs to get the
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final model. In the proposed system, the original
coarse estimation method is extended in two ways: to
provide possibly lower order estimates, and to avoid
the necessity of an initial order, which is “high
enough”.
Since the coarse order reduction step is fast, it is
repeated iteratively until no further decrease is gained.
If the initial order is detected to be too low, the order
is automatically increased by a constant factor (in the
present system by 20 percent) until a satisfactory (or
the maximum allowed) order is reached. See
Appendix 1. for details.
Step B: Because of the stochastic nature of this order
estimation algorithm, it sometimes reduces the model
order too much. Hence, the result must be verified
before further processing. Using the estimated order,
first the model parameters are estimated [4,7]. Then,
the model is checked using correlation test on the
residual error [9]. If the correlation test fails, the
model order is increased and the parameter estimation
and correlation test steps are repeated until the
correlation test succeeds, or the maximum allowed
order is reached.
Note that the reason of the failure of the correlation
test may be not only the low model order. A
suboptimal solution (local minimum) of the used
parameter estimation algorithm may lead to analogous
results. In both cases, however, the right solution to
the validation failure is to increase the model order
until the parameter estimation algorithm can find an
acceptable – even high order – solution, from which
Step C is able to produce a good quality lower order
model.
Step C: The validated model is then processed by a
peeling algorithm based upon [8]. The peeling process
eliminates the roots (poles, zeros, or canceling pairs)
which have no significant effect on the transfer
function. Theoretically, the peeling algorithm is very
simple:
Step 1 Choose some roots which can possibly be

eliminated.
Step 2 Re-estimate the model and parameters with

the decreased order.
Step 3 Check the result. If the reduced order model is

validated then accept the decreased order and
go to Step 1.

Step 4 Restore the previous order. If there are other
roots to try, go to Step 1.

Apart from the very high computational requirements
of this approach, several other questions arise
concerning the practical realization of the peeling
process. The most important practical issues are the
following:
- how to decrease the computational complexity of

the root elimination procedure (Step 2),
- how to decide which roots to eliminate (Step 1),
- is it possible to decrease the possibility of local

minima in the parameter estimation phase using
available extra information (Step 2),

- how to decide whether an estimation is
acceptable or not (Step 3)?

The computational complexity can effectively be
decreased by reducing the number of the parameter
estimation steps. The greater the number of the
eliminated roots in one parameter estimation step, the
faster the algorithm. The used method is based upon
the idea proposed in [8], which uses a simplified
approach to give a conservative estimation on the cost
function after eliminating some roots. (Note that in
this paper the term “cost function” refers to the
minimum description length cost function [1,11].)
This non-parametric estimation is much faster than
the parameter estimation step (which is from now
referred to as slow estimation), but since the
remaining roots are not rearranged, good candidates
may be refused in this step. However, each hit saves
precious seconds or even minutes.
The proposed algorithm combines the fast and slow
estimation methods as follows:
Step 1’ Choose a (real or complex) zero, pole, and a

pole-zero pair, which can possibly be
eliminated. Rank the three candidates.

Step 2’ Make a non-parametric estimation on the
cost function by eliminating the best
candidate which was not yet tried.

Step 3’ Check the result. If the reduced order model
is acceptable then accept the decreased order
and go to Step 1.

Step 4’ Restore the previous order. If there are other
candidates to try, go to Step 2’.

Step 1’’ Choose a (real or complex) zero, pole, and a
pole-zero pair, which can possibly be
eliminated. Rank the three candidates.

Step 2’’ Re-estimate the model and parameters by
eliminating the best candidate, which was not
yet tried.

Step 3’’ Check the result. If the reduced order model
is acceptable then accept the decreased order
and go to Step 1’.

Step 4’’ Restore the previous order. If there are other
candidates to try, go to Step 2’’.

In both the fast (’) and the slow (’’) estimation steps 3
possible candidates are tested: the less significant
pole, zero, and pole-zero pair. If the fast estimation
step can no longer decrease the order, then it is tried
by the slow estimation method. If any roots are
eliminated in the slow step, the fast method is tried
again with the new root placement. The algorithm
terminates if no more pole, zero, or pole-zero pair can
be eliminated. More details on the algorithm can be
found in Appendix 2.
The choice of the candidates in Step 1’ is made by
estimating the contribution of the roots to the transfer
function. In the case of the poles and zeros, the
distance from the measurement band is considered,
while in the case of the canceling pairs the distance of
roots from each other is considered [8]. The order of
the trials is determined by ranking the results (see
Appendix 2 for details).
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In the present system the candidates in Step 1’’ are the
same as in Step 1’, but their ranking is re-evaluated
using the cost function estimations produced in the
previous three (unsuccessful) fast estimation steps.
The parameter estimation in Step 2’’ uses an iterative
parameter estimation algorithm [4,7], for which the
initial values must be set. The convergence speed and
the quality of the supplied model strongly depend on
the initialization. It is obvious, that the elimination of
an unnecessary root does not change significantly the
transfer function. It can also be assumed that the
elimination of such a root does not change too much
the numerator and the denominator of the transfer
function, either. Based upon this assumption the
following initialization scheme is used:
If the estimated fit in Step 2’ is ‘not too bad’ (which
means that the candidate root possibly can be
eliminated with a small rearrangement of the other
roots) then use the reduced-order (non-parametric)
numerator and denominator, otherwise (the candidate
root can not be eliminated, or major rearrangement is
necessary) use the previous good non-reduced-order
(non-parametric) numerator and denominator, as
initial values.
The decision in Step 3’ is made upon the estimated
cost function: if it is smaller than a maximal allowed
value [8], then the reduced order is accepted
otherwise it is rejected. In Step 3’’ the quality test is
combined: in addition to the cost-function test a
correlation test is also made on the residuals [9].
Since the automatic model selection algorithm is a
top-down approach, high model orders may appear
during the root elimination phase. The numerical
stability of the algorithms was ensured by using
orthogonal polynomials instead of power polynomials
[10]. With this solution, orders of 100/100 were
successfully handled.
Step D: The second peeling step produces a
somewhat lower quality, lower order model starting
from the verified model produced in Step D. (Note
that a possible and straightforward further extension
of the system is the dynamic order reduction, which
enables the user to specify the requirements in terms
of the allowed model errors.) In many cases, the loose
model is also acceptable for the user, who may decide
which model to choose.
The only difference between Step C and D is that the
algorithm uses a different qualification method in
Step 3’’. While in the validated case the peeling
algorithm uses the combined cost function and
correlation test, in the loose model case only the cost
function values are tested against a maximum value
determined from the validated model’s cost function.

IV. QUALIFICATION OF MODELS

The two models provided by the model selection
algorithm must be validated and qualified before
being applied. The user may not have the necessary
theoretical background and experience to use and
interpret the conventional validation tests, such as the

theoretical and the observed cost function, and the
correlation test. Instead, the proposed system provides
some additional easy-to-understand information on
the model quality, the presence of the unmodeled
dynamics, and the effect of nonlinear distortion.
Based upon the result of the correlation test [9] it can
be decided whether the linear dynamic behavior is
correctly modeled or if there are some unmodeled
linear dynamics present. The correlation test also
gives estimation on the presence of (unmodeled)
nonlinear distortions. The ratio of the mean error
power and the mean of the variance of the transfer
function taken over the frequency gives the basis of
the qualification of the overall model fit. Upon the
provided textual information, even the inexperienced
user is able to decide which of the provided models to
choose (see Fig. 3).

V. EXPERIMENTAL ILLUSTRATIONS

In this section, three examples are presented to
illustrate the performance of the automatic model
selection system. The examples cover a wide range of
difficult practical problems. The first example is a
Brüel&Kjaer passive bandpass filter, where the SNR
of the measurement is very high, so the presence of
small nonlinear distortions is disturbing. The second
example is a second order mechanical system with
poor SNR and high nonlinear distortion. The third
example is the radial servo system of a CD player,
which is a high complexity system. On the figures the
following notation is used: measured transfer function
(+), estimated transfer function (solid line), variance
of the transfer function (dotted line), and the residual
error (x with dotted line).

A. Brüel&Kjaer bandpass filter
The measured transfer function and the estimated
variance can be seen in Fig. 2, along with the
estimated model and the model error. No loose model
is provided in this case, since no lower order model
can be found to fulfill the requirements in Step D. The
information on the validated model can be seen in
Fig. 3.

B. Second order mechanical system
A mechanical resonating system (mass, viscous
damping, nonlinear spring) was simulated with an
electrical circuit. Although all the linear dynamics are
modeled, the overall fit is very poor because of the
unmodeled nonlinear behavior, as can be seen in
Fig. 4. The automatic identification process produced
the expected 0/2 order system, for which the
qualification message can be seen in Fig. 5.

C. Radial servo system of a CD player
The radial servo system of a Philips CD320/00G was
measured. Since open-loop measurement is
impossible, the system was operated in closed loop
while applying an external excitation signal and the
input and output of the servo system was measured.
The result of the automatic identification process is a
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14/15 order verified model and a 7/8 order loose
model, as can be seen in Figs. 6-9.
Note, that in this case a human expert was able to
provide somewhat better model quality by increasing
the model order (the decrease of the cost function by
30% required a 24/24 order model).

VI. CONCLUSION

The described automatic identification system is able
to provide reasonable linear time invariant models for
linear and almost linear systems from measurement
data, without any human interaction. The input of the
system is the measured data, and the output is one
strictly validated, and one (somewhat lower quality)
‘loose’ model. The generated models are also
qualified in a form, which is interpretable also by the
inexperienced user.

The proposed system was build using advanced
frequency domain identification algorithms, and a
special care was taken to choose proper excitation
signal to enable fully automatic processing, robust
data representation to ensure numerical stability. The
speed of the algorithm was increased by combining
fast, but not precise techniques with slow and reliable
methods.
The system after a rough order estimation uses a top-
down approach to select the proper model order and
parameters. The main advantage of this approach is
that the possible local minima of the parameter
estimation algorithms can be avoided with greater
chance, using appropriate initialization methods.
The performance of the proposed system was also
illustrated though examples with real measurement
data.
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Fig. 4. Measurement data and identification
results of the mechanical system.

Fig. 5. The validation message of the mechanical
system.
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Fig. 6. Measurement data and the validated
identification results of the CD player.

Fig. 7. The validation message of the validated
identification results of the CD player.

Fig. 9. The validation message of the loose
identification results of the CD player.

Fig. 2. Measurement data and identification results
of the Brüel&Kjaer bandpass filter.

Fig. 8. Measurement data and the loose
identification results of the CD player.

Fig. 3. The validation message of the Brüel&Kjaer
bandpass filter.
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Appendix 1: Flowchart of the Automatic Model Selection Algorithm

Fig.10. The flowchart of the automatic model selection algorithm.
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Appendix 2: The peeling algorithm

Fig. 11. The state-machine description of the peeling algorithm. s: success, f: failure.

The state-machine description of the peeling
algorithm can be seen in Fig. 11. The detailed
description of the states is as follows:

I:Initial state.
Calculate the maximum allowed cost function
CfMAX based on the initial model’s cost function
(see Note 1. below).

r: Ranking of poles, zeros, and canceling pole-zero
pairs.
The best pole, zero, and pole-zero pair candidates
are chosen, and the three candidates are ranked.
(Note that there may be less than three candidates
in case there are no more poles or zeros in the root
set. In such cases the corresponding elimination
steps b, c, B, and C are skipped.)
The significance of poles and zeros is quantified by
using the distance between the roots and the
measurement band (see in [8], equations 23-24):

bj

bj
C

C

C

A −

−
=

Ω∈

Ω∈

ω
ω

ω

ω

max

min
,

where b is the complex root, and ω is the angular
frequency in the measurement band CΩ .

The significance of canceling pole-zero pairs is
calculated by using the relative distance of the
roots (see in [8], equations 21-22):

bj

b
C

EE −
∆= Ω∈ ωωmax ,

where b is the location of the pole, and bb ∆+ is
the location of the zero.
In order CA and CE be comparable, CE is
transformed to CE’:

 
E

E C
C

+
=

1

1’

The ranking of the candidates is based upon the
two CA-like quantities and CE’. The largest the
value C the better the candidate.
Note that the ranking of the candidates has no
significant effect on the elimination process, only
the speed can be increased if the correct root is
chosen first.
Success if order is not 0/0, failure otherwise.

a,b,c: Fast root elimination.
Remove the first (a), the second (b), or the third (c)
candidate (if there is any) from the root set.

Calculate the new numerator and denominator of
the transfer function, using the rest of the roots
(there is no estimation to be done). Calculate the
cost function for the decreased order system (and
store it for later usage).
Failure if the estimated cost function is above
CfMAX or there are no more candidates, success
otherwise.

R: Re-ranking of the three candidates based on the
estimated cost functions in a, b, and c.
Failure, if order is 0/0, success otherwise.

A,B,C: Slow root elimination with parameter
estimation.
Remove the first (A), the second (B), or the third
(C) candidate (if there is any) from the root set.
Estimate the new parameters of the decreased order
model.
Initialization of the parameter estimation routine
[4,7]:
If the estimated cost function in the corresponding
slow elimination step is ‘not too bad’ (in the
present system: Cf < 10*CfMAX) then use the
estimated (non-parametric) numerator and
denominator for the initialization. Otherwise, use
the latest validated model’s numerator and
denominator for that purpose. The initial weight
vector is calculated as follows:

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ),2

**

2

22222

kYUkk

kkYkkUk

wwNwDreal

wDwwNwwW

σ

σσ

−

+=

where N and D are the non-parametric numerator
and denominator values, and the upper bar is the
conjugate operator.
The model parameters are calculated using
different methods. In the current system the Total
Least Squares (TLS) and Weighted Generalized
Total Least Squares (WGTLS) methods are used
[12, 13]. The initial model with the smaller cost
function is used to initialize the parameter
estimation routine.
Calculate the cost function of the estimated model,
and also perform correlation test on the residuals.
Perform model quality test:
When peeling is used to find validated models, the
quality check is the following:

C

   f

I
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   f

b
   f

c
   f
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1. Loose cost function test:
Q1 = (Cf<2CfMAX) (see Note 1. below).

2. Correlation test on the residuals
Q2 = (At least 25% of the correlation values are
below the 50% theoretical level)

3. Loose test on the central 10% of the lags part:
Q3 = (At least 20% of the central correlation
values are below the 95% theoretical level)
Q4 = (At least 60% of the central correlation
values are below the 99.5% theoretical level)

Q = (Q1 and Q2 and Q3 and Q4).
When peeling is used to find the loose model, the
quality test is the following:
Q = (Cf<CfMAX) (see Note 1. below).
Failure if the result of the model quality test Q is
false, or there are no more candidates. Success
otherwise.

E: Parameter estimation without root elimination.
In this step the model parameters are re-estimated,
if the last successful elimination step was not A, B,
C, or E (in these cases end with failure). This step
is necessary to compute the parameters of the
reduced order model, if the last order reduction was
achieved in a fast step.
The algorithm is the same as in A, B, C, except for
no roots are eliminated before the estimation.

O: Final state.

Note 1. The CfMAX value is calculated the following
ways depending on the purpose of the peeling:
During validated model estimation the maximum
allowed cost function is [8]:

CforderhighMAX CfCf σ2 += ,

which is calculated in the initial phase (I) based on
the initial (input) model, and after each successful
slow estimation steps (A, B, C, or E) based on the
estimated model.
During loose model estimation

noisevalidatedMAX CfCfCf −= 2 ,

which is calculated only in the initial phase (I), and
where Cfvalidated is the cost function of the validated
input model. See also Note 2.
Note 2. The total cost function is the following:

( )
( )∑=

w
TOTAL wW

we
Cf

2

,

where e(w) is the residual and W(w) is the applied
weight [4,7].
The contribution of the noise to the cost function
can be calculated by

2

P
FCf NOISE −= ,

where F is the number of frequencies, and P is the
number of free parameters. The Minimum
Description Length (MDL) cost function is defined
as follows:

)4ln(
2

F
P

CfCf TOTALMDL += .

In the description of the algorithm, the term ‘cost
function’ and the notation Cf always refer to CfMDL.
[1,11]
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