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Purpose: Accurate segmentation of pelvic organs in CT images is of great importance in external

beam radiotherapy for prostate cancer. The aim of this studying is to develop a novel method for

automatic, multiorgan segmentation of the male pelvis.

Methods: The authors’ segmentation method consists of several stages. First, a pretreatment includes

parameterization, principal component analysis (PCA), and an established process of region-specific

hierarchical appearance cluster (RSHAC) model which was executed on the training dataset. After

the preprocessing, online automatic segmentation of new CT images is achieved by combining the

RSHAC model with the PCA-based point distribution model. Fifty pelvic CT from eight prostate

cancer patients were used as the training dataset. From another 20 prostate cancer patients, 210 CT

images were used for independent validation of the segmentation method.

Results: In the training dataset, 15 PCA modes were needed to represent 95% of shape variations

of pelvic organs. When tested on the validation dataset, the authors’ segmentation method had

an average Dice similarity coefficient and mean absolute distance of 0.751 and 0.371 cm, 0.783

and 0.303 cm, 0.573 and 0.604 cm for prostate, bladder, and rectum, respectively. The automated

segmentation process took on average 5 min on a personal computer equipped with Core 2 Duo CPU

of 2.8 GHz and 8 GB RAM.

Conclusions: The authors have developed an efficient and reliable method for automatic segmen-

tation of multiple organs in the male pelvis. This method should be useful for treatment plann-

ing and adaptive replanning for prostate cancer radiotherapy. With this method, the physicist can

improve the work efficiency and stability. C 2016 American Association of Physicists in Medicine.

[http://dx.doi.org/10.1118/1.4962468]
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1. INTRODUCTION

Prostate and bladder cancers are two common cancers in the

male pelvis. In particular, prostate cancer is the most common

cancer and the second leading cause of cancer death among

men in the US.1,2 Radiotherapy is a major treatment modality

for prostate cancer.3 The accuracy of the segmentation for

pelvic organs plays a critical role in maximizing the efficacy

of radiotherapy.

In current practice, the gross tumor volume and

surrounding critical organs are manually delineated on

planning CT images. However, such a manual segmentation

process is both time-consuming and subjective, leading to

large intraobserver and interobserver variations.4 Moreover,

in adaptive radiotherapy, manual segmentation is very time

consuming and instability on daily cone beam computed

tomography (CBCT). For example, in online adaptive

schemes, Ahunbay et al. proposed an online adaptive

replanning method for prostate radiotherapy.5 In light of

these, an automatic or semiautomatic segmentation method of

pelvic organs on CT image is needed to improve the efficiency

and accuracy of the delineation process.

There are two major challenges for the automatic

segmentation of pelvic organs. First, CT images have a

low soft tissue contrast in the pelvis due to the small

intensity differences between organs (see Fig. 1). Therefore,

segmentation solely based on the intensity of the image is

difficult to obtain a reliable result. In the past, several methods

have been proposed to address this challenge for segmentation

in the lung,6–12 heart,13–17 and liver.18–22

The second challenge relates to the changing morphology

of pelvic organs during the treatment course, due to normal
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F. 1. Examples of the pelvic organs show low soft-tissue contrast on CT

image.

physiological activities such as bowel filling and bowel gas,

both on an interfractional basis and intrafractional basis.

Several segmentation methods for the pelvic organs have

been proposed to address the variability of the shape and

appearance of the pelvic organs.23–26 The most popular

category of these methods is the segmentation algorithm

based on the deformation model.27–34 For example, Broadhurst

et al. proposed a deformable model based on the histogram-

statistics appearance model for prostate segmentation.32 Pizer

et al. proposed a medial shape model to segment bladder,

prostate, and rectum from CT images.27 Methods using

deformable models based on the statistical information

extracted from both organ shape and image appearance have

been studied in recent years and these methods showed good

performance for pelvic organs. However, segmentation results

using these methods depend on a good initial model. Another

class of methods is based on the deformable registration.35–37

Liao and Shen et al. presented a method to guide the

deformable registration of prostate CT with an evaluation

function.37 However, as mentioned earlier, the accuracy of

registration-based methods can be unreliable because of the

complex physiological activities in the pelvis.

In recent years, the shape model based on prior knowledge

and machine learning has been widely used in automatic

segmentation of CT images. This type of methods uses a

training dataset as the prior knowledge. The training dataset

is divided into two kinds: population-based and patient-

specific. The method based on the patient-specific model

often has higher segmentation accuracy because the patient-

specific dataset consists of several CT images from the same

patients, and there is a large shape variation between different

patients (see Fig. 2). For example, Stough et al. proposed

a segmentation method based on regional appearance within

a deformable model.38 Feng et al. proposed a segmentation

method based on population and patient-specific statistics for

radiotherapy.30 However, the patient-specific training dataset

requires at least four CT scans from the same patient,

prohibiting its use for the first few daily CT scans. On the

other hand, population-based method can be used for every

CT image during treatment. Nevertheless, these methods have

limited segmentation accuracy.

In this paper, we develop a novel automatic, multiorgan

segmentation method based on CT images of prostate cancer

patients using region-specific shape information. A statistical

point distribution model using principal component analysis

(PCA) is first built based on the training dataset to grossly

F. 2. Sagittal slices from two patients manually contoured by the same

radiation oncologist. Prostate, bladder, and rectum were, respectively, con-

toured by red, green, and blue thick solid curves. The images show that the

organ shapes and appearances are very different among patients. (See color

online version.)

capture the major variation of pelvic organs. A novel

region-specific agglomerative hierarchical cluster model is

established to further improve the segmentation accuracy.

The aim of this study is to present a novel segmentation

method and to evaluate its accuracy on a large number of CT

images.

2. METHODS AND MATERIALS

The method is divided into two main parts. The first part

is the training process which needed to be performed before

the automatic segmentation. And this training process is just

needed once to calculate the point distribution model and

the region-specific hierarchical appearance cluster (RSHAC)

model. The second part is the automatic segmentation part

which mainly includes a coarse and refined segmentation

process. The two models obtained in the training process will

be used to guide the segmentation in this part. The whole flow

chart of this method was shown in Fig. 3.

2.A. Patient data for training and testing

The training dataset included a total of 50 planning CT

scans with a slice size of 512× 512 and 200–400 slices

(average 256) at a voxel resolution of 1.0×1.0×1.5 mm.

The contours of the pelvic organs in the training dataset were

manually delineated by an experienced medical physicist and

reviewed by a radiation oncologist.

The CT images used for validation of the proposed

segmentation method were from another twenty male patients

with prostate cancer: twelve of them were in the early

diagnosis of prostate cancer and the other eight patients

were in the middle stage of the prostate cancer. The planning

CT of these twenty prostate patients was used as the test

data. The manual contour of these planning CTs will serve as

references to test the segmentation accuracy.

2.B. Training process

In the training process, the shape model and appearance

model of the multiple pelvic organs were calculated,

respectively.
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F. 3. The flow chart of the whole method.

2.B.1. Preprocessing of the training data

First, the prostate, bladder, and rectum were manually

delineated slice by slice for the 50 training datasets. And

then one CT image of the 50 training datasets was randomly

selected as the reference image. The rest 49 CT images from

the training dataset were registered to the reference image

using the rigid registration based on the pelvic bone (Fig. 4).

And then the 2D slice-by-slice mesh was then connected to

3D triangular mesh based on “Marching cubes.”39 After the

3D triangular mesh was obtained, the jagged contours were

smoothed using a simple Laplacian smoothing operation by

moving each vertex to the average position with neighboring

vertices.40 The smoothing method was performed with five

iterations. Second, the number of triangles was reduced by

a down-sampling process. The triangle meshes of the pelvic

organs were reduced to 10% of the original mesh size. After

the down-sampling, the vertices’ number of the contour of

each organ was about 3000. Therefore, each contour with

about 3000 points was adjusted to 3000 points by an up-sample

or down-sample. This up- or down-sample was averaged

distributed in the whole contour according to the number of

vertices which were needed to be increased or decreased.

Third, the contour was smoothed again by the same method

of the first step. Finally, due to the volume shrinkage caused

by smoothing, the contour meshes were magnified to the

same volume as the original ones. After all contours of the

data sets were confirmed, each contour was mapped to binary

image after the second rigid registration based on the pelvic

bone between each CT image. The binary images will be well

registered by the free-form deformation registration based on

B-spine.41 The vertex-to-vertex between each two contours

mesh will be found by applying the calculated deformable

field to the contour vertex using tri-liner interpolation (Fig. 5).

And the whole preprocessing was shown in Fig. 6.

The shapes of the pelvic organs were parameterized by the

set of positions of L (L = 3000) contour vertex of each organ.

If we denote
−−−→
x j(i) as the position of the jth point in the ith

CT in the training dataset, then the surface shape vector can

be represented as

pi =

(

−−−→
x1(i),. . .,

−−−−→
xL(i)

)

∈ℜ
3D. (1)

2.B.2. Establishment of a point distribution model
of pelvic organs

In this process, it was assumed that the set of surface shape

vector could be seen as samples from a random process. For

anatomical reasons, displacements of L vertices due to the

deformation of pelvic organs were highly correlated, which

implied that the dimensionality of the multivariate statistical

F. 4. (a) The training dataset containing 50 CT images of pelvic organs. (b) All the pelvic organs were aligned by pelvic bone, and the outline of each color

represents one kind of organs (prostate, bladder, and rectum were contoured by red, green, and blue solid curves, respectively). (See color online version.)
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F. 5. (a) The bladder contours from two patients were mapped to two binary images. The cyan and red represent each image and the white represents the

overlap of these two images. (b) Applying the B-spline free-form deformable registration, the two binary images were well registered. This deformation field

will be applied to contour vertex using tri-liner interpolation. (See color online version.)

problem was actually much smaller than 3× L. For a 3× L

dimensional problem with N (N = 50) samples, we used a

method from multivariate statistics, PCA,42,43 to model the

anatomical shape variation of pelvic organs. The eigenmodes

which represent the shape variation of the pelvic organs will

be used to guide the segmentation of the validation images.

After the parameterization of the pelvic organs in the

training dataset, the geometry of the pelvic organs in image i

(i= 1,. . .,N) was represented by the shape vector pi. According

to the shape vector, the mean vector p0 of the N vector was

first computed by

p0=
1

N

N


i=1

pi. (2)

Next, a covariance matrix C with dimensions 3L × 3L

which represents the shape variation of the pelvic organs was

calculated,

C=
1

N −1

N


i=1

(pi− p0) · (pi− p0)
T . (3)

After the matrix C was obtained, we decomposed the

shapes of the deformed organ by the following formula:

p= p0+

N


n=1

ψnqn, ∥qn∥ = 1, (4)

where qn represent the eigenvectors of the covariance matrix

of the input data p, corresponding to the N eigenvalues

λn. The coefficients ψn were normally distributed random

variables with zero means and the corresponding eigenvalues

λn as variances.

In order to reduce the number of point distribution models,

we need to choose M (M < N) eigenmodes to represent the

deformation pattern of the pelvic organs. The mean residual

error R[M ] was calculated as follows:

P[M ]= p0+

M


n=1

ψnqn, ∥qn∥ = 1, (5)

e[M ]= p[M ]
− p, (6)

R[M ]=
1

N

N


i=1

*
,

1

L

L


l=1

e
[M ]

i, j

+-, (7)

where e
[M ]

i, j
is the 3D vector of local representation error of

the jth vertex and ith contour.

Finally, the number of eigenmodes M = 15 was chosen

such that 95% of the pelvic organs’ shape variation was

described and the mean residual R[M ] close to 0. The

eigenmodes
�
Pj

	
j=1, ...,M

and the corresponding weight matrix�
Tj = qj

	
j=1, ...,M

will be used for the segmentation process on

validation CT images.

F. 6. The preprocessing of modeling with (a) the original 2D slice-by-slice mesh, (b) initial 3D triangular mesh, (c) contour with only one smooth process,

and (d) the final contour with down-sampling and second smoothing.
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F. 7. (a) Pelvic organs were divided into five surface patches on the chosen shape. (b) The patch instance in one slice. In (a) and (b), the five surface patches

were marked by green, yellow, red, purple, and pink, respectively. The overlap areas between each patch were marked by the average color of the corresponding

patch. (See color online version.)

2.B.3. Establishment of an appearance model
of pelvic organs

In order to improve the segmentation accuracy and effi-

ciency, a reliable, region-specific appearance model of pelvic

organs was established, which is the core part of the proposed

method. In this process, each contour of pelvic organ was

divided into five patch surfaces according to the suggestion

of the chosen experienced radiation oncologist. At first, three

radiation oncologists divided each pelvic organ of two chosen

CT volume data into five patches independently. In this chosen

process, the mutual information between two patch areas

was calculated. And then, the mutual information between

each pair of corresponding patch from the two CT data was

calculated and averaged. At last, the radiation oncologist with

the largest average mutual information was chosen to decide

the patch pattern. After the patch pattern was obtained, the

patch pattern was transformed to the 50 CT images of the

training dataset based on the surface mapping vectors obtained

in the preprocessing stage (the patch pattern on one of the

CT images was shown in Fig. 7). For each surface patch,

50 CT images of the dataset which have been divided were

grouped together for hierarchical clustering calculation using

similarity based on the cross-correlation between the different

patches as the figure of merit. In the hierarchical clustering

process, N (N = 50) surfaces were first traded as N clusters.

The distance between each two clusters was calculated using

cross-correlation. The two clusters with the smallest distance

were combined to a new cluster. After then, the number of

the clusters was decreased to N − 1. The average surface

of this new cluster will be calculated as the representative

of this cluster. And then the two clusters with the smallest

distance were combined to a new cluster in the same way.

This clustering calculation will be performed until all the

N original clusters were combined (the number of cluster

decreased to 1). After the clustering calculation was finished,

each cluster was transformed to its corresponding profile

by sampling voxel values along the normal direction of the

contour surface. Finally, an agglomerative hierarchical cluster

tree was established (see Fig. 8). The automatic segmentation

will be performed from the first layer to the last layer of the

agglomerative hierarchical cluster tree. After the segmentation

in first layer, the next layer was chosen based on the similarity

respective between the next two profiles. And the final surface

of this patch will be obtained after the segmentation on the

last layer of the agglomerative hierarchical cluster tree. In

this process, the number of the profiles in the tree was a key

influence of this algorithm. The segmentation results of each

patch will be highly improved when the number of the profiles

was huge enough to include every form of this patch.

2.C. Automatic segmentation on new images

This segmentation method uses principal component

analysis to model organ shapes and hierarchical clustering

to model the appearance of each organ surface patch. Coarse

F. 8. For each surface patch, an agglomerative hierarchical cluster tree for the 50 profiles is calculated using similarity between the profiles as the figure of

merit. (a) The patch pattern reflected by one slice in one of the 50 profiles. (b) The 50 patch surface of one patch region. (c) The agglomerative hierarchical

cluster tree with 50 nodes in the last layer corresponding to the 50 profiles.
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and refined segmentations are done iteratively for each surface

patch to find the best reference patch profile via a hierarchical

cluster decision tree. Final segmentation is obtained using the

generated global reference profile.

The segmentation process on the validation CT images

was divided into three stages. First, a rigid registration was

performed between the validation CT and the chosen CT

image of the training dataset. Second, each patch in the

validation CT was segmented with a coarse segmentation

and a refined segmentation based on the RSHAC and PCA

eigenmodes. Last, the segmentation results of the five patches

were combined to form a new segmented CT image as the

initial segmentation of the whole validation CT [see Fig. 9(a)],

and the final segmentation image was obtained with a coarse

segmentation followed by a refined segmentation process on

the new validation CT just acquired.

The pelvic organ contour of each patch on the validation

CT was initialized after the rigid registration based on the

pelvic bone with one of the CT images in the training

dataset. The initial surface patch of the validation CT will

be the surface patch of the chosen training CT. After the

registration, the contour of the pelvic organs on the validation

CT was initialized to five patch c∗
i=1,2,3,4,5

(�
Pj = 0

	
j=1, ...,M

)

= ci=1,2,3,4,5. For each patch of the validation CT, the most

similar patch in the RSHAC model will be found through

several segmentation processes with two steps of each level

of the tree model [Fig. 9(b)].

During the segmentation process on the RSHAC model,

PCA modes were used as the guidance information in each

segmentation calculation. Besides the deformation pattern

stipulated by the eigenmodes, a cost function Ec based on

the directional gradient field was also needed to measure how

well the deformed contour matched the underlying edge of the

pelvic organs on the validation CT image. For this purpose,

the extra interior and exterior contours of each patch ci,int and

ci,ext were created by shrinking and expanding the vertices

of the initial contour ci=1,2,3,4,5 by 5 mm along the normal

direction to each vertex.

The segmentation of patch No. 1 was chosen as an example

of the segmentation process on the RSHAC model. (The

segmentation of all the five patches was performed in the same

time.) The segmentation contour c∗
1
(P) was deformed starting

from the initial contour c1 by changing
�
Tj = qj

	
j=1, ...,M

which

was the weight matrix of the eigenmodes
�
Pj

	
j=1, ...,M

based

on the PCA modes,

c∗1(P)= c1+T ·P. (8)

At the same time, interior contour candidate c∗
1,int

(P) and

exterior contour candidate c∗
1,ext

(P) were also deformed in the

same way.

The cost function Ec was used to measure how well the

deformed contour matched the underlying edge of the pelvic

organs on the validation CT image. The cost function was

evaluated on the interior, central, and exterior contours to

capture information of the neighborhood of the edge of the

pelvic organs,

Ec =


(|Iref(Cref)− Ival(Cval)|)

=

Num


j=1

(����IR�c1, j

�
− IR

�
c1,int, j

��
−

(

IV
(

c∗1, j (P)
)

− IV
(

c∗1,int, j (P)
)) ���+ ��IR�c1, j

�
− IR

�
c1,ext, j

��
−

(

IV
(

c∗1, j (P)
)

− IV
(

c∗1,ext, j (P)
)) ���

)

, (9)

where Num is the number vertex in this patch. IR(c)

and Iv (c) denote the intensity of the reference image and

F. 9. Flow chart of the automatic segmentation process on the validation CT images. (a) The flow chart of the segmentation process of each patch and five

patches made up the initial segmentation of the pelvic organs. (b) The process of finding the best patch in the agglomerative hierarchical cluster tree. The x-axis

was the sequence number of 50 profiles. The red line is the example of a search path to the most similar patch of the 50 profiles. (See color online version.)
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validation image sampled by the vertex of contour c.�
IR
�
c1, j

�
− IR

�
c1,int, j

��
and

�
IR
�
c1, j

�
− IR

�
c1,ext, j

��
are the direc-

tional gradient values on the jth vertex of the interior and exte-

rior reference contours.
(

IV
(

c∗
1, j
(P)

)

− IV
(

c∗
1,int, j

(P)
))

and
(

IV
(

c∗
1, j
(P)

)

− IV
(

c∗
1,ext, j

(P)
))

are the directional gradients

on the jth vertex of the interior and exterior segmentation

contours.

The optimum shape vector P∗ was selected when the cost

function Ec achieves the smallest value,

P∗= arg min(E |P) Pi ∈ [−3σi,3σi], (10)

where σi is the square root of the eigen value λi. The search

for the optimum shape parameter vector was carried out by a

simplex optimizer within the interval [−3σi,3σi] to minimize

the cost function of Ec.

After the optimum shape vector was obtained, the coarse

segmentation process on this layer of the RSHAC model was

finished. The most similar patch in this layer was found based

on the similarity measure between the segmented validation

patch and each patch of this layer.

However, the RSHAC model was established based on the

training dataset. The similarity patch needs an adjustment to

match the real situation of the validation CT. So a new cost

function of the refined segmentation process was defined and

used to adjust the chosen patch to match the underlying edge

of this patch on the validation CT,

Er = ESimilarity+αECurvature+ βEOverlap, (11)

where ESimilarity denotes the level of similarity between the

validation image and reference image,

ESimilarity=H (V )+H (R)−H (V,R), (12)

where H (V ) and H (R) denote the marginal entropies of

the surface area between the interior and exterior contours

of the validation image and the reference image; H (V,R)

denotes their joint entropy, which is calculated from the joint

histogram of the two surface areas.

In order to constrain the segmentation to be smooth, the

penalty term ECurvature was introduced to regularize the refined

segmentation. The general form of such a penalty term has

been described by Wahba.44 In 3D, the penalty term takes the

following form:

ECurvature =
1

Volume

 X

0

 Y

0

 Z

0


(

∂2TP

∂x2

)2

+

(

∂2TP

∂ y2

)2

+

(

∂2TP

∂z2

)2

+2

(

∂2TP

∂x y

)2

+2

(

∂2TP

∂xz

)2

+ 2

(

∂2TP

∂ y z

)2 dxdydz, (13)

where Volume denotes the volume of the image domain. This

quantity is the 3D counterpart of the 2D bending energy of

a thin-plate of metal and defines a cost function which is

associated with the smoothness of the segmentation.

In order to prevent the possibility of overlapping between

the pelvic organs, a penalty term EOverlap is defined. For two

pelvic organs PO1 and PO2, the EOverlap was defined as the

ratio of the volume of intersection to the volume of union

between PO1 and PO2,

EOverlap=
Volume(PO1∪PO2)

Volume(PO1∩PO2)
, (14)

where EOverlap represent the degree of overlapping between

each two pelvic organs.

After the refined segmentation of patch 1, the segmentation

of one layer in the RSHAC model was finished. This

segmentation process will continue in the next layer until the

most similar patch in the last layer (one of the 50 profiles in

this tree) was found and adjusted. The segmentation of the five

patches was finished at the same time. In the last, preliminary

contour of the whole three pelvic organs c∗(P∗) was obtained

by making the union of the five segmented surface of

corresponding patch. And the overlap areas and holes between

each two patches were averaged and interpolated. The pelvic

organs of the validation CT were accurately localized and

contoured after an adjustment based on c∗(P∗) using ECurvature

and EOverlap.

2.D. Validation of segmentation results

In order to evaluate the performance of this automatic

segmentation, the 210 validation CT images were manually

delineated by an experienced medical physicist. The Dice

similarity coefficient (DSC) between the automated and

manually segmented validation CT images was first chosen

as the evaluation criterion.45 Specifically, DSC is defined as

DSC=
2∗Va∩m

Va+Vm

, (15)

where Va∩m denotes the number of voxels in the overlapping

area between the validation image segmented by the automatic

(a) and the manual (m) methods. Similarly, Va and Vm denote

the number of voxels in the validation image, respectively,

segmented by the automatic (a) and the manual (m) methods.

In order to further access the performance of this method,

the mean absolute distance (MAD) was also calculated. The

MAD is the average of absolute differences between each

value in a dataset and the average value of this dataset. In the

F. 10. The integral of the eigenvalues for the training dataset as a function

of the number of PCA modes. The sum of all eigenvalues was normalized to

100%. The square column which represents the 15th eigenmodes was marked

by a green circle.
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F. 11. The automatically segmented pelvic organ contour (red, green, and blue thick solid curves) and manually delineated contours of the pelvic organs

(yellow thick solid curves) were overlaid on a sagittal section of a validation CT image. (See color online version.)

validation process, the dataset used for the calculation of MAD

consists of the surface distance (SD) between the automated

and manual segmentation results. The SD is calculated by

the distance between the surfaces of each pelvic organ of

the manual and automated segmentation images along 1000

rays directed to the spherical surface from the centroid of

the manually contoured validation CT. The results of the

evaluation will be introduced in Sec. 3.

3. EXPERIMENT RESULTS

We first determined the number of eigenmodes required

in the PCA point distribution model. In order for the PCA

model to accurately represent the deformation pattern of the

pelvic organs, the average residual errors need to be controlled

within 1 mm. At the same time, the number of eigenmodes

needs to be as small as possible to minimize overfitting and

reduce computational complexity. In Fig. 10, we can see 15

eigenmodes represented more than 95% (95.2%) of the pelvic

organs’ shape variation. So we chose 15 eigenmodes for the

segmentation process to balance the accuracy and efficiency.

The whole process of the automatic segmentation process

took on average 5 min on a personal computer equipped with

Core 2 Duo CPU of 2.8 GHz and 8 GB RAM. An example

was shown in Fig. 11, the comparison between automatically

and manually segmented contours.

In order to quantify the accuracy of the automatic segmenta-

tion method on the validation dataset, we showed the average

DSC value of each patient. The average test values of these

patients were shown by histogram in Fig. 12 (after ordering).

And the average MAD of each patient was shown in Fig. 13.

The automatic segmentation results of the prostate and

bladder agreed well with those based on manual segmentation.

The average DSC of the prostate is 0.751 (range: 0.697

and 0.834). Our segmentation results of the prostate were

consistent across patients with the maximum difference of

0.137 in terms of DSC, suggesting its robustness against

differences of the prostate anatomy. The performance in the

case bladder was slightly better, with an average DSC of

0.783, and sixty percent of the DSC value of the bladder

was over 0.80. However, the segmentation of the rectum

was not as good, with the average DSC being only 0.573,

and the highest DSC value being less than 0.70. The spatial

discrepancy based on MAD showed a similar trend. As

mentioned earlier, many methods have been proposed about

the automatic segmentation of the pelvic organs in the CT of

prostate cancer. In order to intuitively contrast these methods,

the parameters of these methods were shown in Table I.

In Table I, the results of our method were not the best

because our method is very dependent on the size of the

training dataset. But the increase of the size of the training

dataset also results to the biggest improvement on our method.

And our method is very suitable for the medical big data

which is very popular in recent years. Our method can

get huge promotion based on this research. Furthermore, to

achieve better contrast effect, 52 CT images from five patients

were manually delineated by another physicist. The average

MAD of each patient between the pelvic contours from two

physicists was calculated and shown in Fig. 14.

F. 12. The DSC of prostate (blue), bladder (orange), and rectum (gray) for twenty patients. (See color online version.)
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F. 13. The average MAD of prostate (blue), bladder (orange), and rectum (gray) for twenty patients. (See color online version.)

Through Fig. 14, we can see that the average MAD of

prostate and bladder was little better than us. But due to the

large physiological changes of the rectum, the MAD values of

rectum were also unsatisfactory. The overall average MAD of

the 52 CT was 0.601 cm which was almost the same with us.

4. DISCUSSION

In this paper, we presented a novel automatic, multiorgan

segmentation method based on CT images of prostate cancer

patients. We validated the accuracy and robustness of the

method using a large number of CT images from a new

group of patients independent of the training dataset. The key

contributing factor to the success of our method is the region-

specific agglomerative hierarchical cluster model for refining

the result on top of the PCA-based gross segmentation.

The segmentation accuracy without this fine-tuning process

decreased sharply with the average DSC being only 0.567.

The relatively lower segmentation accuracy for rectum

compared with prostate and bladder is likely due to the large

variations between each situation of the rectum (mainly bowl

filling and bowl gas). The relatively small size of our training

dataset (50 CT images of eight patients) may not be sufficient

to capture all the possible changes of the rectum. Also, the

manual contour of rectum is highly variable between different

observers given a decreased soft-tissue contrast near the colon

and rectum interface, which may contribute to the lower

accuracy.

In previous work, Davis et al. proposed a method based on

patient-specific registration,35 with a mean DSC slightly better

than ours. However, this method was based on the patient-

specific database, so it cannot segment the first few CT scans

during treatment. Further, like most previous methods, their

method was used for segmentation of prostate only. On the

contrary, our method does not have the imposed restriction of

training dataset and we can segment the prostate, bladder, and

rectum at the same time.

This method was based on a hypothesis that the surface

contours of each patch area in the validation CT image could

be found in the RSHAC model when the training data set was

large enough. So the segmentation accuracy in this study was

limited by two main points. The first point is the rationality

of the patch pattern based on the experience of doctors. The

patch pattern in this study was limited by the opinions from

doctors and the performance of the work station. So the patch

pattern in this study was just the optimal pattern in these

limitations. And that was why the EOverlap was used in the cost

function while the patch in this patch pattern had overlap areas

because the optimal segmentation results should have little

overlap areas between each patch contour. The second point

is the size of the training data set. The training data with 50

CT images in this study were far not large enough to include

all the shapes of each patch area. Even so, the DSC values

in this study were still around 80%. The segmentation result

could already use as reference samples to help the physicists

to speed up their work.

So there are mainly three ways to improve the accuracy

of the segmentation results. The first way is increasing the

diversity of the alternative patch pattern and improving the

performance of the workstation to unfreeze the limitation of

the patch number. The second way is expanding the training

dataset. The diversity of the pelvic organ variations can be

better represented by the RSHAC model with the expanded

training dataset. For a single patient, the third way is changing

the region-specific model from population based to specific

T I. The comparison of different methods.

Method

Gao et al.

(Ref. 24)

Gao et al.

(Ref. 28)

Shao et al.

(Ref. 29)

Feng et al.

(Ref. 30)

Our

method

Prostate
Mean DSC 0.87± 0.04 0.86± 0.05 0.88 ± 0.02 0.89 ± 0.05 0.75 ± 0.07

Mean MAD (cm) NA NA NA NA 0.37

Bladder
Mean DSC 0.92± 0.05 0.91± 0.10 0.86 ± 0.08 NA 0.78 ± 0.08

Mean MAD (cm) NA NA NA NA 0.303

Rectum
Mean DSC 0.88± 0.05 0.79± 0.20 0.84 ± 0.05 NA 0.57 ± 0.08

Mean MAD (cm) NA NA NA NA 0.604
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F. 14. The average MAD of five patients between the pelvic contours from

two physicists.

patient based. Along with the increased number of daily

CT images which from the same patient become available

in fractionated radiotherapy, a new RSHAC model can be

established, which will be only used for the segmentation of

the specific patient.

For future work, we plan to develop a web-based plat-

form to streamline image visualization, segmentation, and

validation on a large database. Finally, we note that even

with suboptimal results in certain patients, the automatic

segmentation of the prostate, bladder, and rectum can be a

good starting point for the subsequent manual delineation.

5. CONCLUSION

We have presented a novel method for automatic, multi-

organ segmentation based on CT images of the male pelvis.

We combined the PCA-based point distribution model with

RSHAC model to achieve accurate, robust, and efficient

automatic segmentation of multiple pelvic organs on CT

images. This method should be useful in future radiation

treatment planning and adaptive radiotherapy for prostate

cancer.
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