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Abstract. We present a novel generic segmentation system for the fully
automatic multi-organ segmentation from CT medical images. Thereby
we combine the advantages of learning-based approaches on point cloud-
based shape representation, such a speed, robustness, point correspon-
dences, with those of PDE-optimization-based level set approaches, such
as high accuracy and the straightforward prevention of segment overlaps.
In a benchmark on 10–100 annotated datasets for the liver, the lungs,
and the kidneys we show that the proposed system yields segmentation
accuracies of 1.17–2.89mm average surface errors. Thereby the level set
segmentation (which is initialized by the learning-based segmentations)
contributes with an 20%-40% increase in accuracy.

1 Introduction

Discriminative segmentation approaches have proven to give reliable, fully-auto-
matic, and fast detections of anatomical landmarks within volumetric images,
as well as the accurate determination of organ boundaries, such as of the inner
and outer walls of the heart, [10], or of the liver, [4]. Usually, the segmenting
surface is represented by relatively low number of explicit control points, such
as they are used in Active Shape Models.

Besides restrictions in topology, other well-known disadvantages of point
cloud-based shape representations are the dependence of the local detailedness
on the local density of control points. The latter often are non-homogeneously
distributed across the shape boundary, and thus yield varying levels of seg-
mentation accuracy. Level set-based shape representations, see [1] and the ref-
erences therein, on the other hand, provide a well-known mean to encode seg-
ment boundaries at a homogeneous resolution, with simple up- and down-sample
schemes. Moreover, in the case of multiple objects, the detection and formulation
of constraints to prevent overlaps between adjacent segment boundaries can be
achieved much simpler by a level set representation where signed distance func-
tions are employed.

In the following we will present a fully automatic segmentation system for
multiple organs on CT data, that combines the advantages of both segmentation
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approaches and their employed shape representations in an optimal manner. In
particular the point-to-point correspondences, which are estimated during the
learning-based segmentation, will be preserved in the level set segmentation.
With regards to the latter, we will present novel terms which allow to impose
region-specific geometric constraints between adjacent boundaries.

In Section 2 we first give an outline of the learning-based detection and seg-
mentation stages, all of which have been published in the mentioned citations.
After a brief description on the conversion of their output meshes to implicit
level set maps, we start to build an energy-based minimization approach for
multiple organs as a segmentation refinement stage. In the experimental Sec-
tion 3, we first show the impact of the new constraints at qualitative examples,
and finally evaluate the overall improvement of the level set refinement stage
over the detection-based results at 10–100 annotated cases for the liver, lungs
and kidneys.

2 Approach

2.1 Anatomical Landmark Detection and Learning-Based
Segmentation of Organ Boundaries

We initialize the multi-region level set segmentation from explicitly represented
boundary surfaces stemming from an existing learning-based detection frame-
work, which itself consists of several stages. In the first stage, a landmark de-
tection system estimates key organ landmarks ranging from the abdominal to
upper body region, see [5] for more details. These landmarks then serve a ini-
tializations for a hierarchical bounding box detection system based on Marginal
Space Learning [10] in connection with Probabilistic Boosting Trees [9]. The
latter yields bounding box estimates for the liver, the left and right lung, the
heart, and the kidneys. In the third stage, organ-specific boundary detectors are
employed to evolve the correct organ boundaries on a coarse scale and in subse-
quently on a fine scale, see [4]. In addition, PCA-based statistical shape model
are used to regularize the boundary shape on the coarse resolution. Thereby,
segment boundaries of each organ are represented by a triangulated mesh, i.e. a
connected point-cloud as being used in Active Shape Models.

2.2 From Meshes to Zero-Crossings of Signed Distance Maps

Although the learning-based segmentation sub-system already provides good in-
dividual organ segmentations, see Fig 2(a) for example, they usually exhibit
small overlaps between adjacent organ boundaries, or gaps where the true or-
gan boundaries coincide. Given representations of only the adjacent segments’
boundaries, those deficiencies are difficult to detect and remove. Instead we ini-
tialize signed distance functions φi : R

3 ⇒ R from each of the result meshes Ci,
for i, . . . , N organs by employing a fast mesh voxelization algorithm. The bound-
ary information then is encoded implicitly in the zero-crossings of the φi, i.e.
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Ci := {x |φi(x) = 0, |∇φ| = 1}, with |∇φ| = 1 denoting the so-called distance-
property, and φ > 0 inside the object and < 0 outside, see [1] and the references
therein. The distance functions are discretized on a regular grid, which, in the
following, is assumed to be the same for all organs. Furthermore, we employ
a narrow-banded level set scheme, which maintains the distance-property in a
small narrow-band of ±2 voxels from the zero crossing. In addition to the dis-
tance functions, we still keep the mesh points, denoted by {pi}, and are tracking
them along with the evolving zero crossing as described in [3], since they provide
point-wise correspondences to the mean shape of the PCA model employed in
the preceding learned-based boundary detection step.

2.3 Data and Smoothness Term of the Level Set Approach

Having the triangulated boundary meshes {Ci} of the detection stages transfered
to distance functions functions {φi}, detecting and removing local overlaps and
gaps between them can be realized much easier. The ultimate target of course
is to find the correct separating boundary between two neighboring organs. To
that end, in the following, we propose a level set segmentation approach which
not only refines the segmentation boundary accuracy, removes local overlaps
and gaps, but also finds the true separating boundary given that enough image
information is available.

For each organ Oi, this refining level set segmentation is realized by employing
gradient descent iteration to converge to a minimum of an associated energy
functional Ei(φi), given the initial distance maps as starting points, see [1] and
the references therein. As data-dependent energy term, we here employ

Ep(φ) = −α
∫
Ω

H(φ) log pin(I(x)|φ) +
(
1−H(φ)

)
log pout(I(x)|φ) dx ,

with H denoting the Heaviside step function, and pin/out referring to non-
parametric probability estimates of the intensities inside and outside, respec-
tively, of the current segment φ using a Parzen density estimator with a Gaus-
sian kernel, see [2] for further details, and α being a constant weight. In order
to add robustness against noisy data, we furthermore incorporate the boundary
smoothness regularization term

Ec(φ) =
∫
Ω

γl(x) |∇H(φ)| dx, with l(x) = arg min
i=1,...,N

‖x− pi‖L2 , (1)

which employs a weight γl(x) that varies with the location on the boundary. The
latter is realized by assigning fixed weights {γi} to each of the correspondence
points {pi} on the mean shape of the PCA shape model, which then are tracked
along during the zero-crossing evolution, see [3] for more details.

2.4 Disjoint Constraint to Remove Overlaps

Let C0
A and C0

B be detected boundaries of the learning-based stage in the case of
two adjacent organs A and B, and assume that C0

A and C0
B imperfectly overlap
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each other to a certain degree, see, e.g., Fig. 1(a). By representing these two
surfaces using signed distance functions φ0A and φ0B , locations x̃ inside the over-
lapping region are exclusively characterized by φA(x̃) > 0 and φB(x̃) > 0, and
thus provide a much simpler overlap indicator compared to any other based on
an explicit shape representation. Subsequently, additional energy terms which
explicitly penalize overlaps usually are of the form

Eo(φA, φB) :=
∫

Ω

H
(
φA(x)

)
H
(
φB(x̃)

)
φB(x̃) dx (2)

where the first product in the integrand is unequal zero only inside the overlap
regions, see Fig. 1(b). In addition to similar terms such as proposed in [6], we
propose to also multiply with the second distance function φB which makes EO

smoother at the presence of small overlaps, and thereby decreases oscillations
during gradient descent. The corresponding energy gradient reads (cf. [7]):

∂φA/∂t = −∂Eo/∂φA = −δε(φA) Hε

(
φB(x̃)

)
φB(x̃) . (3)

Fig. 1. Imposing geometric constraints to remove overlaps (b) and gaps (c) from an
existing segmentation, while controlling the deviation from a given shape locally (d).
(Note that (b)–(d) are 1D-cuts along the black lines in (a)).

2.5 Local Proximity Constraint to Fill Gaps

With regards to removing erroneous gaps between adjacent segmentation bound-
aries, we add the following energy to the total energy functional:

Ed(φA, φB) :=
1
2

∫
Ω

βl(x)

(
φA(x) + φB(x̃) + D

)2
dx (4)

with D = 0 for the time being, and {βi} being correspondence points-bound
weights with βi = 0 at points where no boundary coincidence ought to be en-
forced, and βi > 0 at locations where boundaries of A and B ought to coincide.
As illustrated in Fig. 1(c), φA and φB cancel each other out if their zero crossings
coincide and thus the integrand becomes zero. As an extension, one can enforce
the two boundaries to not touch but stay in a predefined distance D > 0 from
each other. The gradient descend PDE of Ed w.r.t. φA reads:

∂φ/∂t = −∂Ed/∂φ = −βl(x)

(
φA(x) + φB(x̃) + D

)
(5)

which shows that of φA increases at locations where φB < D, and thus expands
its representing boundary, and descreases at locations where φB > D, i.e. shrinks
the boundary.
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(a) (b) (c)

Fig. 2. (a) Segmentation result of the machine learning system. (b) Refined segmen-
tations after applying level set segmentation to (a). (c) Visualization of the manually
set local weights {ωout

i } of the outward template constraint (red: 50, blue: 0.2). These
weights are bound to point-based shape correspondences in relation to a fixed model
shape, and thereby allow for a region-specific control over the different geometrical
constraints during the level set segmentation.

2.6 Template Constraint to Control Deviation of the Refinement

Finally, we added a third geometric term, which ensures that the level set result
is sufficiently similar to learning-based contour, that is, the refined boundary is
sought only in the vicinity of its initialization. To that end, we use the term

Esw(φ, φP ) :=
1
2

∫
Ω

ωin
l(x) H

(
φP (x)− φ(x)

)
+ ωout

l(x) H
(
φ(x) − φP (x)

)
dx . (6)

which is an extension of the approach shown in [8] in the sense that it applies
region-specific weights {ωin

i } to the shape dissimilarity measure between the
current φ and the prior shape φP (which is the initial one here), as well as
applying different weights for deviations outside or inside of CP (we refer to
CP as “template” shape in the following). See Fig. 2(c) for a local weight map.
Technically, note that the first term of the integrand is non-zero only if the
zero-crossing of φ resides inside the zero-crossing of φP , that is the current
boundary C is smaller than the prior boundary CP , see Fig. 1(d). Vice-versa,
the second term measures local expansions relative to CP , by becoming non-zero
only where φ(x) > φP (x).

The corresponding energy gradient clearly shows that the proposed energy
term has the desired effect:

∂φ/∂t = −∂Esw/∂φ = ωin
l(x) δε

(
φP (x)− φ(x)

) − ωout
l(x) δε

(
φ(x) − φP (x)

)
, (7)

i.e. increasing φ at locations where φ < φP , and decreasing it in the opposite
case.

2.7 Interleaved Multi-energy Minimization

Finally, all of the proposed energy terms are combined into energy minimizations
for each organ Oi=1,...,N :

min
φi

Ep(φi) + Ec(φi) +
∑

j∈Ni(j)

Eo(φ, φj) +
∑

j∈Pi(j)

Ed(φ, φj) + Esw(φi, φ
0
i ) , (8)
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which are mutually coupled by the disjoint and proximity terms (Ni: indices
of organs adjacent to Oi, Pi: indices of organs with which Oi shares a mutual
proximity constraint). Consequently, minimizers {φ̃i} of these individual ener-
gies depend on each other. To that end, we found interleaved gradient descent
iterations to yield the desired segmentation improvements in practice. Specifi-
cally, we carry out a descent along the negative gradients of the N per-organ
energies in lockstep, while using the segmentation results {φt−1

i } of the previous
joint iteration to compute the coupled energy gradients ∂Ei(φi; {φt−1

i })/∂φi.
The descent for a particular energy is terminated if a given maximum number of
iterations has been reached, or if the maximum norm of its gradient falls below
a given threshold, i.e. the segmentation boundary φi changes less than a chosen
tolerance.

3 Experimental Evaluation

3.1 Parameter Selection

In a first series of experiments, we studied the effect of the proposed new energy
terms qualitatively on a few data sets. Thereby we also manually selected all
the involved weights in order achieve optimal results on a small set of test cases.
Specifically, we weighted the data term Ep with a factor of 2 for all organs and set
the lowest weight γi in the smoothness term Ec to 0.7 at locations where a high
curvature is desired (such as at the lung tips), and to a value of 1.5 where low
curvatures are to enforced. For the disjoint energy term Eo we found a weighting
of 1000 to remove any existing overlaps while not producing any oscillations. The
proximity term Ed turned out to yield the desired results when setting βi to 10
at correspondence points where it ought to be active and to zero elsewhere. For
the template energy Esw the inward and outward deviation-penalizing weights
ωin and ωout were set according to the overall quality and robustness of the
learning-based boundary result. Specifically, at locations where the latter tends
to under-segment, such as at the lower tips of the lung wings, ωout was set to the
low value of 0.2 in order to allow the level set result to deviate outwards. Vice-
versa, at locations where the learning-based stage tends to over-segment, such
as at the lower side of the liver ωin is given a low value. Finally, at locations
where the learning-based stage already yields highly accurate results, such as
adjacent to the ribs for the liver and lung boundaries, both ωin and ωout where
set to high values of 50 in order to bind the level set-based boundary close to it.
Fig. 3(c) visualizes the weights {ωout

i } for a final segmentation of the liver.

3.2 Accuracy Benchmark

In a next step, we benchmarked the overall system at manually annotated data
sets in order to study the overall accuracy improvement yielded by level set re-
finement. Test sets for the different organs listed in Table 1 were drawn randomly
from a set of 434 annotated CT cases consisting of low to high contrast scans,
and an average voxel spacing of 1.02/1.02/2.16mm (x/y/z). Cases not drawn for
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(a) (b) (c) (d)

Fig. 3. Effect of the different proposed geometric constraints. Whereas the disjoint con-
straint (a)+(b) can be used to remove overlaps between initial segmentations, the tem-
plate constraint (c) can bind the level set zero-crossing to the initial one in a location-
specific manner. With the proximity constraint (d), coincidence of shared boundaries
can be imposed locally.

testing were used to train the learning-based pipeline, which were 313 boundary
annotations for the liver and about 130 annotations for the other organs.

After the the joint gradient descent had converged w.r.t. each energy of the
level set segmentation, the final meshes were extracted from the level set maps
via Marching Cubes. As error measure we first computed the shortest Euclidean
distances between each result mesh and its corresponding annotated mesh at every
vertex of the former as well as every vertex of the latter, and then averaged all such
distances. The results in Table 1 show that the presented segmentation system
yields state-of-the-art accuracies ranging from 1.17mm average surface error for
left kidney to 2.89mm for the liver. Thereby the proposed level set segmentation
contributes with an improvement of 20% for the liver, 30% for the left lung and
left kidney, and 40% for the right lung and right kidney. Average run-times for the
full detection pipeline is 2–3 min, which includes about 1 min for the only coarsely
multi-threaded level set stage on a 2.0 GHz eight-core Xeon machine.

Table 1. Symmetric surface errors using machine learning-based segmentation and
after applying level set-based refinement

Sym. surface error (mm) Mean Std.dev. Median Worst 80% # cases

Liver, learning-based only 3.5 1.7 3 4.0 100
Liver, level set-refined 2.9 1.7 2.6 3.6 100

Left lung, learning-based only 2.1 0.5 1.9 2.5 60
Left lung, level set-refined 1.5 0.3 1.4 1.7 60

Right lung, learning-based only 2.7 0.9 2.4 3.0 60
Right lung, level set-refined 1.6 0.6 1.5 1.8 60

Right kidney, learning-based only 1.9 0.9 1.8 2.0 10
Right kidney, level set-refined 1.1 0.9 0.8 3.9 10

Left kidney, learning-based only 1.9 1.0 1.7 2.3 10
Left kidney, level set-refined 1.3 1.0 1.0 1.9 10
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4 Conclusion

In our experiments we found the proposed algorithm to combine the robustness
and speed of a machine learning approach with the high accuracy and advan-
tageous distance map representation of a level set approach. Furthermore, the
novel level set constraints allow to impose region-specific geometrical priors in
the refinement stage. Yet the involved localized weights, as well as the global
ones, need to be set manually in one or more parameter tuning sessions. One
approach to automatize this step could be to minimize a sum energies in Equ. (8)
over a set of fixed shapes gained from the learning-based stage with respect to
these parameters. Finally, our experimental results show state-of-the-art accu-
racy and robustness of the proposed algorithm for five different organs on various
unseen data sets.
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