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With the development of artificial intelligence technology, deep learning has been applied to automatic modulation classification
(AMC) and achieved very good results. In this paper, we introduced an improved deep neural architecture for implementing radio
signal identification tasks, which is an important facet of constructing the spectrum-sensing capability required by software-
defined radio. -e architecture of the proposed network is based on the Inception-ResNet network by changing the several kernel
sizes and the repeated times of modules to adapt to modulation classification. -e modules in the proposed architecture are
repeated more times to increase the depth of neural network and the model’s ability to learn features.-emodules in the proposed
network combine the advantages of Inception network and ResNet, which have faster convergence rate and larger receptive field.
-e proposed network is proved to have excellent performance for modulation classification through the experiment in this paper.
-e experiment shows that the classification accuracy of the proposed method is highest with the varying SNR among the six
methods and it peaks at 93.76% when the SNR is 14 dB, which is 6 percent higher than that of LSTM and 13 percent higher than
that of MentorNet, Inception, and ResNet purely. Besides, the average accuracy from 0 to 18 dB of the proposed method is 3
percent higher than that of GAN network. It will provide a new idea for modulation classification aiming at distraction time signal.

1. Introduction

With the rapid development of communication technology,
the wireless communication environment is becoming more
and more complex and communication signals with various
types of modulation are becoming more diverse and com-
plex [1]. Automatic modulation classification (AMC) plays
an important role in modern wireless communication [2].
-e signal analysis and processing can be carried out only
when the modulation of the signal is recognized [3]. It finds
applications in various commercial and military areas. For
example, recognition of the modulation type is used in
software-defined radio (SDR) in order to adapt to various
communication systems without requiring control overhead
in the shortest time [4, 5]. Under such conditions, advanced
automatic modulation classification techniques are required.

It is also essential for identifying the source of received
wireless signals [6, 7].
At present, AMC can be divided into two categories:

likelihood-based (LB) and feature-based (FB) [8]. -e LB
modulation classifier recognizes the modulation of signal by
comparing the likelihood function value of received signal
within the known modulation pool [6]. It has been used for
modulation classification in multiple channel environment
with high accuracy [9]. While it needs some parameters to be
known in advance, such as carrier frequency, code rate, and
channel parameters, it becomes very complex when un-
known parameters are introduced. -us, it is difficult to
design a system for the acquisition of signal. Some re-
searchers have studied the way to simplify the likelihood
function, which will lead to information absence and in-
accurate results [10]. As LB method is sensitive to parameter
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estimation deviations or model mismatches, it is not ap-
plicable in many practical communication scenarios.
For FB method, features of the received signal are

extracted and the modulation of signal can be identified by
either comparing features with threshold values or feeding
feature to pattern recognizer [11, 12]. In many traditional
pattern recognition methods, it is necessary to extract fea-
tures of signal manually, such as instantaneous statistics,
high-order statistics, time-frequency characteristics, asyn-
chronous delay sampling characteristics, etc. [13]. -en,
these features are used as input of the classifier, such as
decision tree and support vector machine [14]. Although it is
simple with less computation, it shows poor performance for
non-linear problems. Apart from this, features selected
manually may not reflect the characteristics of signals with
different modulation and improper feature selection will
reduce the classification recognition accuracy of the
classifier.
In recent years, great progress has been made in artificial

intelligence and a single computer chip’s computing power
has been greatly improved, which promotes deep learning
algorithms to be widely used in modulation classification
[15, 16]. It solves the core problem of how to automatically
select and extract the features of samples. Besides, it realizes
the combination of simple features into more efficient and
complex features to achieve classification recognition [17].
In addition, deep neural networks have a multi-layer
structure, which can better extract features of signal avoiding
the tediousmanual selection of data features [18]. At present,
CNN, Google’s Inception, and residual network (ResNet)
have been used in modulation classification with good
results.
CNN-based modulation classification method was

proposed and it can be used for the sampling sequence of the
intermediate frequency signal directly [19]. Rajendran et al.
proposed that recurrent neural network (RNN) can also be
used for modulation classification of the sampling sequence
of the intermediate frequency signal [20]. Hu et al. studied
the effect of different noise on the modulation classification
by using RNN [21].
Generated adversarial network (GAN) was proposed for

data argument with RGB three-channel constellation in
modulation classification filed [22]. Wang et al. established a
2-level convolutional neural network (CNN) architecture to
distinguish 16QAM from 64QAM. In the second CNN
architecture, 16QAM and 64QAM constellation diagrams
were used as input to obtain a higher recognition rate [23].
However, this method relies on the constellation diagram
and can only identify the baseband signal. -e accuracy is
very low when modulated signals are sampled on the radio
frequency directly. A convolutional long short-term deep
neural network (CLDNN) was proposed by combining the
architectures of CNN and long short-term memory (LSTM)
into a deep neural network, which takes advantage of CNNs,
LSTMs, and conventional deep neural network architectures
and enables the learning of long-term dependencies [24]. A
ResNet architecture was proposed to distinguish between
different modulation types by adding the bypass connections
and showed good performance [17]. Shengliang P proposed

two convolutional neural network- (CNN-) based DL
models, AlexNet and GoogLeNet [25]. Cheong et al. ex-
tended the previous work on automatic modulation clas-
sification (AMC) by using deep neural networks (DNNs)
and evaluated the performance of these architectures on
signals [26]. Xie et al. proposed two algorithms, including
M2M4-aided algorithm andmulti-label DL based algorithm,
to combat the varying SNR [27]. Peng et al. converted the
raw modulated signals into images that had a grid-like to-
pology and fed them to CNN for network training [28].
-e dataset used in this paper was released on Pro-

ceedings of the GNU Radio Conference in 2016 for appli-
cations of machine learning (ML) to the Radio Signal
Processing domain [29]. Li et al. used GAN network with
data argument for modulation classification testing on this
dataset and the highest accuracy was no more than 90% [30].
LSTM, Inception, and residual network were also used for
modulation classification on this dataset, while the highest
accuracy among them was around 88%. Miao Du proposed a
new network structure called fully dense neural network
(FDNN) for the automatic modulation classification and the
average accuracy with FDNN is 89.6% from 0 to 18 dB [31].
Yuan Zeng proposed CNN architecture with spectrogram
images as signal representation and achieved good recog-
nition accuracy in 2019, while the average accuracy from 0 to
18 dB of it was less than 90% [32]. Wu et al. proposed
convolutional neural network and multi-feature fusion for
automatic modulation classification. -e overall classifica-
tion accuracy of it is less than 93% [33]. In addition, Zhang
et al. proposed an automatic digital modulation classifica-
tion network based on curriculum learning and the overall
classification accuracy is less than 90% [34]. -e highest
accuracy of the proposed method in this paper is 93.76% at
14 dB and the average accuracy from 0 to 18 dB with the
proposed method is 93.04%, which has excellent
performance.
-is paper is organized as follows: Section 2 introduces

the related work. Section 3 formulates the basic principle of
the ResNet. Section 4 gives the basic principle of Inception
network. Section 5 details the proposed method in this
paper. Section 6 presents the results of simulations and
experiments to support the theoretical analysis.

2. Related Work

2.1. Basic Principle of Signal Modulation. At present, digital
modulation technology has been used widely in wireless
communication. Although signal processing techniques
such as modulation and demodulation of digital modulation
are more difficult than analog modulation and the signal
processing system is more complex for digital modulation,
digital modulation technology has strong anti-interference
and it is easy to use modern digital signal processing
technology to process and analyze the signal. -erefore,
digital modulation signals are widely used in practice. -e
modulation classification of digital modulation signals is
studied in this paper.
A general expression for the received baseband complex

envelope is
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r(t) � s t; ui( ) + n(t), (1) where s(t; ui) denotes baseband complex envelope of the
received signal with no noise, and n(t) is noise. s(t; ui) can
be expressed as

s t; ui( ) � aiej2πΔftejθ∑K
k�1

ejϕks(i)k g(t − (k − 1)T − εT), 0≤ t≤KT, (2)

where ai represents the amplitude of signal, Δf denotes the
offset of carrier frequency, θ is the time-invariant carrier
phase, ϕk is the phase jitter, T is the symbol period, ε is the
normalized epoch for time offset between the transmitter
and signal receiver, g(t) � Ppulse(t)⊗ h(t) is the composite
effect of the residual channel with h(t) denoting the channel
impulse response and ⊗ denoting mathematical convolu-
tion, and Ppulse(t) is the transmit pulse shape. In equation
(2), ui is the multidimensional vector that includes the
deterministic unknown signal or channel parameters for the
ith modulation type. -e goal of modulation classification is
to recognize the modulation type i from the received signal
r(t) [30]. -e Amplitude Shift Keying (ASK), Frequency
Shift Keying (FSK), Phase Shift Keying (PSK), and Quad-
rature Phase Shift Keying (QPSK) are commonly used
modulation types.

2.2. Deep Neural Network for Classification Modulation.
Convolutional layers are a common element in all state-of-
the-art deep neural networks. A convolutional layer usually
consists of convolutional filters. -e size of convolution
kernels is typically very small, such as 1× 1 through 5× 5
sizes. -e transfer function for a standard convolutional
layer [6] is given below:

yi � f bj +∑
i

kij ∗ xi , (3)

where yi is the output feature map for the i
th filter, b and k

represent learned bias and filter weight parameters, xi
represents the input activations, ∗ denotes the convolution
operation, and f(··) denotes a (typically non-linear) acti-
vation function [35].
A visible trend in neural networks for classification task

is building deeper networks to learnmore complex functions
and hierarchical feature relationships. Deep networks enable
more complex functions to be learnedmore readily from raw
data.
Typically, applying deep neural networks to solve

modulation classification is a matter of

(i) Designing a network architecture

(ii) Training the network to select weights which
minimizes loss

(iii) Validating and testing in practice to solve problem

To this end, we use various machine learning classifiers
based on deep neural network architectures, where a
training dataset is used to train the network, and then the

classification accuracy is computed over the classification
output for a testing dataset.
Figure 1 illustrates a diagram of deep learning for

modulation classification. Generally speaking, the classifi-
cation method mainly includes three parts: signal pre-
processing, feature extraction, and evaluation. -e deep
neural network can automatically combine simple basic
features into more complex features gradually, achieve ef-
fective feature expression of data samples, andmaintain high
recognition accuracy. In this paper, a supervised recognition
method is used. Firstly, a large number of labeled samples
are used to train the deep neural network, and then the
trained model is used to recognize the unknown samples.

3. Residual Network

Although neural networks with more layers have better
learning ability, the degeneration occurs sometimes, which
leads to low accuracy. An effective approach so far, which
won ImageNet 2015, is residual networks. A residual net-
work adds one layer’s output to the output of the layer two
layers deeper, as shown in Figure 2. Vanishing gradients are
resolved by normalization techniques that have been widely
adopted and that network depth is instead limited by
training complexity of deep networks which can be sim-
plified with residual functions [36].
ResNet improves the original network structure by

adding connection identity mapping. -e learning function
is defined as F(x) + x and the input is added to the learned
function. By adopting this method, the parameters and
calculation amount of the network will not increase, and the
training speed and recognition accuracy of the model will be
significantly improved.

4. Inception Network

-e inception architecture is one successful approach to
increasing the depth of network and learning ability. -is
network consists of repeated inception modules. As shown
in Figure 3, each inception module contains four parallel
paths with the output being the concatenation of the four
parallel outputs.-e first path is a bank of 1× 1 convolutions
that forward along selected information. -e 1× 1 convo-
lutions are a form of selective highway networks that simply
pass information forward with no transformation. -e
second and third paths are 1× 1 convolutions followed by a
bank of 3× 3 and 5× 5 convolutions to make the network
have larger receptive field. -e last parallel path is a 3× 3
pooling layer followed by 1× 1 convolutions. Intermediate
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inception modules in the network are connected to Softmax
classifiers that contribute to the network’s global loss for
training. -ese classifiers are believed to help in increasing
the model’s ability to learn features [37].

5. Proposed Method

5.1. 8e Structure of the Proposed Network. -e architecture
of the proposed network is based on the Inception-ResNet
network by changing the several kernel sizes and the re-
peated times of modules to adapt to modulation classifi-
cation for software-defined radio [38]. -e architecture of
the proposed network consists of stem network module,
three Inception-ResNet modules, and reduction modules.
-is network combines the advantages of the Inception
module and ResNet module, which has faster convergence
rate. -e network is proved to have excellent performance

for modulation classification through the experiment in this
paper.
For the residual versions of the Inception networks,

cheaper Inception blocks than the original Inception are
used. Each Inception block is followed by filter-expansion
layer (1× 1 convolution without activation) which is used for
scaling up the dimensionality of the filter bank before the
addition to match the depth of the input. -is is needed to
compensate for the dimensionality reduction induced by the
Inception block.
Figure 4(a) shows the overall schema of the proposed

network; the input dimension of input data is 1× 2×128
which is set in the dataset for modulated signal. -ere are
three Inception-ResNet modules in Figure 4(a); the structure
of each Inception-ResNet module is shown in Figures 5(a)–
5(c), respectively. -e module A is repeated 10 times. 20
times and 10 times are repeated for module B and module
C. In order to make residual operation feasible, 1× 1 con-
volution is added to match the depth of the network in each
Inception-ResNet module. -e schema for the stem of the
proposed method is shown in Figure 4(b), where there are 6
convolutional layers and 1 max pooling layer.

5.2. Loss Function. For a multi-class classification task such
as modulation recognition, the objective function is often
categorical cross-entropy. Categorical cross-entropy
(equation (4)) is a measure of difference between two
probability distributions. For deep learning classification
tasks, the probability distribution is usually a Softmax
(equation (5)) of the output of the classifier network which is
then converted to one-hot encoding for classification pur-
poses. -e error is calculated in what is known as the for-
ward-pass and weights are adjusted using the chain rule to
find error contribution for each parameter in what is known
as the backward-pass. -is kind of network output layer,
optimization, and loss function have been used very suc-
cessfully for multi-class vision tasks such as object recog-
nition on the ImageNet dataset [39].

H(p, q) � − ∑
x

p(x)log q(x). (4)

In equation (4), p(x) and q(x) are two probabilities and
H(p, q) is a value to measure the difference of two
probabilities.

σ(z)j �
ezj∑Kk�1 ezk , for j � 1, . . . , Kzj. (5)

Modulated
signal received

Preprocessing Automatic feature extraction
by deep neural network

Trained model Evaluation

Figure 1: Flow diagram of deep learning for modulation classification.
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Figure 2: Residual network diagram.
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Figure 3: Inception unit diagram.
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In equation (5), the standard exponential function is
applied to each element of the input vector z and these
values are normalized by dividing by the sum of all these
exponentials; this normalization ensures that the sum of the
components of the output vector σ(z) is 1.

6. Experiment and Discussion

6.1.Dataset. We use the RadioML2016.10b dataset as a basis
for evaluating the modulation recognition task. -e dataset
adopted in this paper was first released at the 6th Annual
GNU Radio Conference in 2016. -e dataset allows machine
learning researchers with new ideas to dive directly into an
important technical area without the need for collecting or
generating new datasets and allows for direct comparison to
efficacy of prior work. -e dataset is generated with GNU
Radio, consisting of digital and analog modulations at
varying signal-to-noise ratios. Details about the generation
of this dataset can be found in [30]. Figure 6 shows a high-
level framework of the data generation.

-e time segments were sampled randomly from the
output stream of each simulation and stored in an output
vector commonly used for Keras, -eano, and TensorFlow.
-e dataset uses a 4D real float 32 vector, taking the form
Nexamples×Nchannels×Dim1×Dim2, where each exam-
ple consists of 128 complex floating point time samples.
Nchannels� 1, a representation which commonly is used for
RGBA values in imagery, Dim1� 2 holding I and Q chan-
nels, and Dim2�128.

6.2. Training Process. -e dataset is divided into two parts:
960000 samples are used for training the deep neural network
and 240000 samples for validation. All models and training are
done with the Keras with TensorFlow as a deep learning library
using a TITAN RTX 24G GPU.-e Adam optimizer was used
for all architectures, and the loss function was the categorical
cross-entropy function.We also used ReLU activation functions
for all layers, except the last dense layer where we used Softmax
activation functions.We used a minimum batch size of 128 and

Input
1 × 2 × 128
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Inception-ResNet-A

Reduction

20×
Inception-ResNet-B

Reduction

10×
Inception-ResNet-C

Average pooling

Dropout
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1 × 2 × 128
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Output: 320 × 2 × 13
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Figure 4:-e overall schema and stem of the proposed network. (a)-e overall schema of proposed network. (b)-e schema for stem of the
proposed network.
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a learning rate of 0.01 and 0.001. Figure 7 shows the flow di-
agram of our experiment.

6.3. Trick during the Process. In order to get better perfor-
mance and avoid overfitting, we introduce several tricks in
training.

(a) Batch Normalization

Normalize the input data between − 1 and 1. -is
trick can be related to

x′ �
x − mean(x)

max(x) − min(x)
, (6)

1 × 1 conv

(32) 1 × 1 conv

(32)

3 × 3 conv

(32)

1 × 1 conv

(32)

3 × 3 conv

(48)

3 × 3 conv

(64)

1 × 1 conv

(320 linear)

ReLU activation

ReLU activation

+

(a)

1 × 1 conv
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(128)

1 × 7 conv

(160)

7 × 1 conv
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ReLU activation
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(b)
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(192)

1 × 3 conv

(224)
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(256)
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(1536 linear)

ReLU activation

ReLU activation

+

(c)

Figure 5: -e schema for the three Inception-ResNet modules of the proposed network. (a) -e schema for Inception-ResNet module (A).
(b) -e schema for Inception-ResNet module (B). (c) -e schema for Inception-ResNet module C.
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Figure 6: A frame of data generation.
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where x is the input data for the network and x′ is
normalized data. -is trick can accelerate training
and prevent overfitting.

(b) Early stopping

A compromise is to train on the training dataset but
to stop training at the point when performance on a
validation dataset starts to degrade. -is simple,
effective, and widely used approach to training
neural networks is called early stopping. Stopping
the training of a neural network early before it has
overfit the training dataset can reduce overfitting and
improve the generalization of deep neural networks.

-e challenge of training a neural network long
enough to learn the mapping, but not so long that it
overfits the training data.
Model performance on a holdout validation dataset
can be monitored during training and training can
be stopped when generalization error starts to
increase.
-e use of early stopping requires the selection of a
performance measure to monitor, a trigger to stop
training, and a selection of the model weights to
use.

In this paper, we stop training process when the
validation loss does not decrease within 10 epochs.
As shown in Figure 8, the validation loss is 0.8820 at
the 8th epoch and the validation loss is more than
0.8820 in the following 10 epochs. In this connection,
we adopt the parameters at the 8th epoch to evaluate
the performance of the model.

(c) Dropout

Assuming that the probability of discarding neurons
in each layer is p, then the remaining probability is
1 − p. -is trick can prevent the network from
overfitting to a certain extent. In the dropout module
in this paper, the remaining probability is 0.8.

6.4. Result and Discussion

6.4.1. Baseline. In this paper, the performance of the pro-
posed method is compared with five methods including
CNN, ResNet, Inception, LSTM, and one of the state-of-the-
art methods MentorNet in [34]. -e optimizer adopted in
this paper is Adam. -e default value of Adam optimizer
(beta1� 0.9, beta2� 0.999, epsilon� 1e − 8, decay� 0) is set.
For each method, the performances under different

parameters are compared in order to get higher classification
accuracy. Here, the influence of different learning rates and
batch sizes is considered. -e initial learning rate (lr) is
initialized to 0.001 and 0.01, and the batch size is initialized
to 128, 512, and 1024. It is detected that too high or too low
learning rates and batch sizes could yield homogeneous
prediction and low accuracy. Figure 9 illustrates the overall
classification accuracy of the six methods from − 20 dB to
18 dB with different parameters.
As shown in Figure 9, overall classification accuracy of

the proposedmethod and five other methods from − 20 dB to
18 dB with different parameters is compared. In this ex-
periment, the highest classification accuracy in Figure 9 for
each method is adopted as baseline. -e baseline result is
gotten from CNN, pure ResNet, pure Inception, LSTM, and
MentorNet network on the RML2016b dataset. -e accuracy
of the baseline and the proposed method on the validation is
shown in Table 1.

6.4.2. Overall Classification Accuracy. Figure 10 shows the
overall classification accuracy of CNN, LSTM, Inception,
ResNet, MentorNet, and the proposed method on the val-
idation dataset from − 20 dB to 18 dB. It can be seen that the

Validation
dataset

Preprocessing

Training
dataset

RML2016b
dataset

Model trained Evaluation

Training the proposed
network

Figure 7: -e flow diagram of our experiment.
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experiment.

Mathematical Problems in Engineering 7



classification accuracy of the six methods increases gradually
and remains stable with the increase of SNR. -e classifi-
cation accuracy of the proposed method is highest with the

varying SNR among the six methods. -e classification
accuracy of the proposed method reaches 90% at 0 dB, while
the accuracy of the other methods is less than 90%. -e
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Figure 9:-e overall classification accuracy of the six methods from − 20 dB to 18 dB with different parameters. (a)-e overall classification
accuracy of CNN with different parameters. (b) -e overall classification accuracy of ResNet with different parameters. (c) -e overall
classification accuracy of Inception with different parameters. (d) -e overall classification accuracy of LSTM with different parameters. (e)
-e overall classification accuracy of MentorNet with different parameters. (f ) -e overall classification accuracy of the proposed method
with different parameters.

Table 1: Test accuracy of baseline and the proposed method.

SNR (dB) CNN (%) ResNet (%) Inception (%) LSTM (%) MentorNet (%) Proposed method (%)

− 10 25.71 26.92 23.61 29.56 24.86 30.40

− 4 54.32 48.53 50.86 58.46 62.45 74.30

0 77.64 75.41 73.65 83.19 76.36 90.81

4 80.53 80.25 78.87 85.96 78.59 92.84

10 81.61 81.69 79.91 87.09 80.16 93.29
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classification accuracy of the proposed method peaks at
93.76% when the SNR is 14 dB and it is 6 percent higher than
that of LSTM and 13 percent higher than that of MentorNet,
Inception, and ResNet purely. -e performance of the
proposed method is verified by this experiment.

6.4.3. Classification Accuracy of Each Kind of Modulated
Signal. Figure 11 shows the normalized classification of each
kind of modulated signal including 8PSK, AM-DSB, BPSK,
CPFSK, GFSK, PAM4, QAM16, QAM64, QPSK, andWBFM
by the six methods when the SNR is 18 dB. In Figure 11, the
vertical column represents the true label of the modulated
signal and the horizontal row represents the predicted label
gotten from the deep neural network. All data is normalized.
In this connection, the data on the diagonal is the classifi-
cation accuracy. For example, in Figure 11(a), there are two
non-zero values in the top row, that is, 0.95 and 0.05, which
indicates that the classification accuracy is 95% for 8PSK
modulated signal by the proposed method and there are 5%
8PSK signals that are recognized as QPSK signals. In this
connection, it can be found that the classification accuracy of
8PSK, BPSK, CPFSK, GFSK, PAM4, QAM16, QAM64,
QPSK, and WBFM gotten from the proposed method is
highest among the six methods when the SNR is 18 dB.
From Figure 11, we can get the classification accuracy of

eachmodulated signal gotten from the six methods when the
SNR is 18 dB. In this context, we can get the classification
accuracy of each modulated signal using the proposed
method, LSTM, CNN, Inception, and ResNet from − 20 dB to
18 dB, which is shown in Figure 12.
Figure 12 indicates the classification accuracy of each

modulated signal from − 20 dB to 18 dB using the proposed
method, LSTM, CNN, Inception, ResNet, and MentorNet

networks. It can be seen that the classification accuracy of
each modulation type using the six methods shows a general
upward trend gradually and fluctuates within a narrow range
with the increase of SNR.-e classification accuracy of 8PSK,
BPSK, CPFSK, GFSK, PAM4, QAM16, QAM64, and QPSK is
more than 95% using the proposed method, which has the
highest number of modulation types whose classification
accuracy is more than 95% among the six methods. We can
also see that the classification accuracy of GFSK and QAM64
is close to 100% using the proposed method, while that of the
other four methods is less than 80%. In addition, the clas-
sification accuracy of WBFM is close to 100% using the
proposed method, while that of the other four methods is less
than 40%. We can also see that the classification accuracy of
AM-DSB increases and then declines from − 20 dB to 18 dB
using the proposed method, which shows the proposed
method is not well used to recognize AM-DSB modulation
type. Overall, the proposed method has the best performance
in classifying the modulated signals for the RML2016b dataset
among the six methods adopted in this paper.

6.4.4. Computation Complexity. Table 2 shows the com-
putation complexity of different methods. Total parameters
indicate the number of parameters in different models.
Training and inference time refer to the cost of time in
training and validation process. FLOPs (floating point of
operations) can also represent the complexity of deep neural
network. From the table, we can see that the number of total
parameters in the proposed network is highest among the six
methods. -e training time, inference time, and FLOPs are
also higher than other methods. In this connection, it will
take more time to use the proposedmethod to get the trained
model.
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Figure 11: -e confusion matrix of the six methods when the SNR is 18 dB. (a) Normalized confusion matrix of CNN (SNR� 18 dB). (b)
Normalized confusion matrix of Inception (SNR� 18 dB). (c) Normalized confusion matrix of LSTM (SNR� 18 dB). (d) Normalized
confusionmatrix of ResNet (SNR� 18 dB). (e) Normalized confusionmatrix of MentorNet (SNR� 18 dB). (f ) Normalized confusion matrix
of the proposed method (SNR� 18 dB).
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Figure 12: -e classification accuracy of each modulated signal using the six methods from − 20 dB to 18 dB. (a) -e classification accuracy
of each modulated signal using CNN. (b) -e classification accuracy of each modulated signal using Inception. (c) -e classification
accuracy of each modulated signal using LSTM. (d)-e classification accuracy of each modulated signal using ResNet. (e)-e classification
accuracy of each modulated signal using MentorNet. (f ) -e classification accuracy of each modulated signal using the proposed method.
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7. Conclusion

In this paper, we introduced an improved deep neural ar-
chitecture for implementing radio signal identification tasks,
which is an important facet of constructing the spectrum-
sensing capability required by software-defined radio. -e
goal was to achieve feature extraction by learning from
original sampled signals on training dataset and evaluate the
performance on validation dataset. We also compared the
classification accuracy of the proposed method with that of
LSTM, CNN, Inception, ResNet, and one of the state-of-the-
art methods MentorNet. -e experiment shows that the
classification accuracy of the proposed method is highest
with the varying SNR among the six methods and it peaks at
93.76% when the SNR is 14 dB and is 6 percent higher than
that of LSTM and 13 percent higher than that of MentorNet,
Inception, and ResNet purely. -e proposed method has
excellent performance for modulation classification. We
believe that the significance of this paper far exceeds the
modulation recognition task itself and it will offer a new idea
for modulation classification.
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