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Abstract. This paper describes a novel automatic system for Modic
changes classification of vertebral endplates. Modic changes are classes
of vertebral degenerations visible as intensity variations in Magnetic Res-
onance Images (MRI). The system operates on T1 and T2 MRI. We in-
troduce three main novelties: (1) a vertebrae alignment scheme via pre-
cise bounding boxes obtained through corner localisation, (2) vertebral
endplate classification in 3D, and (3) Modic changes classification. The
system was trained and validated using a large dataset of 785 patients,
containing MRIs sourced from a wide range of acquisition protocols. The
proposed system achieved 87.8% classification accuracy on our dataset.
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1 Introduction

The objective of this work is the automated classification of Modic changes in
MRI sagittal lumbar scans. Modic changes are classes of vertebral degenerations
visible as intensity variations in MRI. There are three types of Modic changes
and each type possesses varying correlation with the degradation of the verte-
bral bodies (VB) with Modic type 1 having the highest correlation with clinical
pain scores [1]. Classification of these changes in vertebral endplates is highly
beneficial as it gives a measure of health of a vertebra which would help in
the diagnosis of lower back pain. To our knowledge, this is the first system to
automatically classify Modic changes and vertebral endplates degeneration in
general. An example of the vertebral regions associated with the task is shown
in Fig. 1.

The system is trained and its performance validated using a clinical dataset
which is heterogeneous i.e. the scans are sourced from different clinical centres
using different machines and protocols. The scans in the dataset possess a vari-
ation of field-of-view, field strength, resolution, and are susceptible to bias field
corruption. Since it is a necessity for Modic changes classification to use both
T1 and T2 scans, we also have to localize the vertebrae of the spine in the two
scans. The advantages of such an an automated system are improvement of ra-
diological score consistency, which varies from one radiologist to another, and
ease of pathological detection of Modic changes.
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Fig. 1: The task: Given T1 and T2 weighted lumbar sagittal MR volumes, detect,
localise, label, and predict the states of the endplates of the vertebrae from the lower
endplate of T12 to the upper endplate of S1. In the example, only single slices of T1
and T2 are shown but in practice, the system operates on every slice in the scans.
Bounding boxes, shown in red, represent the regions used in the classification of the
endplates.

1.1 Modic Changes

The variation of voxel intensities in an MR scan can be said to be caused by
the variation of proton densities of different organs. One good assumption is
that a specific organ would roughly consist of the same material hence possess a
narrower range of proton densities unique to that organ. By extension, a healthy
or normal vertebra would exhibit homogeneous intensity distributions in its T1
and T2 scans. The opposite is true for some abnormal vertebrae where visible
discolourations can be seen in both their T1 and T2 scans, as first discovered
by Modic et al. [12], aptly named Modic changes and at times might also be
referred to as marrow or vertebral body changes.

Modic postulated that such discolourations in the form of visible intensity
changes of the vertebrae might be caused by the evolution of marrow of the
vertebral endplate in response to the degeneration of the corresponding inter-
vertebral disc [4,12]. This response is hypothesised to be either mechanical or
bacterial in cause but which or both has yet to be determined [1]. There are three
different types of Modic changes, each characterized by a change in intensity of
the vertebral endplates in both the T1 and T2 scans. See Fig. 2 and Table 1.
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Fig.2: Each column pair of images is from an individual vertebra scanned with T1
and T2 weightings and each pair represents an example of the type of Modic changes
they belong to. These discolourations only appear on the endplates of the vertebrae
adhering to the definition set forth by Modic et al. [12].

Modic Type|T1 Endplate Intensity| T2 Endplate Intensity
1 Hypointense Hyperintense

II Hyperintense Isointense/ Hyperintense
111 Hypointense Hypointense

Table 1: An overview of the definition of the 3 types of Modic changes where we follow
a standard radiological intensity terminology where a hyperintense area refers to an
area with higher intensity in comparison to its surrounding and vice versa.

Several studies have been conducted to find the relationship between Modic
changes and lower back pain. Modic type 1 has the strongest correlation with
lower back pain and type 1 endplates may stabilise into Modic type 2 over time,
which has a lower correlation with lower back pain [11, 14, 16]. This suggests that
patients with lower back pain might possibly be monitored by observing just the
state of their endplates.

1.2 Related Work

This work is the first fully automated system to classify Modic changes but
there exists another system proposed by Vivas et al. [17] that is semi-automatic,
requiring inputs for disc detections, and only does binary classification i.e. a sim-
ple Modic/non-Modic classification instead of a multi-class classification scheme
into the three types or normal.

Most research in analysis of spine imaging has focussed on the intervertebral
discs rather than the VB. Typically, Disc classifications methods use both in-
tensity and shape information of the discs [7,10]. Existing work on VB analyses



mainly focussed on vertebral fractures [15] and sclerotic metastases [2]. Vertebral
fracture analysis classification requires a highly accurate per vertebra region of
interest (ROI) fit because fractures are correlated with the height of the verte-
bra [15]. This is unlike Modic changes which are independent of the shape of
the vertebra, focusing only on intensity. In this paper, we compare our feature
with the normalised intensity histogram, Hist+, by Lootus et al. [10]. Our pro-
posed features are also comparable to the spatial binned ROI intensity features
by Ghosh et al. [7].

2 Approach Overview

Our method has five stages: (1) 2D vertebrae detection and labelling in all slices
of a given scan, (2) corner localisation, (3) vertebrae alignment, (4) 3D vertebrae
extent detection, and (5) classification. See Fig. 3.

VB Detection & Labelling Corner Localisation Feature Extraction

VIS Y

Fig. 3: An overview of our approach. The arrows indicate the processes while the images
show a close up view of the vertebra in both scans. This is repeated in all of the slices
of the volume.

2.1 2D Vertebrae Detection and Labelling — Stage 1

To detect and label the vertebrae, we follow and adapted the detection and
labelling scheme proposed by Lootus et al. [9] which uses a combination of a
Deformable Part Model (DPM) detector [5] and labelling via graphical model.
The input to this stage is a 3D MR volume and the output is a series of ap-
proximate bounding boxes with the vertebrae labels from T12 to the combined
sacrum (S1 and S2). The detector and graphical model is trained using scans
with annotated ground truth bounding boxes with labels as described in [9].

2.2 Corner Localisation — Stage 2

There is an issue with using the loose bounding boxes as our classification fea-
tures which is: the variation of fit of the bounding boxes, both intra-scan and
inter-scan, which can be seen in Fig. 4.
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Fig. 4: An example output using the detection and labelling system described in [9]. The
enlarged set of images of the vertebrae show the variation of fit of the bounding boxes
to the vertebrae. Intra-scan variability: Note the sacrum bounding box contains
both S1 and S2. The L3 bounding box contains all of the vertebra but is slightly loose
while the L5 bounding box is missing the upper endplate of the vertebra. Inter-scan
variability: Both images show the same L5 vertebra at the different contrasts and
their respective bounding boxes.

We propose a finer localisation post-processing of these bounding boxes such
that the resulting bounding boxes are more consistent and tightly aligned with
the vertebrae. Tighter alignment leads to improvements in localizing the regions
used to extract the features, and also helps in the alignment of the vertebrae in
the T1 and T2 scans (Section 2.3).

We adapt the supervised descent method (SDM) by Xiong et al. [18] origi-
nally developed for the detection of facial landmarks to improve the localisation
accuracy of the bounding boxes. The input to this stage is the image together
with its bounding box from the vertebrae detection and labelling stage and the
output is an irregular quadrilateral, with a tighter fit around the vertebra.

At test time, the algorithm works by first regressing the corner points of the
loose bounding boxes to a learned mean vertebrae corner points. Then, these
intermediate corner points are iteratively updated via regression based on SIFT
features around the points. The regression can be solved iteratively and can be
represented as:

Tpy1 = T + Axy, (1)

where klim Tl = T4. To are the 4 points of the loose bounding boxes and x, are
— 00

the vertebral corner points. After several iterations, k = 10 works well in our
dataset, the regression is stopped and the final points become the new corner
points describing the best quadrilateral fit for the vertebra.



Fig. 5: Examples of inputs, shown in red, and outputs, shown in green, of the corner
localisation. Note the sacrum bounding box is now more specific, containing only S1
instead of both S1 and S2, and the variation of bounding boxes fit is reduced.

Training the regressor is posed as a minimisation task of Ax:

arggnin f(zo + Az) =| h(d(zo + Az)) — ¢ |3 ()

where h is the feature transformation, which in this case is SIFT, of that point
and ¢, = h(d(x,)) represents the SIFT features at the ground truth. To over-
come overfitting, ridge regression was used. The regularizer, A, is a general sin-
gular value penalty imposed per iteration.

Since the size of the vertebrae in the dataset vary, a normalisation step has
to be conducted prior to regression. An individual vertebra is resized according
to the height, V},, of its bounding box and the image is translated such that the
centre of the bounding box is the point of origin. Examples of corner localised
vertebrae given its raw bounding boxes can be seen in Fig. 5.

2.3 Vertebrae Alignment — Stage 3

This section describes the vertebrae alignment stage which is necessary because
there is no guarantee of a good alignment between the T1 and T2 scans. The
inputs to this stage are two tight bounding boxes, one each from the T1 and
T2 scans, that contain one vertebra and the outputs are rigid transforms that
describe the motion between the two scans specifically for that single vertebra.

A good alignment of the vertebra in both T1 and T2 scans is important since
features extracted from both scans are jointly used for classification. The two
main reasons for misalignments of the vertebrae are: (1) the movements of the
patients in between scans and (2) the inter-scan difference in bounding boxes,
both in terms of position and shape, detected in the T1 and T2 scans as shown
in Fig. 4.



For the alignment, the vertebrae are assumed to be rigid bodies and any mo-
tion related to them is assumed to be only in-slice pitch and translation i.e. slice
correspondence is assumed to be valid. As such, any extreme movement espe-
cially any yaw and roll would result in failure in alignment. These assumptions
work well since scanning procedures dictate that patients should lie in the same
orientation for both the T1 and T2 scans. Thus, the solution for the motion or
transformation between the scans of the same vertebra can be expressed as:

V71 =R(0)Vra + T (3)

which describes both rotational, R (2 x 2 matrix), and translational, T (2 x 1
vector), motions between T1 and T2. Both, Vi1 and Vo are 2D coordinate
feature points which are detected in both images.

We use the 4 corner points obtained in the previous stages in both T1 and
T2 to be the feature points for alignment. However, the regressed corner points
are not without mistakes. This is because vertebral corners tend to be smooth
making it hard to pinpoint the exact locations of the corner points. Thus, a
mechanism for identifying these mistakes and being tolerant to them is needed.
We use a RANSAC-like approach to estimate the transformation and identify
inliers/outliers simultaneously [6]. Detected outliers are removed from Vp; and
Vro. After the rigid transformation of each vertebra has been obtained, we
transform one scan to the other, aligning them, and use these as the inputs for
Modic classification.

2.4 3D Vertebrae Extent Detection — Stage 4

Our aim in this stage is to determine the 3D extent of the vertebrae from the 2D
quadrilaterals in each sagittal slice; this requires determining where the original
detections should start and end slice-wise. This is important since the positions of
the vertebrae in a scan are initially unknown and there exist slices which contain
only partial volumes of the vertebrae, mostly containing tissue. These partial
vertebrae are problematic if they are selected as ROIs for feature extraction.
To this end we utilise a classifier to distinguish non-vertebrae and vertebrae
quadrilaterals.

We follow a standard image classification scheme, discussed by Chatfield et
al. in [3], where the sequential steps are: (1) dense SIFT feature extraction over
the quadrilaterals, (2) Fisher Vector (FV) encoding of the features, (3) spatial
tiling of the features in the image and (4) classification via linear SVM. This is
done on a per slice basis on every slice. Quadrilaterals classified as vertebrae are
passed through to the Modic classification stage.

3 Classification

The classification of the vertebral endplates starts with feature extractions of the
endplate regions which then are fed into the classifier. There are four different
types of classes an endplate might be classified as, namely: normal and the three
different types of Modic changes.



3.1 Feature Extraction

Prior to classification, the right features have to be extracted such that they best
separate the different classes which in this case are the different types of Modic
changes. Since the very definition of the different Modic types is dependent on the
joint intensity of the images, we propose a feature that captures this information
between T1 and T2: a spatially-binned joint histogram of intensities, SJT. As
a baseline measure, our feature is compared with a histogram based scheme by
Lootus et al. [10] tested on radiological disc grading, Hist+.

The ROIs for feature extractions are the upper and lower thirds of the
vertebra-aligned corner-localised tight quadrilaterals of T1 and T2. These ROIs
are essentially shorter quadrilaterals, one each for upper and lower endplates
shown in Fig. 1 and Fig. 6, which cover the vertebral endplates. We have also
experimented on using vertebrae segmentation proposed in [10] but since the
nature of the problem itself is dependent on intensity, segmentation of the verte-
brae proved to be unhelpful due to the intensity variation of endplate with Modic
changes. The intensity of each endplate ROI is median normalised using both
the intensity distributions of the vertebra and its neighbouring vertebra. This
reduces the effect of bias field and protocol intensity variation while preserving
actual per vertebra variation which is crucial for Modic classification.

SJT: Each ROI is spatially-binned, 2 x 8 bins, so that there is a measure of
spatial statistics of the Modic changes and from each corresponding T1-T2 pair of
spatial cells we construct a 16 x 16 joint intensity histogram. The joint histogram
is constructed by binning every pixel pair (T1 and T2 in the ROI) according to
its joint-intensity; see Fig. 6. The overall dimension of the feature vector is 4096.
Since the histogram is quite sparse, images are upsampled three times with
respect to their original sizes prior to feature extraction [§].

T1 Intensity

T2 Intensity

Fig.6: An example of a joint histogram of one cell in the whole region. By introduc-
ing spatial bins, we capture the localisation of the intensity changes of the vertebral
endplates.

Hist+: For each ROI, a intensity histogram, 16 bins, with its moments (mean,
standard deviation, kurtosis, skewness, and entropy) is constructed. This forms
a feature vector with 21 dimensions (16 intensity bins + 5 moments) for each
ROI. The T1 and T2 features are concatenated forming the final feature vector.



3.2 Learning

For the classification task, a linear Support Vector Machine (SVM) is used. The
classification is assessed with a 50:50 split of the dataset described in Section 4.1.
To obtain the statistical variation of the classifier, the assessment is done 20
times, each time with a randomly selected 50:50 split according to patients.
The optimal value for the parameter C is found via a 5-fold cross validation of
the training set. A uni-slice classifier is trained using vertebral endplate labels
marked by a radiologist where the best slice is used per endplate. The best slice
is manually selected using the endplate labels from the radiologist as reference
i.e. if the endplate is labelled to show Modic 1 change, the slice which best
represent type 1 change is used. We use the one-versus-rest approach for the
multi-class classification task e.g. for a Modic 1 classifier, the positive examples
are Modic 1 endplates while the negative examples are the opposite and vice
versa. To handle classification in multiple slices (3D extent of the endplates),
the detection of which is discussed in Section 2.4, we use mean pooling of the
classifier scores.

3.3 Data Augmentation

To further enhance the accuracy of our classification task, we applied several
different augmentation transforms, five in total, to the data. To automatically
choose the five best transforms i.e. five extra augmented samples in both train
and test sets that help capture the invariances of the vertebrae in our dataset the
Image Transformation Pursuit (ITP) algorithm by Paulin et al. [13] was used.
The transforms, 43 overall, we experimented on are as follows:

— 1 Flip/mirror

— 20 Rotations: § = —10° to 10° at 1° increment

— 16 Shifts: 1,1, <, —=,\, 7, N\, v~ with two pixel distances (5 and 10 pixels)

— 6 Bounding Box Scales: 85% to 115% in 5% increment
The five chosen augmentations samples are used as extra samples in training
and we pool (mean) the classifier scores from the unaugmented samples with its
corresponding five augmentations at test time.

4 Results & Discussion

4.1 Dataset

The dataset used to train and validate our system came from a range of differ-
ent MRI machines and protocols. In all, the dataset consists of 785 patients of
which 683 possess radiological scores (graded by a single radiologist) e.g. Modic
changes, Pfirrmann grading etc. These patients are scanned on the basis that
they are already diagnosed with back pain and no patient can be classified as
healthy.

Of the 785 patients, 341 were used to train stages (1) to (4) described in
Section 2 while 444 were used for stage (5), classification. There is no overlap of
patients in training stages (1) to (4) and the patients in the classification. Only
388 patients out of the 444 possess labels for Modic changes, see Table 2.



Endplate Class|Patients|Endplates
Normal 144 3921
Modic 1 111 249
Modic 2 195 551
Modic 3 18 42

Table 2: There is a total of 388 patients and 4656 endplates where 194 patients are used
for training and 194 for testing i.e. 50:50 random splits with no overlap of patients in
training and testing. Most patients with Modic changes possess more than one Modic
endplates and some of the patients possess more than one Modic types resulting in the
total of the numbers shown in the table to be different than the actual total.

4.2 Corner Localisation

Two sets of models are trained for corner localisation, each set having a single
regressor for the standard VB from the T12 to the L5 vertebrae, and a more
specific S1 regressor. The first set, termed the 15 stage, is for more coarse locali-
sation, and the second set, termed the 27¢ stage is for a precise corner regression.
Both sets of models are trained with the same ground truth used in training the
detection and labelling system. Overall, 4274 T12-L5 and 720 S1 vertebrae were
used in training the VB and S1 models respectively. The results of the trained
models on an unseen validation set is shown in Fig. 7.
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Fig. 7: (Left) Error per vertebra of the VB regression. (Right) Error per vertebra of the
S1 regression. The red, blue, and yellow plots represent the errors of the raw bounding
boxes, 1°¢ stage and 2"? stage respectively. Both stages outperform the initial bounding
box considerably. This is especially true for S1 which has a larger fit variance of the
bounding boxes compared to VB.

There are only 4 parameters that have to be optimised; they are: the nor-
malised height of the VB, V},, the size of the SIFT patch, the regularizer of the
ridge regression, A, and the number of iterations, k. They are optimized such
that they minimize the error on a hold-out validation set. In general, 91.1% of
the S1 vertebrae and 95.3% of the VB have errors less than 2mm which is a
considerable improvement over the original bounding box detections with none
of the S1 vertebrae and 41.6% of the VB at the same error threshold.



4.3 3D Vertebrae Extent Detection

For classification of vertebrae and non-vertebrae, the same patients that trained
the corner regressors were used; a total of 66556 VB quadrilaterals (39309 ver-
tebrae and 27247 non-vertebrae) with 50:50 train and test split. In general, this
stage of the system performs well with an accuracy of 95.6%.

4.4 Classification

For the classification task, the results can be separated into two parts: AUC
of ROC of the one-versus-rest classifiers and overall accuracy of the multi slice
classification task. Results are shown in Table 3.

AUC of ROC
Features| Normal |[Modic 1|{Modic 2|Modic 3
Hist+ |83.8 £1.4|81.6 £2.7|81.2 +1.4(89.3 & 8.7| 85.8 0.7
SJT |88.8£0.9|85.5+2.6/86.1 & 1.0/90.1 + 6.5/87.8 & 0.6

Accuracy

Table 3: Automatic endplate classification: (Left) AUC of the ROC curve of the one-
versus-rest classifiers. (Right) Accuracy of the classification.

It can be seen that the suggested SJT features outperform the Hist+ features
by a considerable margin with a 2.0% difference in accuracy and roughly between
4-5% difference in AUC of ROC. Furthermore, the standard deviation of the SJT
features is consistently slightly less than that of Hist+ which suggests SJT to be
more robust in learning. Note that the vertebral endplate as a whole is classified
but this does not localise the slices that the Modic changes occur in. The result
of the classification, 87.8% in accuracy, is better than the accuracy without
augmentation at 87.4% and the chance accuracy at 69.4%.

Up this point we have assessed a fully automatic classification of the endplates
by pooling the uni-slice classifications across the vertebra. In comparison, if
only a single hand-picked best slice for each vertebra was used at test time i.e.
manually select the slice that most clearly show the Modic change, we see a
slightly better performance of 88.3%, a minor difference of 0.5%.

5 Conclusion

This paper has presented the first system to classify Modic changes automatically
and validated using a large dataset. Since the ROIs extracted by the system
are highly accurate and consistent, they can be used in other vertebral tissue
classification problems which we hope to explore, alongside segmentation and
localisation of Modic changes, in the near future.
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