
Research Article

Automatic NoSQL to Relational Database Transformation with
Dynamic Schema Mapping

Zain Aftab,1Waheed Iqbal ,1 Khaled Mohamad Almustafa,2 Faisal Bukhari,1

and Muhammad Abdullah 1

1Punjab University College of Information Technology (PUCIT), University of the Punjab, Lahore, Pakistan
2College of Computer and Information Sciences, Prince Sultan University Riyadh, 11586 Riyadh, Saudi Arabia

Correspondence should be addressed to Waheed Iqbal; waheed.iqbal@pucit.edu.pk

Received 19 March 2020; Revised 2 June 2020; Accepted 5 June 2020; Published 1 July 2020

Academic Editor: Shah Nazir

Copyright © 2020 Zain Aftab et al. .is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recently, the use of NoSQL databases has grown to manage unstructured data for applications to ensure performance and
scalability. However, many organizations prefer to transfer data from an operational NoSQL database to a SQL-based relational
database for using existing tools for business intelligence, analytics, decision making, and reporting. .e existing methods of
NoSQL to relational database transformation require manual schema mapping, which requires domain expertise and consumes
noticeable time. .erefore, an efficient and automatic method is needed to transform an unstructured NoSQL database into a
structured database. In this paper, we proposed and evaluated an efficient method to transform a NoSQL database into a relational
database automatically. In our experimental evaluation, we used MongoDB as a NoSQL database, and MySQL and PostgreSQL as
relational databases to perform transformation tasks for different dataset sizes. We observed excellent performance, compared to
the existing state-of-the-art methods, in transforming data from a NoSQL database into a relational database.

1. Introduction

Traditional SQL-based relational database management
systems (RDBMS) are famous due to efficient data man-
agement and ACID (atomicity, consistency, isolation, du-
rability) properties. However, ACID properties restrict the
ability of RDBMS to offer high scalability. Recently, the use
of NoSQL databases has increased with cloud-based and
large-scale applications as compared to traditional relational
databases. Nonrelational databases support the management
of structured, unstructured, and semistructured data in a
nontabular form to offer more flexibility in handling big data
efficiently [1]. Moreover, these databases are cost effective,
highly available, schemaless, and scalable for managing
massive data [2–5]. .e schemalessness feature of NoSQL
databases allows exceptional flexibility in managing het-
erogeneous data by allowing a different structure for each
record, which also saves the time required to define the
schema. Due to the schema flexibility, many companies
adopted NoSQL databases for their data warehouses [6–8].

.ese features are attractive; however, most of the NoSQL
databases offer eventual consistency instead of strong
consistency. Many applications can afford to relax consis-
tency for a short period; for example, social networks, an-
alytic services, and data collection applications using sensors
can afford a few milliseconds delay before the data propagate
to all nodes. .e eventual consistency model ensures that the
updates are spread to all nodes within a specific time interval
to ensure data consistency [9, 10].

ETL (extract, transform, load) tools are commonly used
to extract data from a source database, transform it into the
destination format, and then load the data into the desti-
nation database [11, 12]. .e extract method involves
fetching data from the source, which should be correct and
accurate as the subsequent processes depend on it [13]. .e
transform phase follows a series of complicated data
cleaning and conversion rules to prepare the data to be
loaded to the destination format [14]. .e transformation
method in ETL is the most critical part, which requires
complex validations to ensure schema differences in the

Hindawi
Scientific Programming
Volume 2020, Article ID 8813350, 13 pages
https://doi.org/10.1155/2020/8813350

mailto:waheed.iqbal@pucit.edu.pk
https://orcid.org/0000-0002-1612-8549
https://orcid.org/0000-0002-3151-558X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8813350


source and destination databases [13]. Mostly, domain ex-
perts having expertise on the source and destination data-
bases are needed to supervise the transformation method to
ensure proper data transformation, which is costly for many
organizations [15]. .e loading phase pushes the data to the
destination source. .e loading is relatively more straight-
forward process as it requires connecting with destination
sources and dispatching data in batches. One of the most
famous and industry practical ETL tools is Talend Open
Studio (TOS) (https://www.talend.com/products/talend-
open-studio/), which also offers NoSQL to SQL data
transformation [16, 17]. However, TOS requires manual
schema mapping, which is very difficult in the case of
NoSQL, as most of these are schemaless and, in part, in-
troduce challenges to the manual identification of the
schema.

NoSQL databases have many advantages over relational
databases; however, there are a few disadvantages. For ex-
ample, these databases lack a standard interface and query
language to manage data efficiently. Moreover, flexibility in
schema introduces challenges to “extraction and transfor-
mation” methods for ETL tasks. NoSQL databases do not
support joins and have no OLTP (online transaction pro-
cessing) support, like SQL databases, which makes it chal-
lenging to perform complex analysis [18]. With the increase in
data, the big data warehouses are being developed and re-
quiring data from NoSQL data sources, and with these big
data warehouses, the need for ETL tools is increasing. Many
tools that perform ETL from SQL database to NoSQL da-
tabase are available [19]; however, there are very few tools that
can be used for the NoSQL database to SQL database ETL
process. .ese tools require schema of the NoSQL database to
work and execute queries sequentially, which makes them
slow. .e schema identification from a NoSQL database is one
of the big problems due to the schemaless nature of NoSQL
databases [20, 21]. Manual identification of the NoSQL da-
tabase schema is a complicated, time-consuming, erroneous
task and, therefore, is an expensive process. Hence, automatic
schema discovery and mapping are essential. .ese issues give
rise to the need for an ETL method that could automatically
identify schema from the NoSQL database and perform ETL
rapidly in a parallel manner.

In this paper, we proposed and evaluated an efficient
ETL method for performing NoSQL to relational database
migration automatically, which is capable of mapping
schema from source NoSQL to destination RDBMS dy-
namically. .e proposed solution requires a source NoSQL
database and a destination RDBMS database to begin the
ETL task. .e system extracts the source data and then
dynamically identifies the schema to populate it to the
destination RDBMS. Once the extraction is completed, the
system transforms the data into destination format and fi-
nally loads the data in batches. .e proposed ETL tool can be
easily used by non-ETL professionals to perform NoSQL to
SQL data transformation with minimum cost, effort, and
time. Our experimental evaluation using different sizes of
NoSQL databases shows excellent performance compared to
the ETL tool used in the industry. .e main contributions of
this paper include the following:

(1) Development of an efficient and automatic ETL
method for NoSQL to relational database
transformation

(2) Automatic schema identification of the given source
NoSQL database and mapping it to a given desti-
nation relational database

(3) Performance evaluation of the proposed solution
using multiple sizes of different NoSQL databases

(4) Comparison of the proposed system with existing
state-of-the-art Talend Open Studio in terms of
NoSQL to relational database ETL tasks

(5) Use of multiple relational database implementations
in the evaluation to validate the performance of the
proposed method

.e rest of the paper is organized as follows. Related
work is presented in Section 2. We provide the details of the
proposed system in Section 3. .e experimental design and
setup are discussed in Section 4. Evaluations and results are
presented in Section 5. Finally, conclusions and future work
are discussed in Section 6.

2. Related Work

NoSQL databases are attraction attention because of flexible
schema and high scalability features [22–24]. Some re-
searchers have the problem of schema identification in
document-based NoSQL databases [21]. .e document-
based NoSQL databases store data in JSON format because
of the flexibility of this format [25]. Due to this flexibility in
storing data, identifying schema from JSON files is a
complex task. Izquierdo and Cabot [26] proposed a model-
based approach, in which the overall schema is inferred from
a small set of documents, and a model is generated based on
that inference. Frozza et al. [27] introduced an algorithm
that analyzes the schema from the document-based NoSQL
database (MongoDB was chosen in their paper) [27].
However, the proposed algorithm does not consider the
heterogeneity of data type against the same key in different
documents; also, the algorithm is not efficient.

Many researchers have compared NoSQL and RDBMS
databases. For example, Li and Manoharan [5] presented a
survey on different NoSQL and SQL databases and com-
pared their different aspects, including reading, writing, and
deleting operations; the authors also discussed the benefits of
NoSQL. Shim [28] discussed the CAP theorem; on its basis, a
NoSQL database can only provide any of the two charac-
teristics of consistency, availability, and performance.
Brewer [29] stated the details of the CAP theorem and gave a
proposition, in which, to configure the database, one can
make a trade-off between the three CAP characteristics to
allow a NoSQL database to have all the three characteristics
of consistency, availability, and performance together.
Boicea et al. [30] also presented a survey, in which they
compare the syntax, speed, and features of MongoDB with
Oracle, where MongoDB does not support OLTP and joins,
whereas these are the key properties of SQL-based databases.
Okman et al. [31] also presented a survey on the security

2 Scientific Programming

https://www.talend.com/products/talend-open-studio/
https://www.talend.com/products/talend-open-studio/


issues of NoSQL databases. .e authors discussed the dif-
ferent security issues of MongoDB and Cassandra DB. Pore
and Pawar [32] presented a survey, in which they discussed
differences between SQL and NoSQL databases, highlighting
the different properties supported by the SQL and not by
NoSQL, such as ACID properties, transactions support,
schema, and normalization.

ETL tools are widely used in data warehousing, where
data are aggregated from different sources to perform data
analytics. Ordonez et al. [33] discussed the integration of
unstructured data into a relational data warehouse for
better analytics and reporting. Gour et al. [34] improved
the ETL process in data warehouses and listed some
challenges to the improvement of the ETL processes.
Skoutas and Simitsis [35] presented the concept of au-
tomatic designing of ETL processes using attribute
mapping and identification of ETL transformations using
semantic web technologies. Bergamaschi et al. [36] pro-
posed a tool for the semantic mapping of the attributes
from heterogeneous data sources by identifying the
similarity of source schema to the data warehouse schema,
which helps add the new data source to the already
existing data warehouse. Bansal [37] proposed a frame-
work for semantic ETL big data integration, which needs a
manual ontologies creation. Prasser et al. [38] presented
the anonymization of data in the ETL process of the
biomedical data warehouse, and a plugin for the Pentaho
Data Integration tool was built [39], which allows for data
anonymization integration into the ETL processes and
supports extensive data sources by using the stream-based
processing of Pentaho.

Building solutions for data transformations between
different sources is a hot topic. Ramzan et al. [40] proposed a
data transformation and cleaning module to migrate data
from a relational database to NoSQL-based databases.
Kuszera et al. [41] presented a MapReduce method to mi-
grate relational databases to NoSQL-based document and
column family stores. Sellami et al. [42] proposed a set of
rules for the automatic transformation of data warehouse
into graph-based NoSQL stores. Hanine et al. [43] proposed
and developed a sample application, which is used to migrate
the data from RDBMS to NoSQL databases; the advantages
of NoSQL over the SQL databases were discussed. Yangui
et al. [44] proposed an ETL tool to transform the multi-
dimensional data model into a NoSQL-based document
store.

Nowadays, many tools are available for processing raw
data by cleaning and transforming it into a specific desti-
nation format [45, 46]. Song et al. [47] discussed and
reviewed the techniques used to transform XML data into a
relational database. Zhu et al. [48] proposed an efficient
transformation method of XML-based data into a relational
database by analyzing complex XML schema. Many IT
companies, including IBM, Informatica, Pervasive, Mongo
Labs, Talend, and Pentaho, developed their ETL tools
(http://www.jonathanlevin.co.uk/2008/03/open-source-etl-
tools-vs-commerical-etl.html), which are specific to a given
technology and require manual configurations and expertise
to perform the ETL tasks.

.ere have been very few efforts to build NoSQL to
relational database ETL techniques. Maity et al. [49] pro-
posed a generic framework to transform NoSQL to relational
store; however, the work required manual schema identi-
fication and also the efficiency of the system was not dis-
cussed. Some existing tools can also be used for NoSQL to
relational database ETL tasks, but these tools also require
manual schema mapping. In this paper, we propose and
evaluate an efficient ETL tool for NoSQL to relational da-
tabase transformation, which is capable of identifying the
schema of NoSQL database automatically and then loading
the data into SQL-based relational database efficiently.

3. Proposed System

3.1. Overview. .e proposed system dynamically identifies
schema and then extracts, transforms, and loads the data
from NoSQL to a relational database. It is illustrated in
Figure 1. .e system workflow consists of the following
steps:

(1) A new NoSQL to SQL ETL job is submitted to the Job
Manager, which invokes the integrated Schema
Analyzer to identify the schema from the source
NoSQL database. .e Schema Analyzer forwards the
schema in JavaScript Object Notation (JSON) for-
mat. We explain the Schema Analyzer in Section 3.2.

(2) .e JSON schema file is parsed and converted into a
SQL query according to the destination database
format for database creation, as will be explained in
Section 3.3.

(3) After SQL database schema creation, the ETL pro-
cesses are initiated for parallel processing of the data
from NoSQL to SQL; the initiation of ETL processes
will be explained in Section 3.4.

(4) ETL processes extract the data from the source
database in batches; after extraction, data is pro-
cessed to create queries in the format of the desti-
nation database, and then data is loaded to the
destination database concurrently; the transforma-
tion from source to destination database will be
explained in more detail in Section 3.5.

3.2. Schema Analyzer. .e automated schema detection of
NoSQL databases is a challenging task, and the proposed
system achieves it automatically to create the destination
SQL database schema. For this, we have used an open-
source tool named Variety (https://github.com/variety/
variety), a Schema Analyzer for MongoDB. Variety is
developed to extract the schema of one collection at a
time. To integrate it into our proposed system, we au-
tomated it to go over each collection in the NoSQL da-
tabase and produce a schema in JSON format. MongoDB
is a document-based database, which stores records in
JSON format with great flexibility and without any re-
striction on the data type of values in the documents,
where challenges to data processing for identifying the
schema will be introduced. Moreover, data type restriction

Scientific Programming 3

http://www.jonathanlevin.co.uk/2008/03/open-source-etl-tools-vs-commerical-etl.html
http://www.jonathanlevin.co.uk/2008/03/open-source-etl-tools-vs-commerical-etl.html
https://github.com/variety/variety
https://github.com/variety/variety


on keys is not constrained in Variety. For example, one
JSON document may have a key with a value type of
number, and another document in the same collection
could have the same key with a value of type string.
.erefore, the key names in different documents may be
the same while containing different types of data. .is
kind of heterogeneity in MongoDB documents requires
some special handling. We have customized and relaxed
the data type validation in the Variety tool to speed up the
overall schema analysis process.

Algorithm 1 shows the overall strategy of the proposed
Schema Analyzer for a single collection. .e Schema An-
alyzer goes over each collection and identifies the required
schema to be created in a relational database. Once the
schema is identified, ETL processes are invoked to start
performing transformation according to the received
schema. .e Schema Analyzer iterates over the NoSQL
database collection, analyzing and recording all the distinct
keys, and then outputs the schema in JSON format, which in
part will be forwarded to the ETL processes. If a key has a
value of type JSON document, or JSON array, it is then
further parsed until a given depth (discussed in Section 3.3).
.e isDocument function receives the value against given
key in a record; it returns true if the data type of value is a
JSON object; otherwise, it returns false. In the same way,
isArray receives the value of the key in the record and
returns true if its data type is JSON array and false otherwise.
Functions parseDocument and parseArray are written to
perform the parsing of internal JSON documents/arrays
recursively.

.e asymptotic time complexity of Algorithm 1 is
Ο(r× c), where r is the number of records, c is the number of
columns in each record, and utility functions (isArray and
isDocument) used in the algorithm are considered to
consume constant time.

By default, MySQL and PostgreSQL provide support for
inserting data using JSON format. For example, a new
column type JSON is introduced in relational databases to
store the entire JSON in one column. .e stored JSON, a
column, can be queried, but the performance of such queries
for a large number of records is not good. Moreover, some
utilities are also provided to import JSON documents;
however, these utilities do not automatically create a schema
and also do not address data type heterogeneity of the same
keys in different documents. However, our proposed solu-
tion automatically creates the schema by analyzing JSON
documents and also addresses the issue of data type
heterogeneity.

3.3. Database Creation. .e Schema Analyzer produces a
schema in JSON format, which the system parses to build
SQL queries for database and table creation. .e queries are
executed in the destination SQL database to create a database
schema. In JSON, the objects are nested and also contain
arrays. We dynamically parse those to create parent and
child tables. After creating the tables, the remaining iden-
tification keys are parsed as respective columns of the tables,
and the primary key is set to be _id, which is the default
document ObjectId in a MongoDB collection. All the tables

Jobs manager

NoSQL source Destination

ETL processes

1. ETL job
request

2. Invoke
3. Request
documents

4. Receive
documents

5. Create
schema

8. Receive
batch

6. Forward
schema

7. Request
batch

9. Load batch

SQL
Schema
analyzer

Figure 1: Proposed system overview.

4 Scientific Programming



created for internal documents and arrays have their pri-
mary keys as auto-increment integer ids along with id of the
main document. In our proposed system, we can configure
JSON parsing for k internal levels; however, in our exper-
imental evaluation, we used k� 2 to identify two levels of
internal hierarchies in each JSON object. Figure 2 displays an
example of JSON document in which the system dynami-
cally parse to create SQL schema.

3.4. ETL Process Initiation. We implemented our ETL
process in Node.js programming language and employed its
Cluster (https://nodejs.org/api/cluster.html) package for
initiating concurrent processes for ETL jobs. All processes
are initialized by the master process to perform ETL. .e
master process dynamically distributes the work to each
worker process. Once each process received its start point
and limit of data by the master process, the data extraction is
started.

Algorithm 2 shows the initiation of ETL processes. .e
master process is responsible for initiating the execution of
standalone ETL processes. Each ETL process starts after
receiving its individual logical partition information and
connection information of MongoDB source as well as its
MySQL/PostgreSQL destination. .e master process uses
the MongoDB connection information along with the col-
lection name to process and identify the schema. .e
function initialize_schema takes the JSON schema of a
collection as input and parses it to create a relational da-
tabase schema using SQL queries. .e variable limit rep-
resents the number of documents/records which are used to
delegate the work the worker processes to perform the ETL.
.e master process is responsible for initializing schema in
the destination database as it must be done before the ex-
ecution of ETL processes. .e system is capable of using n
worker processes for the ETL job. In our experimental
evaluation, we identified the optimal value of n to be used for
improving the overall ETL job execution time. .e identi-
fication of n is explained in Section 3.4.1.

.e asymptotic time complexity of Algorithm 2 is
O(n× l), where n is the number of processes and l is the time
consumed by the function create_process, whereas other
utility functions including createConnections and ini-

tialize_schema consume constant time.

3.4.1. Identifying Number of Worker Processes (n). .e
proposed ETL system uses multiple concurrent worker
processes for each ETL job. We evaluate the MongoDB to
MySQL ETL job for a different number of worker processes
(n). We used n� 2 to 20, where n is the number of pro-
cesses, and repeated each experiment three times. Figure 3
shows the average ETL execution time for using the dif-
ferent number of worker processes. Our proposed system
shows the minimum time with n� 8 processes. .erefore,
we used eight worker processes in our experimental
evaluation.

3.5. Transformation and Loading. Each ETL process trans-
forms the data from source database to destination con-
currently. Figure 4 shows the workflow of the ETL process.
Each process extracts data from the source NoSQL database
in JSON format and sends it to the parser. .e Data Parser
parses the JSON data and forwards it to the Query Builder.
.e Query Builder receives the parsed data and starts to
create insertion queries, in accordance with the schema of
the MongoDB collection, in the format required by the
destination database. After the Query Builder creates a batch
insert query for the received data, it then forwards this query
to the Query Executor. .e Query Executor loads the data
into the destination SQL database.

Input: MongoDB collection (collection)
Output: Schema of collection in JSON format (schema)
foreach record r Є collection do

foreach column_name c Є r do
schema⟵ schema ∪ c
if isDocument(r[“c”]) then

parseDocument(r[“c”])
else if isArray(r[“c”]) then

parseArray(r[“c”])
end

end

ALGORITHM 1: Schema Analyzer strategy.

"_id":ObjectId("602f153e811c19417ae260ea"),
"Key1":"Simple Key",
"Key2":123,
"IDoc":{

"key1":"internal document key",
"key2":1

},
"IArr":[

"k2":"another internal array key"

"k1":"internal array key"
{

{
},

}
]

}

{

Figure 2: A JSON document used for parsing and creating SQL
queries.

Scientific Programming 5

https://nodejs.org/api/cluster.html


Algorithm 3 shows the pseudocode for transformation
and loading steps in the proposed system. Each ETL process
opens connections with the source MongoDB and desti-
nation SQL database. .en, the database records are read in
batches from the source database, and then the corre-
sponding SQL queries are created for the retrieved NoSQL

records. .is is done by the createQuery function. .e
createQuery function reads the document from the Mon-
goDB database and then parses the document, including its
subdocuments and subarrays to create a query, using the
parsed document data, for each subdocument and subarray.
.e set of queries made from the received document’s data

Input: SQL DB info (dest), Processes count (n), MongoDB connection info (info), collection name (collname), MongoDB schema
(schema)
Output: Successful processes initiation
db⟵ createConnection(info)
initialize_schema(schema)
length⟵ db.getCollection(collname).count()
limit⟵ (length/n)
for j⟵ 0 to n do

start⟵ (length/n)∗ j
if j� n then

limit⟵ length− start
create_process(info, dest, schema, start, limit)

end

ALGORITHM 2: Processes initiation.

160

155

150

145

140

135

130

125

A
ve

ra
ge

 t
im

e 
(s

ec
)

5 10 15 20

No. of processes

Figure 3: Average ETL job from MongoDB to MySQL execution time for a different number of worker processes (n).

>_

SQL

Data parser

Source

Query builder Query executor

Destination

1. Extraction in batches

2. Parsed data 3. Queries

4. Load to SQL

Process internal work�ow (transformation)

Figure 4: Single process workflow in proposed method.

6 Scientific Programming



are then added to the already created queries for batch
execution. Finally, the batch of queries are then executed at
the destination RDBMS. .is process continues until
complete NoSQL data is not transformed and loaded into
the SQL database. .is is done by each ETL process for its
logical partition.

.e asymptotic time complexity of Algorithm 3 is
O(b× l), where b is the batch size and l is the maximum limit.
In the algorithm n� b× l represents the total number of
iterations required to complete the given ETL task. .e
utility functions createConnections, readBatch, and
createQuery are constant time functions.

4. Experimental Design and Setup

We evaluated all experiments on a Core i7 machine with an
octa-core CPU, 16 GB physical memory, and 2TB hard disk
running Ubuntu 14.04 (x64) operating system. In the fol-
lowing subsections, we briefly explain the baseline method,
dataset generation, and experimental design used in the
proposed system evaluation.

4.1. Baseline ETLMethod. We used an open-source big data
transformation tool, Talend Open Studio (TOS), for NoSQL
to SQL data transformation as the baseline tool to compare
the proposed solution. TOS is a business intelligence tool
providing various components for use in ETL jobs, and it is
very famous in the industry. It provides a graphical user
interface (GUI) for the creation of jobs, selection of different
components, and definition of the flow of jobs by connecting
the components. TOS automatically generates the Java-
based code based on a manually created configuration.

We have selected TOS as a baseline because it is a free
and open-source business intelligence tool. It provides a
wide variety of components that can be used to perform
business analytics for better business decision making. It is
one of the most widely used business intelligence tools in the
market. Talend was recognized as the market leader in 2019
by Gartner Magic Quadrant for data integration tools. Since
it is widely used for ETL processing, it was one of the best
choices as a baseline for comparison with our proposed
system. In our experimental evaluation, we have configured
TOS to use multithreaded executions to perform the ETL
tasks.

In evaluations, we used different components of TOS
including tMongoConnection, tExtractJSONFields,
MongoDBExtract, tMap, tMySQLInput, tMySQLOutput,
tPostgresqlInput, and tPostgresqlOutput for de-
signing the two jobs. Figure 5 shows the configuration of the
MongoDB to MySQL ETL job using TOS interface.

4.2. Dataset Generation. To evaluate our proposed method,
datasets with different number of documents for MongoDB
were generated with 100k, 500k, 1000k, and 5000k records in
the NoSQL database (MongoDB collections). Each dataset
was generated in the JSON format for MongoDB using the
Faker.js package of Node.js (https://www.npmjs.com/
package/faker). Faker.js provides multiple helper functions

for generating meaningful data for experimentation. We
build a data generator that uses various helper functions
provided by Faker.js for data generation. Each helper
function provided by Faker.js is able to generate a JSON
object with particular set of key-value pairs. No two helper
functions can generate a JSON document object containing
the same keys and JSON object structure. We have used
three different helper functions of Faker.js to generate
records in each dataset. .is ensured heterogeneity in the
dataset. .e datasets are generated using a data generator
(Faker.js). .e following different collections/databases are
generated to evaluate the proposed system:

(1) transaction: it contains amount, date, business,
name, type, and account keys

(2) userCard: it contains name, userName, e-mail,
phone, website, subdocument address (street, suite,
city, zipCode, and subdocument geo (longitude,
latitude)), and subdocument company (name, catch
phrase, and bs) keys

(3) contextualCard: it contains name, userName, avatar
url, e-mail, dateofbirth, phoneNumber, website url,
and subdocument address (streetName, secondar-
yAddress, city, zipCode, and subdocument geo
(latitude, longitude)), and subdocument company
(company name, catch phrase, and bs) keys

Each dataset is generated using the transaction, user-
Card, and contextualCard helper functions of the Faker.js in
order to randomly generate meaningful data. .is way of
data generation ensures that each dataset has heterogeneous
record schema. Figure 6 shows the relational tables (schema)
for different JSON documents identified using the proposed
Schema Analyzer.

4.3. Experimental Design. We evaluated our proposed
NoSQL to SQL data transformation solution in two different
experiments using MongoDB as a NoSQL source database
and using two different destination SQL databases. Table 1
shows a summary of the conducted experiments.

In Experiment 1, we profile the execution time of
MongoDB to MySQL ETL job using the proposed method
and then compare the results with the job execution time
using the baseline tool.

In Experiment 2, we profile the execution time of
MongoDB to PostgreSQL ETL job using the proposed
method and then compare it with the job execution time
using a baseline ETL tool. In both experiments, we used a
database with 100k, 500k, 1000k, and 5000k records to
perform ETL jobs. Each experiment is repeated three times.

5. Evaluation and Results

5.1. SchemaDetectionEvaluation. We evaluate our proposed
method by repeating each experiment three times. In each
iteration of experiments, the schema detection is performed
using the proposed Schema Analyzer. .e Schema Analyzer
analyzes the documents of the database and generates the
schema in a JSON format, as explained in Section 3.2. Table 2

Scientific Programming 7

https://www.npmjs.com/package/faker
https://www.npmjs.com/package/faker


shows the schema analysis time for each dataset with 100k,
500k, 1000k, and 5000k database records. .e schema de-
tection time increases with the increase in the number of
records in the dataset. Schema detection takes on average
5.39, 32.45, 51.23, and 257.60 seconds of each iteration of the
experiment using 100k, 500k, 1000k, and 5000k database
records, respectively. .e result shows that the proposed
schema detection method is efficient as it takes only
4.29minutes for 5000k records to analyze and identify the
schema for a large NoSQL database.

5.2. Experimental Results. In each iteration of experiments,
we profile the execution time of the proposed ETL method,
using MongoDB as a source and using MySQL and
PostgreSQL as two separate destination databases, and
compare it with the baseline method. We use 100k, 500k,
1000k, and 5000k database records for the ETL. Table 3
shows the ETL time required in each iteration of Experi-
ment 1 and Experiment 2 for the proposed and baseline
methods with the different record sizes. Our proposed
method takes significantly less time using the record sizes
500k, 1000k, and 5000k in each iteration of the experiment
as compared to the baseline method, for both MySQL and
PostgreSQL databases as a destination. For 100k record

size, two iterations of each experiment using the proposed
method take less time as compared to the baseline; how-
ever, one iteration of Experiments 1 and 2 takes 0.86- and
0.31-second extra time using the proposed method as
compared to the baseline method. Overall, the proposed
method takes significantly less time as compared to the
baseline. Moreover, we observe that the ETL from Mon-
goDB to PostgreSQL is more efficient as compared to the
ETL from MongoDB to MySQL.

Figure 7 shows the relative comparison of the proposed
method with the baseline using different dataset sizes for
Experiments 1 and 2. Our proposed method yields 3.4%,
68.3%, 71.0%, and 83.2% less time for MongoDB to MySQL
ETL (Experiment 1) as compared to the baseline method for
100k, 500k, 1000k, and 5000k database records, respectively.
.e proposed method also outperforms the baseline method
in MongoDB to PostgreSQL ETL (Experiment 2) by re-
ducing the execution time by 13.4%, 59.9%, 59.4%, and
63.6% for the database record sizes 100k, 500k, 1000k, and
5000k, respectively.

Table 4 shows the throughput in each iteration of Ex-
periments 1 and 2 for the proposed and baseline methods.
Our proposed method outperforms the baseline method by
yielding significantly higher throughput. .e proposed

Input: MongoDB connection information (info), Destination DB info (dest), Data location start point (start), length to read (limit),
Batch size (batch_size)
Output: Data loaded to destination SQL database.
db← createConnection(info)
sql ← createConnection(dest)
queries← {}
n← 0
while start< limit do

docs← db.readBatch(batch_size)
foreach doc Є docs do

queries← queries ∪ createQuery(doc)
n← n+ 1

end
execute(queries)
start← start + n

end

ALGORITHM 3: Transformation and loading.

Figure 5: MongoDB to MySQL ETL job configuration using Talend Open Studio interface.

8 Scientific Programming



method shows excellent throughput in ETL from MongoDB
to PostgreSQL.

Figure 8 shows the relative comparison of throughput
gain between our proposed method during Experiments 1
and 2 and the baseline method. .e proposed method yields

1.13x, 2.52x, 2.46x, and 2.75x times higher throughput as
compared to the baseline method during the ETL of
MongoDB to MySQL (Experiment 1) for the database record
sizes 100k, 500k, 1000k, and 5000k, respectively. In Ex-
periment 2, the proposed method yields 1.03x, 3.23x, 3.46x,

transaction

_id
amount
date
business
name
type
account

{
"amount": "361.46",
"date": "2012-02-01T19:00:00.000Z",
"business": "Bogisich - Rogahn",
"name": "Home Loan Account 4758",
"type": "deposit",
"account": "96170278"

}

userCard

_id _id

_id

name

name

username
avatar
phone

website
email

dob

address

street

suite
city
zipcode
geo

company

catchPhrase
bs

{
"name": "Fletcher",
"username": "Fletcher_Hudson",
"avatar":

"https://s3.amazon.com/faces/twitter/michaelkoper/128.jpg",
"email": "Fletcher_Hudson42@gmail.com",
"dob": "1956-12-28T16:25:07.727Z",
"phone": "492-833-6382 x84651",
"address": {

"street": "Antonetta Course",
"suite": "Apt. 012",
"city": "Sawaynville",
"zipcode": "11342-2477",
"geo": {

"lat": "–36.5510",

}
},
"website": "chasity.net",

"name": "Flatley Group",
"catchPhrase": "Customer-focused radical installation",
"bs": "ubiquitous iterate systems"

}
}

"company": {

contextualCard

_id
name
username

phone

website

email

address

company

_id

_id
name

street
suite
city
zipcode
geo

catchPhrase
bs

 "lng ": "–24.2751"

{

}
},

"website": "telly.org",

"name": "Aufderhar and Sons",
"catchPhrase": "Cross-group multi-state ability",
"bs": "mission-critical reintermediate e-markets"

}
}

"company": {

"name": "Alysa Feil",
"username": "Bella.Ullrich",

"email": "Darius.Gleason@hotmail.com",
"address": {
"street": "Beatty Lights",
"suite": "Suite 551",
"city": "South Hubert",
"zipcode": "12402",
"geo": {

"lat": "88.4538",
"lng ": "–85.3045"

"phone": "(355) 681-7737",

Figure 6: Relational tables (schema) for different JSON documents identified using the proposed Schema Analyzer.

Scientific Programming 9



and 6.02x times higher throughput compared to the baseline
method for the record sizes 100k, 500k, 1000k, and 5000k,
respectively.

Figure 9 shows the throughput improvements by in-
creasing the number of database records using the proposed
and baseline ETL methods for MySQL and PostgreSQL as
the destination databases. .e proposed method shows a
significant increase in throughput with the increase in da-
tabase record size. However, throughput almost remains the
same using the baseline ETL method to increase the number
of database records. Our proposed method improves the
throughput of the given large size of ETL jobs, because of its
concurrent processes execution.

In our proposed solution, the insertion speed of the
destination relational database may affect the execution time
of ETL jobs. We evaluate our proposed ETL method using
two different destination databases. Results show that the
PostgreSQL database performs better than the MySQL da-
tabase as a destination because of the less insertion time of
PostgreSQL as compared to MySQL. However, we do not

Table 1: Experimental details.

Experiment Description

Experiment 1: MongoDB to MySQL
ETL

MongoDB to MySQL transformation with the proposed method using 100k, 500k, 1000k, and 5000k
database records, compared with the baseline method

Experiment 2: MongoDB to
PostgreSQL ETL

MongoDB to PostgreSQL transformation with the proposed method using 100k, 500k, 1000k, and
5000k database records, compared with the baseline method

Table 2: Schema detection time (sec).

Iterations
Number of records

100k 500k 1000k 5000k

1 5.33 32.12 50.52 253.22
2 5.30 31.94 51.94 263.22
3 5.55 33.30 51.24 256.35
Average 5.39 32.45 51.23 257.60

Table 3: ETL time for MongoDB to MySQL and PostgreSQL using the proposed solution and the baseline method.

Record size
MySQL PostgreSQL

Baseline Proposed Baseline Proposed

100k
43.15 31.12 25.32 23.99
30.93 31.79 25.60 24.12
35.37 31.78 25.39 25.70

Average 36.48 31.56 25.44 24.60

500k
210.75 75.49 150.79 37.40
200.29 96.03 144.57 49.97
201.19 74.11 148.62 53.37

Average 204.08 81.88 147.99 46.91

1000k
333.41 131.62 234.40 65.13
329 134.78 239.69 74.66

324.55 133.50 234.85 65.66
Average 328.99 133.3 236.31 68.48

5000k
1615.36 586.18 1225.37 190.99
1647.16 587.60 1189.66 231.76
1632.93 605.69 1240.32 189.83

Average 1631.82 593.16 1218.45 204.19

100k 500k 1000k 5000k

Record size

Baseline

Experiment 1

Experiment 2

1.0

0.8

0.6

0.4

0.2

0.0

R
el

at
iv

e 
to

 b
as

el
in

e

Figure 7: Execution time comparison of transformation and
loading operations during Experiments 1 and 2 relative to baseline
with different sizes of NoSQL databases.

10 Scientific Programming



Table 4: .roughput (record per second) of the ETL job for MongoDB to relational databases (MySQL and PostgreSQL) using the proposed
and baseline methods.

Record size
MySQL PostgreSQL

Baseline Proposed Baseline Proposed

100k
2317 3213 3949 4168
3233 3146 3906 4146
2827 3147 3939 3891

Average 2793 3169 3931 4068

500k
2372 6623 3316 13369
2496 5207 3459 10006
2485 6747 3364 9369

Average 2451 6192 3380 10915

1000k
2999 7598 4266 15354
3040 7419 4172 13394
3081 7491 4258 15230

Average 3040 7503 4232 14659

5000k
3095 8530 4080 26179
3036 8509 4203 21574
3062 8255 4031 26339

Average 3064 8431 4105 24698

0

1

2

3

4

5

6

7

R
el

at
iv

e 
to

 b
as

el
in

e

100k 500k 1000k 5000k

Record size

Baseline

Experiment 1

Experiment 2

Figure 8: .roughput comparison of Experiments 1 and 2 to baseline with record sizes 100k, 500k, 1000k, and 5000k.

Baseline

Proposed

8000

6000

4000

2000

0

R
ec

o
rd

s 
(s

ec
)

100k 500k 1000k 5000k

Record size

(a)

Baseline

Proposed

R
ec

o
rd

s 
(s

ec
)

100k 500k 1000k 5000k

Record size

25000

20000

15000

10000

5000

0

(b)

Figure 9: .roughput improvements for increasing number of records using the proposed ETL method and the baseline method for
(a) MySQL and (b) PostgreSQL destinations.

Scientific Programming 11



observe any storage overhead for using PostgreSQL and
MySQL in our proposed solution. .e proposed system is
generic to support any destination database; however, a basic
connector needs to be added for any SQL database.

.e conventional ETL systems like Talend Open Studio
are dependent on manual schema configurations for suc-
cessful ETL execution. However, our proposed system au-
tomatically identifies the schema to reduce the effort of
manual schema configurations. Moreover, the proposed
ETL method shows significantly less execution time as
compared to the existing state-of-the-art baseline tool.

6. Conclusion and Future Work

NoSQL databases are most suitable for scalable systems and
are on the rise. .e existence of relational databases for
easier management of the data is an important feature, due
to the ACID and the SQL properties. In this paper, we have
presented an efficient NoSQL to relational database mi-
gration system. Our experimental evaluation shows that the
proposed method can automatically identify the schema of
NoSQL for a relational database and then use concurrent
processes to transform and load the data into the destination
databases. Our experimental evaluation shows the scalability
and performance compared to the existing state-of-the-art
open-source tools. .e proposed method is of benefit to ETL
tasks specifically required to transfer data from the NoSQL
database to the relational database.

As an extension to this project, different NoSQL
implementations in the proposed system will be incorpo-
rated as the source databases, as well as incorporation of
Hadoop and Spark for parallel data transformations [50] in
order to improve the transformation time.

Data Availability

.e data used in this research are available from the cor-
responding author upon request.

Conflicts of Interest

.e authors declare no conflicts of interest.

Acknowledgments

.e authors would like to thank Prince Sultan University,
Riyadh, KSA, for partially supporting this work.

References

[1] A. Raut, “NOSQL database and its comparison with RDBMS,”
International Journal of Computational Intelligence Research,
vol. 13, no. 7, pp. 1645–1651, 2017.

[2] J. Pokorny, “NoSQL databases: a step to database scalability in
web environment,” International Journal of Web Information
Systems, vol. 9, no. 1, pp. 69–82, 2013.

[3] R. Kanwar, P. Trivedi, and K. Singh, “NoSQL, a solution for
distributed database management system,” International
Journal of Computer Applications, vol. 67, no. 2, pp. 6–9, 2013.

[4] D. McCreary and A. Kelly, Making Sense of NoSQL, Manning,
Shelter Island, NY, USA, 2014.

[5] Y. Li and S. Manoharan, A Performance Comparison of SQL
and NoSQL Databases, IEEE, Piscataway, NJ, USA, 2013.

[6] Z. Bicevska and I. Oditis, “Towards NoSQL-based data
warehouse solutions,” Procedia Computer Science, vol. 104,
pp. 104–111, 2017.

[7] M. Stonebraker, “SQL databases v. NoSQL databases,”
Communications of the ACM, vol. 53, no. 4, pp. 10-11, 2010.

[8] J. Han, H. Haihong, G. Le, and J. Du, “Survey on NoSQL
database,” in Proceedings of the 2011 6th International Con-
ference on Pervasive Computing and Applications, Port Eliz-
abeth, South Africa, October 2011.

[9] D. G. Chandra, “Base analysis of NoSQL database,” Future
Generation Computer Systems, vol. 52, pp. 13–21, 2015.

[10] D. Bermbach and S. Tai, “Eventual consistency: how soon is
eventual? An evaluation of Amazon S3’s consistency behav-
ior,” in Proceedings of the 6th Workshop on Middleware for
Service Oriented Computing, pp. 1–6, Lisbon, Portugal, De-
cember 2011.

[11] P. Vassiliadis, “A survey of extract-transform-load technol-
ogy,” International Journal of Data Warehousing and Mining,
vol. 5, no. 3, pp. 1–27, 2009.

[12] P. Vassiliadis and A. Simitsis, “Extraction, transformation,
and loading,” Encyclopedia of Database Systems, Springer,
Boston, MA, USA, 2018.

[13] S. K. Bansal and S. Kagemann, “Integrating big data: a semantic
extract-transform-load framework,” Computer, vol. 48, no. 3,
pp. 42–50, 2015.

[14] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos, “Conceptual
modeling for ETL processes,” in Proceedings of the 5th ACM
International Workshop on Data Warehousing and OLAP,
pp. 14–21, New York, NY, USA, 2002.

[15] T. Jörg and S. Deßloch, “Towards generating ETL processes
for incremental loading,” in Proceedings of the 2008 Inter-
national Symposium on DATABASE Engineering & Applica-
tions, pp. 101–110, ACM, Villa San Giovanni, Italy, June 2008.

[16] J. Sreemathy, S. Nisha, C. Prabha, and G. P. RM, “Data in-
tegration in ETL using Talend,” in Proceedings of the 2020 6th
International Conference on Advanced Computing and
Communication Systems (ICACCS), pp. 1444–1448, IEEE,
Coimbatore, India, March 2020.

[17] R. A. Nisbet, Data Integration with Talend Open Studio,
CiteSeer, Princeton, NJ, USA, 2010.

[18] N. Leavitt, “Will NoSQL databases live up to their promise?”
Computer, vol. 43, no. 2, pp. 12–14, 2010.

[19] Y.-T. Liao, J. Zhou, C.-H. Lu et al., “Data adapter for querying
and transformation between SQL and NoSQL database,”
Future Generation Computer Systems, vol. 65, pp. 111–121,
2016.

[20] D. Swami and B. Sahoo, “Storage size estimation for sche-
maless big data applications: a JSON-based overview,” in
Intelligent Communication and Computational Technologies,
pp. 315–323, Springer, Berlin, Germany, 2018.

[21] J. Yoon, D. Jeong, C.-H. Kang, and S. Lee, “Forensic inves-
tigation framework for the document store NoSQL DBMS:
MongoDB as a case study,” Digital Investigation, vol. 17,
pp. 53–65, 2016.

[22] M. Abourezq and A. Idrissi, “Database-as-a-service for big
data: an overview,” International Journal of Advanced Com-
puter Science and Applications, vol. 7, no. 1.

[23] P. Atzeni, F. Bugiotti, L. Cabibbo, and R. Torlone, “Data
modeling in the NoSQL world,” Computer Standards & In-
terfaces, vol. 67, Article ID 103149, 2020.

[24] C. Asaad, K. Bäına, and M. Ghogho, “NoSQL databases:
yearning for disambiguation,” https://arxiv.org/abs/.

12 Scientific Programming

https://arxiv.org/abs/


[25] S. B. Jatin, MONGODB Versus SQL: A Case Study on Elec-
tricity Data, Springer, Berlin, Germany, 2016.

[26] J. L. C. Izquierdo and J. Cabot, “Discovering implicit schemas
in JSON data,” in International Conference on Web Engi-
neering, Springer, Berlin, Germany, 2013.

[27] A. A. Frozza, R. dos Santos Mello, and F. D. S. da Costa, “An
approach for schema extraction of JSON and extended JSON
document collections,” in Proceedings of the 2018 IEEE In-
ternational Conference on Information Reuse and Integration
(IRI), pp. 356–363, IEEE, Salt Lake City, UT, USA, July 2018.

[28] S. S. Y. Shim, “Guest editor’s introduction: the CAP theorem’s
growing impact,” Computer, vol. 45, no. 2, pp. 21-22, 2012.

[29] E. Brewer, “CAP twelve years later: how the “rules” have
changed,” Computer, vol. 45, no. 2, pp. 23–29, 2012.

[30] A. Boicea, F. Radulescu, and L. I. Agapin, “MongoDB vs
Oracle—database comparison,” in Proceedings of the 2012
@ird International Conference on Emerging Intelligent Data
and Web Technologies, pp. 330–335, Bucharest, Romania,
September 2012.

[31] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes, and J. Abramov,
“Security issues in NoSQL databases,” in Proceedings of the
2011 IEEE 10th International Conference on Trust, Security
and Privacy in Computing and Communications, pp. 541–547,
Changsha, China, November 2011.

[32] S. S. Pore and S. B. Pawar, “Comparative study of SQL &
NoSQL databases,” International Journal of Advanced Re-
search in Computer Engineering & Technology, vol. 4, no. 5.

[33] C. Ordonez, I.-Y. Song, and C. Garcia-Alvarado, “Relational
versus non-relational database systems for data warehousing,”
in Proceedings of the ACM 13th International Workshop on
Data Warehousing and OLAP—DOLAP’10, pp. 67-68, Hous-
ton, TX, USA, 2010.

[34] V. Gour, D. S. S. Sarangdevot, J. R. N. R. Vidyapeeth,
G. S. Tanwar, and A. Sharma, “Improve performance of
extract, transform and load (ETL) in data warehouse,” In-
ternational Journal on Computer Science and Engineering,
vol. 2, no. 3, pp. 786–789, 2010.

[35] D. Skoutas and A. Simitsis, “Designing ETL processes using
semantic web technologies,” in Proceedings of the 9th ACM
International Workshop on Data Warehousing and OLAP,
DOLAP’06, ACM, New York, NY, USA, pp. 67–74, 2006.

[36] S. Bergamaschi, F. Guerra, M. Orsini, C. Sartori, and
M. Vincini, “A semantic approach to ETL technologies,” Data
& Knowledge Engineering, vol. 70, no. 8, pp. 717–731, 2011.

[37] S. Bansal, “Towards a semantic extract-transform-load (ETL)
framework for big data integration,” in Proceedings of the 2014
IEEE International Congress on Big Data, pp. 522–529, An-
chorage, AK, USA, June-July 2014.

[38] F. Prasser, H. Spengler, R. Bild, J. Eicher, and K. A. Kuhn,
“Privacy-enhancing ETL-processes for biomedical data,” In-
ternational Journal of Medical Informatics, vol. 126, pp. 72–81,
2019.

[39] M. Casters, R. Bouman, and J. Van Dongen, Pentaho Kettle
Solutions: Building Open Source ETL Solutions with Pentaho
Data Integration, John Wiley & Sons, Hoboken, NJ, USA,
2010.

[40] S. Ramzan, I. S. Bajwa, B. Ramzan, and W. Anwar, “Intelligent
data engineering for migration to NoSQL based secure en-
vironments,” IEEE Access, vol. 7, pp. 69042–69057, 2019.

[41] E. M. Kuszera, L. M. Peres, and M. D. D. Fabro, “Toward RDB
to NoSQL: transforming data with metamorfose framework,”
in Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing, pp. 456–463, ACM, Limassol, Cyprus,
April 2019.

[42] A. Sellami, A. Nabli, and F. Gargouri, “Transformation of data
warehouse schema to NoSQL graph data base,” in International
Conference on Intelligent Systems Design and Applications,
pp. 410–420, Springer, Berlin, Germany, 2018.

[43] M. Hanine, A. Bendarag, and O. Boutkhoum, “Data migration
methodology from relational to NoSQL databases, World
Academy of Science, Engineering and Technology,” Inter-
national Journal of Computer, Electrical, Automation, Control
and Information Engineering, vol. 9, no. 12, pp. 2369–2373,
2016.

[44] R. Yangui, A. Nabli, and F. Gargouri, “ETL based framework
for NoSQL warehousing,” in European, Mediterranean, and
Middle Eastern Conference on Information Systems, pp. 40–53,
Springer, Berlin, Germany, 2017.

[45] A. K. Bhattacharjee, A. Mallick, A. Dey, and S. Bandyopadhyay,
“Enhanced technique for data cleaning in text file,” Interna-
tional Journal of Computer Science Issues (IJCSI), vol. 10, no. 5,
p. 229, 2013.

[46] H. Mohamed, T. Leong Kheng, C. Collin, and O. Siong Lee,
“E-clean: a data cleaning framework for patient data,” in
Proceedings of the 2011 First International Conference on
Informatics and Computational Intelligence, pp. 63–68, IEEE,
Bandung, Indonesia, December 2011.

[47] E. Song, S.-C. Haw, and F.-F. Chua, “Handling XML to re-
lational database transformation using model-based mapping
approaches,” in Proceedings of the 2018 IEEE Conference on
Open Systems (ICOS), pp. 65–70, IEEE, Langkawi Island,
Malaysia, November 2018.

[48] H. Zhu, H. Yu, G. Fan, and H. Sun, “Mini-XML: an efficient
mapping approach between XML and relational database,” in
Proceedings of the 2017 IEEE/ACIS 16th International Con-
ference on Computer and Information Science (ICIS),
pp. 839–843, IEEE, Wuhan, China, May 2017.

[49] B. Maity, A. Acharya, T. Goto, and S. Sen, “A framework to
convert NoSQL to relational model,” in Proceedings of the 6th
ACM/ACIS International Conference on Applied Computing
and Information Technology, pp. 1–6, ACM, Kunming, China,
June 2018.

[50] B. Iqbal, W. Iqbal, N. Khan, A. Mahmood, and A. Erradi,
“Canny edge detection and Hough transform for high reso-
lution video streams using Hadoop and Spark,” Cluster
Computing, vol. 23, no. 1, pp. 397–408, 2020.

Scientific Programming 13


