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Abstract

The introduction of fast digital slide scanners that provide whole slide images has led to a revival of interest in image
analysis applications in pathology. Segmentation of cells and nuclei is an important first step towards automatic
analysis of digitized microscopy images. We therefore developed an automated nuclei segmentation method that
works with hematoxylin and eosin (H&E) stained breast cancer histopathology images, which represent regions of
whole digital slides. The procedure can be divided into four main steps: 1) pre-processing with color unmixing and
morphological operators, 2) marker-controlled watershed segmentation at multiple scales and with different markers,
3) post-processing for rejection of false regions and 4) merging of the results from multiple scales. The procedure
was developed on a set of 21 breast cancer cases (subset A) and tested on a separate validation set of 18 cases
(subset B). The evaluation was done in terms of both detection accuracy (sensitivity and positive predictive value)
and segmentation accuracy (Dice coefficient). The mean estimated sensitivity for subset A was 0.875 (±0.092) and
for subset B 0.853 (±0.077). The mean estimated positive predictive value was 0.904 (±0.075) and 0.886 (±0.069) for
subsets A and B, respectively. For both subsets, the distribution of the Dice coefficients had a high peak around 0.9,
with the vast majority of segmentations having values larger than 0.8.
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Introduction

Assessment of breast cancer prognosis from excision biopsy
slides relies largely on the Bloom-Richardson grading system.
It is based on semiquantitative scoring of the degree of tubule
formation, nuclear pleomorphism, and mitotic rate, which has
proven to be prognostically strong [1]. However, the scoring is
done traditionally by visual examination through the
microscope which has suboptimal reproducibility [2]. The use of
automatic image analysis methods, which can provide
reproducible quantitative parameters that describe the tumor
tissue, has been suggested as a way to overcome this
drawback [3]. Traditional image analysis of conventional glass
slides was hampered by the selective approach due to
limitations of the scanning equipment and the need for special
stains [4]. The introduction of fast digital slide scanners that
provide whole slide images has led to a revival of interest in
image analysis applications in pathology. Optimal integration of
such applications in pathology workflow necessitates using

hematoxylin and eosin (H&E) stained slides since this is the
standard staining protocol (the diagnostic process for each
case always starts with staining the specimen with these dyes).
Given the complexity and the diversity of the tissue
appearance, the automatic analysis of H&E stained images can
be very challenging.

Segmentation of cells and nuclei is an important first step
towards automatic analysis of digitized microscopy images.
Most of the developed cell and nuclei segmentation techniques
revolve around active contours, watershed segmentation, pixel-
wise clustering/classification or a combination of the above,
supplemented by different pre-processing and post-processing
steps and detection/localization schemes. Bamford and Lovell
[5] used a dual active contour model for the task of segmenting
cell nuclei from cytoplasm in conventional Papanicolaou
stained cervical cell images. Cosatto et al. [6] detected
candidate nuclei locations in breast histopathology images
using the Hough transform and evolved an active contour
around each point, rejecting malformed outlines with a trained
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classifier. They used the segmentation output for predicting
nuclear pleomorphism scores, however the segmentation
method by itself was not rigorously evaluated. Fatakdawala et
al. [7] presented an expectation-maximization driven geodesic
active contour with overlap resolution for segmentation of
lymphocytes in breast cancer histopathology images. Ali et al.
[8] presented an active contour model that integrates region,
boundary and shape information, and showed that it can be
used for nuclei, lymphocytes and gland segmentation in
prostate and breast cancer biopsy images. Wienert et al. [9]
proposed a method for nuclei detection and segmentation
based on contour tracing and subsequent pruning of contours
to retain the most probable ones. They evaluated the detection
performance of the algorithm in a set of breast, liver, gastric
mucosa and bone marrow images. Watershed segmentation is
a method particularly suited for cell and nuclei segmentation
[10,11]. The results of the classical watershed segmentation
can be significantly improved by modifying the segmentation
function (topographical relief) to contain regional minima only at
specific locations that mark the objects of interest and the
background. These markers can be obtained in a variety of
ways and the process is usually application-dependent.
Malpica et al. [12] examined the use of this technique in bone
marrow and peripheral blood microscopy images. Marker-
controlled watershed for segmentation and subsequent
tracking of cells in time lapse microscopy was proposed by
Yang et al. [13]. Huang et al. [14] described a method for
segmentation of nuclei in hepatocellular carcinoma biopsy
images based on marker-controlled watershed segmentation of
initial contours followed by refinement with a snake model.
Marker-controlled watershed, with markers produced by
template matching, was also used by Kachouie et al. [15] for
segmentation of mammalian cells in microscopy images. For a
broader overview of the topic of image analysis in
histopathology images we refer the reader to a recent review
[16].

Although many nuclei/cell segmentation methods exist in the
literature, they are usually closely related to the microscopy
technique, tissue type, staining and target cell/nuclei types.
Thus, they are not directly applicable to an arbitrary type of
image. In this paper we present a marker-controlled watershed
based technique for segmentation of cancer nuclei in H&E
stained breast cancer histopathology images. In addition to the
combination of the different processing steps, the novelty of the
method lies in the multiscale approach to the pre-processing of
the images and the marker extraction for the watershed
segmentation, the use of multiple marker types and the
relatively simple but effective merging of the segmentations
produced at different scales and from multiple markers. This
multiscale and multimarker approach yields much better results
that simply performing segmentation at a single scale and with
a single marker type. The method was evaluated with regard to
both detection and segmentation accuracy on a set breast
cancer images of diverse tissue appearance, and showed
excellent results. In addition to the evaluation on our dataset,
we evaluated our method on the dataset used in [9] and
achieved comparable results.

Materials and Methods

Breast cancer cases
For this study a total of 39 slides from 38 patients from

breast cancer excision biopsies were used. The slides were
routinely prepared with the standard procedure consisting of
formalin fixation and paraffin embedding of the tissue, followed
by cutting of 3-5 µm thick sections and staining with H&E. The
digitization of the complete slides was done using a
ScanScope XT whole slide scanner (Aperio, Vista, CA, USA) at
a magnification of ×40 (0.75 NA) and a resolution of 0.25 µm/
pixel. JPEG2000 compression with a quality factor of at least
80 was used to reduce the storage requirements. With this
compression type and quality, no visible compression artifacts
were present in the digital slides. From each digital slide a
representative region of approximately 1×1 mm was selected
and marked by an experienced pathologist (PJvD) and graded
for nuclear pleomorphism according to the Bloom-Richardson
grading system (grade I, II or III ranging from good to poor
prognosis). The regions of interest were selected using
predefined guidelines that are also used when performing
grading by pathologists. More precisely, only areas with high
epithelial cellularity and preferably on the periphery of the
tumor were selected. Regions with severe lymphocytic
infiltration and necrosis were avoided, as well as regions with
scanning artifacts and out-of-focus problems.

The regions were divided into two subsets. Subset A
consisted of 21 slides and was used during the development of
the segmentation procedure. These slides were selected by an
experienced pathologist (PJvD) to represent the diversity in
tissue appearance and to have an approximately balanced
distribution of pleomorphism grades. Subset B consisted of 18
slides of consecutive patients collected from our Pathology
Department archive based solely on the availability. The
segmentation procedure was developed on subset A and
validation was performed on subset B. All the experiments in
this paper were performed on the selected representative
regions from the digital slides.

Ground truth segmentation
To set the gold standard, manual segmentation was

performed in the marked regions on all 39 slides. Since each
region contains several thousands of nuclei, manual
segmentation of all nuclei was impractical and a systematic
random sampling approach [17] was followed. This involved
overlaying a grid of measurement frames over the marked
region and segmenting one nucleus within each measurement
frame (Figure 1.A). The grid was overlaid starting from an
arbitrary location according to a distribution rule. The
distribution rule depended on the area of the measurement
frame and of the region, on the desired number of
segmentations and on the estimated tumor area within the
region (for more details see 17). Each measurement frame was
subdivided into five rows. Scanning the rows from left to right,
the first unscathed epithelial breast cancer nucleus with
identifiable contours whose center of mass lied within the row
was chosen for manual segmentation (Figure 1.B).
Measurement frames of size 50×50 µm and a target of 100
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nuclei per region were used. An expert (RK) performed one
manual segmentation per measurement frame.

A summary of the dataset is presented in Table 1. We point
out that in some cases the target number of 100 nuclei was not
reached when too many of the sampling frames fell into non-
tumor tissue, while in other cases this number was
overreached. The sample size of 100 nuclei was chosen
because it has been shown that this number of segmentations
is sufficient to reliably estimate certain morphometric features
such as the mean nuclear area [18]. At the resolution at which
the digital slides were scanned, the average area of the
manually segmented nuclei was approximately 900 pixels.

Overview of the method
A block-diagram with an overview of the proposed method is

presented in Figure 2. This is an extension and improvement of
our previously published nuclei segmentation method [19]. The
entire procedure can be divided into four main steps: 1) pre-
processing, 2) marker-controlled watershed segmentation, 3)
post-processing and 4) merging of the results from multiple
scales. The aim of the pre-processing is to remove irrelevant

Table 1. Dataset summary.

 
Number of
slides

Pleomorphism grade
distribution (I, II and
III)

Total number
of manually
segmented
nuclei

Average number
of manually
segmented nuclei
per slide

Subset A 21 8; 8; 5 2191 104.3 (±12.2)

Subset B 18 1; 10; 7 2073 115.2 (±12.2)

Representative regions from Subset A were used for tuning of parameters during
the development of the segmentation procedure. Representative regions from
Subset B were used for an independent validation of the chosen parameters. From
each slide, approximately 100 representative nuclei were manually segmented with
systematic random sampling.

content while preserving the boundaries of the nuclei. The pre-
processing starts with color unmixing for separation of the
hematoxylin stain from the RGB image (the nuclei are dyed by
this stain; Figure 3.B). The grayscale version of the
hematoxylin image is then processed with a series of
morphological operations in order to remove irrelevant
structures (Figure 3.C). The core part of the procedure is the
marker-controlled watershed segmentation. Two types of
nuclear markers are used: markers extracted using an image
transform that highlights structures of high radial symmetry
(Figure 3.D–F) and regional minima of the pre-processed
image (Figure 3.G-H). In the post-processing step, regions
unlikely to represent nuclei are removed and the contours of
the remaining regions are parameterized as ellipses. By
varying the size of the structuring element in the pre-
processing step, the segmentation procedure can be tuned to
look for nuclei at different scales, allowing multiscale analysis.
The segmentation results from the multiple scales and two
marker types are then merged by resolving concurrent regions
to give the final segmentation.

Color unmixing
The first step is separation of the H&E stains with the color

unmixing technique suggested in [20], which is a special case
of true spectral unmixing techniques that work with
multispectral cameras [21]. The technique uses the fact that
the image formation process in bright field microscopy can be
modeled by the Lambert-Beer law. Given that the images are
captured by three detection channels (R, G and B) with known
optical densities and the stain-specific absorption coefficients
can be experimentally determined from single stain images, the
concentrations of the two stains can be determined for each
pixel location. These in turn can be used to obtain single stain
images. Since the nuclei are stained with hematoxylin, the
grayscale version of the hematoxylin single stain image is used
in all subsequent processing. An example of color unmixing is
presented in Figure 3.B.

Figure 1.  Systematic random sampling method used for manual nuclei segmentation.  A) Systematic random sampling grid
overlay on a representative region. B) One measurement frame from the sampling grid with a manually segmented nucleus (the
arrows represent the scanning direction).
doi: 10.1371/journal.pone.0070221.g001
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Morphological operations
The now separated hematoxylin image still contains spurious

structures within the nuclei. These present obstacles for the
marker extraction and segmentation and can be filtered out
with a series of operations based on morphological grayscale
reconstruction [22]. Opening by reconstruction removes
unconnected bright objects that are smaller than the structuring
element (SE). Similarly, closing by reconstruction removes
unconnected dark objects smaller than the SE. Applying these
two operators in sequence produces “flat” images and the
amount of detail present can be controlled by the size of the
SE. In the hematoxylin images, best results were obtained by
first applying opening and then closing by reconstruction (both
with a disk-shaped SE with radius n). The size of the SE, as
defined by the radius n, should be chosen according to the size
of the spurious structures which in turn is related to the size of
the nuclei and the resolution of the image.

After application of these two operations the main contours
of the nuclei often have an irregular shape and protrusions
emanating from the edges hampering the segmentation result.
To remedy this problem, additional morphological closing with

a small SE is applied. This simplifies the shape of the object,
eliminates small protrusions, disconnects “loosely” connected
objects and does not significantly affect the location of the main
contours. The SE for this operation is chosen to be a disk with
half the radius of the one used for the opening and closing by
reconstruction operators. An example of preprocessing with the
series of morphological operations is shown in Figure 3.C.

It is difficult to set one parameter n that will work well across
all images in our data set, or, in many instances, across
different nuclei within one image. The optimal simplification
factor is closely related to the size of the undesired structures
that need to be removed (as all unconnected objects smaller
than the SE will be removed). Employing a large SE
oversimplifies the image, while using too small an SE does not
always produce desirable results as many of the substructures
within the large nuclei remain, affecting segmentation
performance. This is why a multiscale approach was chosen –
each image is preprocessed with SEs of different sizes and
segmentation is performed at each scale. For the problem at
hand, the range of SE radii is set to be n∈{10,11,…,18} pixels,
which corresponds to the approximately expected range of

Figure 2.  Schematic overview of the different steps in the automated image analysis method for nuclei segmentation.  
doi: 10.1371/journal.pone.0070221.g002
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minor semi-axes in breast cancer nuclei imaged at this
magnification.

Fast radial symmetry transform
The fast radial symmetry transform (FRST) [23] is a

computationally efficient, non-iterative procedure that operates
along the direction of the image gradient to infer centers of
radial symmetry. This transform was originally developed for
face detection tasks in computer vision, but was recently used
in automatic analysis of follicular lymphoma [24,25] and bears
similarity to other operators specifically designed for cell and
nuclei segmentation [26]. A generalized version of this
transform was used in [27] for segmentation of nuclei in breast
cancer biopsy images.

The nuclear contours, in most cases, exhibited high radial
symmetry making this transform suitable for their localization.
To produce candidate nuclei locations, we use the orientation-
based version of the transform, which discards gradient
magnitude information and relies only on the orientation. This
can be beneficial in the case of low contrast between the nuclei
and the background. The FRST is computed for a set of radii R
that reflects the size of the symmetric features that need to be
detected. An example of the FRST applied to a morphologically
pre-processed image is given in Figure 3.D.

Marker imposition and segmentation
Given an input image preprocessed with the morphological

operators at scale n, two marker-controlled watershed
segmentations, each targeting a specific type of nuclei, are
performed – one using FRST markers and one using regional
minima markers. The FRST S is computed for the set of radii
R∈{n,n+1,…,2n} pixels. This set of radii reflects the size of the
nuclei that are reconstructed well in the preprocessed image.
The FRST nuclei markers are extracted as the extended
regional minima of S, with an empirically set height parameter
h = 0.4. The extended regional minima of S are calculated as
the regional minima of the h-minima transformation of S. The h-
minima transform of S is given by:

Sh=ρ
S
ε

S+h (1)

with ρ the morphological grayscale reconstruction by erosion
operator. This transform suppresses all minima in S whose
depth is less than h.

For successful watershed segmentation the background also
has to be marked. To achieve this, a naïve assumption that
each detected foreground marker corresponds to a nucleus
with maximal size (the largest radius in the set R) is made. In
this way, provisional foreground (nuclei) and background maps
can be formed. The morphological skeleton of the background
map is used as a background marker.

Figure 3.  Marker imposition and watershed segmentation for nuclei segmentation.  Prior to applying the FRST the image is
preprocessed with color unmixing and morphological operations (n = 10). The set of radii for the FRST is R = (10, 11,…,20). Note:
the markers and watershed ridges (given in green in the figure) were dilated by one pixel for better visualization. A) Original image.
B) Hematoxylin channel. C) Pre-processed image (hematoxylin channel processed with series of morphological operations). D) Fast
radial symmetry transform (FRST). E) FRST foreground and background markers. F) Watershed segmentation with FRST markers.
G) Regional minima foreground and background markers. H) Watershed segmentation with regional minima markers.
doi: 10.1371/journal.pone.0070221.g003

Nuclei Segmentation in Breast Cancer Images

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e70221



After foreground and background markers have been
obtained, the Sobel gradient magnitude image of the pre-
processed image, which is used as a segmentation function for
the watershed, is modified by imposing regional minima on the
locations of the markers. In this way, only one watershed
region per marker is obtained. Although the FRST markers are
very successful in marking nuclei even in more complex
situations like clustered nuclei, sometimes a proper marker is
not produced in situations when the symmetry assumption is
violated or in case of overly elongated nuclei. To address these
situations, at each scale, an additional watershed segmentation
is produced using the regional minima of the pre-processed
image as markers as in [14]. The background markers are
defined in the same way as for the FRST case. Figure 3 gives
an example of marker-controlled watershed segmentation with
FRST and regional minima markers. Frames 3E and G give the
foreground and background markers from the FRST and the
regional minima respectively, and corresponding results from
the segmentation are given in Frames 3F and H.

Post-processing
Many of the resulting watershed regions do not correspond

to nuclei or represent erroneous segmentations (severe over-
or under-segmentation, regions spilled into the background
etc.). In the post-processing step we aim to remove those
regions based on the following extracted features:

Solidity s: the ratio of the area of the object and of the
convex hull of the object (the convex polygon with smallest
area that contains the object). This value should be high for the
nuclei regions since they are rarely concave. In our previous
work [19] we have shown that this feature can be highly
discriminative between correct and incorrect segmentations
produced by marker-controlled watershed.

Boundary saliency l: the difference between the intensity
level of the outside boundary and the intensity level of the
inside boundary of the nucleus. The outside intensity level is
taken as the median of the intensity values in a tight band
around the segmented region. The inside intensity level is
defined in an analogous way.

Mass displacement d: the distance between the centroid
and the weighted centroid of the region (the pixel locations are
weighted by the inverse intensity values) normalized by the
smaller axis of the region. Low values of this feature imply near
symmetric distribution of the intensity inside the nucleus region.
In certain situations regions that do not correspond to correct
segmentations have high mass displacement (regions spilled
into the background, over-segmentations, under-segmentations
etc.).

Although the problem of identifying the non-nuclei regions
can be posed as a one- or two-class statistical classification
task, we found that a simple rule-based rejection scheme is a
much better and flexible solution. For each of the defined
features a range of probable values is defined. If for a given
region one of the features is outside of the probable range, the
region is discarded. Additionally, regions that are too small
(area < n2π) or too large (area > 4n2 π) for the scale at which
they are segmented (as defined by n) were removed. Since the
coarseness of the extracted contours depends on the scale at

which they were extracted (smaller scales result in contours
with finer details and vice versa), all the contours are
standardized by approximating them with ellipses.

The ranges for the features were empirically determined and
are as follows: s∈(0.875,1), l∈(20,255), d∈[0,0.08]. A
qualitative analysis of the influence of the selected feature
ranges is presented in Figure S1-S3 in the Supplementary
Material. It can be observed that most of the segmentations
outside of the excluded range correspond to false objects, and
this effect is robust with respect to difference in tissue
appearance.

Merging results from multiple scales
The outputs from the multiple scales and the two types of

markers often produce overlapping regions. For example, a
nucleus might be properly segmented at a certain scale, but a
substructure within the nucleus might be segmented at a higher
scale, and/or oversegmentation containing another nucleus
might be produced at a lower scale. Much more commonly,
almost identical segmentations are produced at neighboring
scales and/or with the two types of markers. These situations
are resolved by identifying all overlaps and selecting the most
probable regions according to a fitness value. For all pairs of
regions (Xi, Xj) segmented in a given image I we define the
following overlap measure:

OV Xi,Xj =
Xi∩Xj

m inXi,Xj
(2)

This measure has a maximum value of 1 when one of the
regions is completely contained in the other one and a
minimum value of 0 when the two regions do not intersect.
Given this measure, the following adjacency matrix is defined:

A i,j =
1if OV Xi,Xj >Th

0 otherwise
(3)

The threshold Th defines when two regions are considered to
be overlapping. All pairs of regions with a non-zero overlap
measure smaller than this value are considered to be only
“touching”. Each region is also assigned a fitness value f that is
used for comparing concurrent regions and selecting the one
that is most likely to represent a nucleus. The region overlaps
are then resolved according to the following simple algorithm:

1. Find the region r with the maximum fitness value f (see
below);

2. Mark r as accepted and reject all regions OVi that are
adjacent to it;

3. Repeat steps 1. and 2. for the remaining regions until all
are accepted or rejected.

The threshold Th was chosen to be 0.2. This value allows
small overlap of touching nuclei. Simply using the solidity of the
region as a fitness value proved to give good results, although
a linear combination of other features might be an alternative to
consider.
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Evaluation
The automatic segmentations were compared with the

manual segmentations obtained with systematic random
sampling in the following way: if a manual segmentation was
not intersected by an automatic segmentation with a Dice
coefficient of at least 0.2, it was counted as a false negative
(FN). Otherwise, it was counted as a true positive (TP). The
Dice coefficient was taken as a measure of quality of the
segmentation. The Dice coefficient is a measure of overlap
between two regions, commonly used for evaluation of
segmentation techniques. It is defined as:

D X,Y =2
X∩Y

X +Y
(4)

The reasoning behind a cut-off value of 0.2 was to avoid
unsegmented nuclei that are “touched” by a neighboring
segmentation to be counted as TP. The value of 0.2 is
arbitrary, but it should be pointed out that in case of a lower
value, more nuclei will be counted as TP at the cost of having
more segmentations with very poor quality and vice versa.

To estimate the positive predictive value a subset of 100
automatically segmented nuclei from each slide was randomly
generated. An expert (RJK) labeled all segmentations that did
not correspond to epithelial nuclei, such as stroma,
lymphocytes, “junk” particles etc.

For each representative region the sensitivity, positive
predictive value and the median Dice coefficient were
estimated. We refer to the sensitivity, positive predictive value
and median Dice coefficient measures as estimates because
they are based on an annotated subset of the entire population
of nuclei in the images. Because of the asymmetric left-skewed
distribution, the median of the Dice coefficient is a better
measure of central tendency than the mean.

In addition to the evaluation on our dataset, we evaluated the
proposed method on a publicly available dataset used in a
recently published paper on nuclei detection and segmentation
[9]. This dataset contains 36 histopathology images of breast,
liver, gastric mucosa and bone marrow imaged at 20x
magnification. The ground truth is provided as manually
annotated nuclei centroids. We evaluated the detection
performance on this data set in the same way as in [9], i.e. in
terms of overall positive predictive value, sensitivity and
conglomerate score (a score of the ability of the method to
successfully separate conglomerates). For this experiment, no
parameter values were adapted, except for the adjustment of
the expected range of nuclei semi-axes, to account for the
smaller magnification (n∈{5,6,…,9}).

Results

Segmentation results for a few regions from our data set are
given in Figure 4 for qualitative evaluation, along with the
intermediate results prior to rejection of spurious contours and
prior to the merging of concurrent regions. The four examples
are chosen to represent tissue types with different appearance:
large and small nuclei, nuclei organized into tubules, highly
marginalized chromatin etc. In the same figure, the
intermediate results prior to the rejection of false contours and

merging of the contours from multiple scales are also shown.
The visual examination shows overall good performance with a
limited number of severe over- or under-segmentations. Also, it
is apparent that a segmentation is produced for most of the
nuclei in the image, with few contours corresponding to non-
epithelial nuclei objects. The results from all the regions in our
data set are available for download from: http://www.isi.uu.nl/
People/Mitko/segmentation.html.

The sensitivity, positive predictive value and median Dice
coefficient for each case in subsets A and B are summarized in
Figure 5. Note that subset A was used during the development
of the algorithm and subset B is used as an independent
validation set. The sensitivity was estimated as the percentage
of manual segmentations that were matched to an automatic
segmentation, as explained in the previous section. The
positive predictive value was estimated as the percentage of
the annotated automatic segmentations (100 per slide) marked
as corresponding to an epithelial nucleus. The mean estimated
sensitivity for subset A was 0.875 (±0.092) and for subset B
0.853 (±0.077). The mean estimated positive predictive value
was 0.904 (±0.075) and 0.886 (±0.069) for subsets A and B,
respectively. For both subsets, the distribution of the estimated
Dice coefficients had a high peak around 0.9, with the vast
majority of segmentations having values larger than 0.8.

The one outlier in terms of sensitivity in the first subset was
due to the tissue being over-stained with eosin, which
negatively affected the color unmixing procedure. The cases
with low sensitivity in the second subset had a large proportion
of nuclei that were not segmented due to their very small size
(comparable to the size of lymphocytes). The outlying cases
with low positive predictive value were either high grade cancer
and/or had a large proportion of relatively large fibroblasts. In
the high grade cancer cases, there were often many junk
particles, usually of small size, that were picked up by the
segmentation procedure. Although the scales for the
segmentation were chosen so that most of the lymphocytes
were not segmented, some were still included in the
segmentation and they affected the positive predictive value
negatively. Most of the segmentations had a high value of the
Dice coefficient. The tail in the distribution of the Dice
coefficients represents severe over- or under-segmentations
(two or more nuclei segmented as one or a segmented sub-
structure of a nucleus).

Specifying wider ranges of probable feature values during
the post-processing will result in higher sensitivity but at the
cost of decreasing the positive predictive value, and vice versa.
Figure S1-S3 illustrate that the solidity feature is the most
discriminative between true and false segmentations. This is
because highly convex segmented regions are unlikely to occur
by chance, and the convex regions that do occur correspond to
correctly segmented nuclei in the vast majority of cases. This
motivated the use of this feature as a fitness value during the
region merging process.

A comparison of our multiscale method to the same method
on only a single scale and with a single marker (n = 12 and
FRST markers were chosen as best performing) showed that
the sensitivity of the multiscale method on the validation set
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Figure 4.  Examples of automated nuclei segmentation in breast cancer sections (all images are shown at the same scale;
the nuclear pleomorphism grades are III, II, II and I respectively).  A–D) Original images. E–H) Intermediate results prior to the
rejection of spurious regions based on solidity, boundary salience and mass displacement. I–L) Intermediate results prior to the
merging of contours from multiple scales. M–P) Final segmentation results.
doi: 10.1371/journal.pone.0070221.g004
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was significantly higher (0.853 compared to 0.579 on average).
This exemplifies the added value of our multiscale approach.

Our method generalized well when used to detect and
segment nuclei in a diverse set of histopathology images,
including breast, liver, gastric mucosa and bone marrow
tissues. We achieved an overall positive predictive value of
0.904, sensitivity of 0.833 and a conglomerate score of 0.989
which is comparable to the results of the method presented in
[9] (0.908, 0.859 and 0.958 respectively).

One of the potential uses of an automatic nuclei
segmentation method is to extract prognostically meaningful
morphometric parameters. As an example, we show that the
proposed nuclei segmentation technique can be used to
reliably estimate the mean nuclear are (MNA) from the
representative regions. The area of all segmented nuclei was
calculated and then averaged for each representative region to
produce the MNA. We trained a linear regression on the
training set to correct for the systematic underestimation of the
MNA. We observed that the main reason for this systematic
underestimation is that the “junk particles” that are segmented
are typically several times smaller than that of the large
epithelial nuclei. In addition, undersegmentation of large nuclei
is more common that oversegmentation of small nuclei. The
learned linear regression was used to correct the MNA
estimates of the cases in the validation sets. The results are
presented in the form of a scatter plot in Figure 6. It can be

observed that there is good correspondence between the two
measurements and that there is no noticeable systematic bias.

Discussion and Conclusions

This study set out to develop a segmentation method for
breast cancer nuclei that works on H&E stained breast cancer
histopathology images. The evaluation revealed that the
proposed method has good performance in both detection and
segmentation accuracy. The evaluation was done on two
subsets of images, one of which was used for parameter tuning
and the other for validation. The segmentation results were
slightly worse for the validation subset, probably due to the fact
that this data set contained more cases with high grade cancer
that are generally more difficult to segment. Nevertheless, the
results on this validation set provide a good idea of the
performance of the algorithm in real life scenarios.

We did not perform standardization of the tissue appearance
[28], in as much as the techniques we used aim for robustness
with respect to variation in the preparation of the samples that
is within the “nominal range”. However, it should be noted that
very poor sample preparation (such as very thick sections,
overstraining, poorly fixed tissue etc.) or poor digitization (failed
autofocusing, stitching artifacts etc.) can adversely affect the
segmentation technique. Still, these problems rarely occur and
can be remedied with a stricter quality control during the tissue
preparation and slide scanning.

Figure 5.  Plot of the performance measures.  A–C) Performance measures referring to subset A. D–F) Performance measures
referring to subset B.
doi: 10.1371/journal.pone.0070221.g005
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One possible point of improvement of our segmentation
technique may be the inclusion of a pre-segmentation step that
divides the tissue into epithelial and stromal regions. This
would help to eliminate some of the false positives that arise in
the stromal areas. Another improvement would be the use of a
dedicated lymphocyte segmentation/detection procedure, as
presented in [7].

In our current work, we decided to concentrate on nuclear
size features and nuclear architecture, because these are more
robust with respect to the tissue preparation and staining
processes compared with nuclear shape and chromatin texture
features. For this purpose, elliptical approximations of the
contours were sufficient. However, this approximation is a
drawback when certain morphometric shape features need to
be calculated. If computation of shape features is required, our
segmentation algorithm can be extended to include an
additional step of refining the contours.

The implementation of the method was done in MATLAB.
The segmentation procedure for one image of size 1000×1000
pixels takes approximately 90 seconds on a PC with an Intel
Core2Quad Q9500 processor. We note that this is only an
experimental implementation, with processing times too slow
for full slide segmentation, but further speed improvements are
possible. In addition to this, tissue sampling methods [29,30],

and/or supervised extraction of relevant regions of interest
[31,32] can be used in order to reduce the number of regions
from the full slide that need to be processed, while still
providing a relevant result.

In another recent study [33] we have shown that the mean
nuclear area (MNA) measurement extracted with the method
presented in this paper is a relevant prognostic marker in a
cohort of 101 male breast cancer patients, outperforming the
traditional nuclear pleomorphism score. Development of other
prognostic markers, derived for example from analysis of the
nuclear texture or architecture of the tissue is also a possibility.
This analysis can potentially be done on whole slide images,
which opens the possibility for integration into the workflow of
routine pathology practice. Segmentation of nuclei can also be
used, in a bottom-up manner, to locate the tumor regions within
the slide or to assess the degree of tubule formation.

In conclusion, we have presented an accurate technique for
automated segmentation of nuclei in images derived from
digital slides of H&E stained breast cancer sections. The
technique was evaluated on a number of representative
regions and showed good performance in terms of detection
and segmentation accuracy. This technique can be used to
estimate prognostically relevant quantitative features such as
MNA for breast cancer grading.

Figure 6.  Scatter plot of the mean nuclear area as calculated by manual and automatic segmentation of nuclei.  
doi: 10.1371/journal.pone.0070221.g006
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Supporting Information

Figure S1.  Contours with increasing values for the solidity
feature.  The range of values from left to right: s∈(0,0.5),s∈
(0.5,0.75),s∈(0.75,0.875),s∈(0,875,0.9375),s∈(0.9375,1).
(TIF)

Figure S2.  Contours with increasing values for the
boundary saliency feature.  The range of values from left to
right: l∈(-255,0), l∈(0,10),l∈(10,20),l∈(20,40),l∈(40,255).
(TIF)

Figure S3.  Contours with increasing values for mass
displacement feature.  The range of values from left to right:

d∈[0,0.02], d∈[0.02,0.04],d∈[0,0.08],d∈[0.08,0.16],d∈
[0.16,1].
(TIF)

Author Contributions

Conceived and designed the experiments: MV PJvD AH MAV
JPWP. Performed the experiments: MV. Analyzed the data: MV
PJvD JPWP. Wrote the manuscript: MV AH MAV JPWP.
Selected cases for the training set and graded them for nuclear
pleomorphism: PJvD. Performed manual nuclei segmentation:
RK. Retrieved and scanned the histological slides: AH. Made
suggestions and revisions of the manuscript and approved it for
publication: MV PJvD RK AH MAV JPWP.

References

1. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast
cancer. I. The value of histological grade in breast cancer: experience
from a large study with long-term follow-up. Histopathology 19:
403-410. doi:10.1111/j.1365-2559.1991.tb00229.x. PubMed: 1757079.

2. Robbins P, Pinder S, de Klerk N, Dawkins H, Harvey J et al. (1995)
Histological grading of breast carcinomas: a study of interobserver
agreement. Hum Pathol 26: 873-879. doi:
10.1016/0046-8177(95)90010-1. PubMed: 7635449.

3. Meijer GA, Beliën JA, van Diest PJ, Baak JP (1997) Origins of ... image
analysis in clinical pathology. Journal of Clinical Pathology 50:
365-370..

4. Beliën JA, Baak JP, van Diest PJ, van Ginkel AH (1997) Counting
mitoses by image processing in Feulgen stained breast cancer
sections: the influence of resolution. Cytometry 28: 135-140. doi:
10.1002/(SICI)1097-0320(19970601)28:2. PubMed: 9181303.

5. Bamford P, Lovell B (1998) Unsupervised cell nucleus segmentation
with active contours. Signal Process 71: 203-213. doi:10.1016/
S0165-1684(98)00145-5.

6. Cosatto E, Miller M, Graf HP, Meyer JS (2008) Grading nuclear
pleomorphism on histological micrographs. International Conference
on Pattern Recognition (ICPR): IEEE. pp. 1-4..

7. Fatakdawala H, Xu J, Basavanhally A, Bhanot G, Ganesan S et al.
(2010) Expectation-maximization-driven geodesic active contour with
overlap resolution (EMaGACOR): application to lymphocyte
segmentation on breast cancer histopathology. IEEE Trans Biomed
Eng 57: 1676-1689. doi:10.1109/TBME.2010.2041232. PubMed:
20172780.

8. Ali S, Madabhushi A (2012) An Integrated region-, boundary-, shape-
based active contour for multiple object overlap resolution in
histological Imagery. IEEE Trans Med Imaging 31: 1448-1460. doi:
10.1109/TMI.2012.2190089. PubMed: 22498689.

9. Wienert S, Heim D, Saeger K, Stenzinger A, Beil M et al. (2012)
Detection and segmentation of cell nuclei in virtual microscopy images:
a minimum-model approach. Scientific Rep 2: 503. PubMed: 22787560.

10. Beucher S, Meyer F (1993) The morphological approach to
segmentation: the watershed transformation. In: Dougherty Er, editor.
Mathematical Morphology in Image Processing. pp. 433-481

11. Mousses S, Caplen NJ, Cornelison R, Weaver D, Basik M et al. (2003)
RNAi microarray analysis in cultured mammalian cells. Genome Res
13: 2341-2347. doi:10.1101/gr.1478703. PubMed: 14525932.

12. Malpica N, de Solórzano CO, Vaquero JJ, Santos A, Vallcorba I et al.
(1997) Applying watershed algorithms to the segmentation of clustered
nuclei. Cytometry 28: 289-297. PubMed: 9266748.

13. Yang X, Li H, Zhou X (2006) Nuclei Segmentation Using marker-
controlled watershed, tracking using mean-shift, and kalman filter in
time-lapse microscopy. IEEE Transactions on Circuits and Systems I:
Regular Papers 53: 2405-2414

14. Huang PW, Lai YH (2010) Effective segmentation and classification for
HCC biopsy images. Pattern Recognit 43: 1550-1563. doi:10.1016/
j.patcog.2009.10.014.

15. Kachouie NN, Fieguth P, Gamble D, Jervis E, Ezziane Z et al. (2010)
Constrained watershed method to infer morphology of mammalian cells
in microscopic images. Cytometry A 77A: 1148-1159. doi:10.1002/
cyto.a.20951. PubMed: 20872884.

16. Gurcan MN, Boucheron L, Can A, Madabhushi A, Rajpoot N et al.
(2009) Histopathological image analysis: a review. IEEE Reviews in
Biomedical Engineering 2: 147-171

17. Fleege JC, van Diest PJ, Baak JP (1993) Systematic random sampling
for selective interactive nuclear morphometry in breast cancer sections.
Refinement and multiobserver evaluation. Anal Quant Cytol Histol 15:
281-289. PubMed: 8397649.

18. Jannink I, Bennen JN, Blaauw J, van Diest PJ, Baak JP (1995) At
convenience and systematic random sampling: effects on the
prognostic value of nuclear area assessments in breast cancer
patients. Breast Cancer Res Treat 36: 55-60. doi:10.1007/BF00690185.
PubMed: 7579507.

19. Veta M, Huisman A, Viergever MA, van Diest PJ, Pluim JPW (2011)
Marker-controlled watershed segmentation of nuclei in H&E stained
breast cancer biopsy images. International Symposium on Biomedical
Imaging (ISBI): IEEE. pp. 618-621.

20. Ruifrok AC, Johnston DA (2001) Quantification of histochemical
staining by color deconvolution. Anal Quant Cytol Histol 23: 291-299.
PubMed: 11531144.

21. Garini Y, Young IT, McNamara G (2006) Spectral imaging: principles
and applications. Cytometry A 69: 735-747. PubMed: 16969819.

22. Vincent L (1993) Morphological grayscale reconstruction in image
analysis: applications and efficient algorithms. IEEE Trans Image
Process 2: 176-201. doi:10.1109/83.217222. PubMed: 18296207.

23. Loy G, Zelinsky A (2003) Fast radial symmetry for detecting points of
interest. IEEE Trans Pattern Anal Machine Intell 25: 959-973. doi:
10.1109/TPAMI.2003.1217601.

24. Kong H, Gurcan M, Belkacem-Boussaid K (2011) Partitioning
histopathological images: an integrated framework for supervised color-
texture segmentation and cell splitting. IEEE Trans Med Imaging 30:
1661-1677. doi:10.1109/TMI.2011.2141674. PubMed: 21486712.

25. Sertel O, Lozanski G, Shana’ah A, Gurcan MN (2010) Computer-aided
detection of centroblasts for follicular lymphoma grading using adaptive
likelihood-based cell segmentation. IEEE Trans Biomed Eng 57:
2613-2616. doi:10.1109/TBME.2010.2055058. PubMed: 20595077.

26. Schmitt O, Hasse M (2008) Radial symmetries based decomposition of
cell clusters in binary and gray level images. Pattern Recognit 41:
1905-1923. doi:10.1016/j.patcog.2007.11.006.

27. Chekkoury A, Khurd P, Ni J, Bahlmann C, Kamen A et al. (2012)
Automated malignancy detection in breast histopathological images.
Proc SPIE 8315.

28. Kayser K, Gortler J, Metze K, Goldmann T, Vollmer E et al. (2008) How
to measure image quality in tissue-based diagnosis (diagnostic surgical
pathology). Diagn Pathol 3: S1. doi:10.1186/1746-1596-3-S1-S1.
PubMed: 18673497.

29. Kayser K, Schultz H, Goldmann T, Görtler J, Kayser G et al. (2009)
Theory of sampling and its application in tissue based diagnosis. Diagn
Pathol 4: 6. doi:10.1186/1746-1596-4-6. PubMed: 19220904.

30. Belhomme P, Oger M, Michels J-J, Plancoulaine B, Herlin P (2011)
Towards a computer aided diagnosis system dedicated to virtual
microscopy based on stereology sampling and diffusion maps. Diagn
Pathol 6: S3. doi:10.1186/1746-1596-6-S1-S3. PubMed: 21489198.

31. Gutiérrez R, Gómez F, Roa-Peña L, Romero E (2011) A supervised
visual model for finding regions of interest in basal cell carcinoma

Nuclei Segmentation in Breast Cancer Images

PLOS ONE | www.plosone.org 11 July 2013 | Volume 8 | Issue 7 | e70221

http://dx.doi.org/10.1111/j.1365-2559.1991.tb00229.x
http://www.ncbi.nlm.nih.gov/pubmed/1757079
http://dx.doi.org/10.1016/0046-8177(95)90010-1
http://www.ncbi.nlm.nih.gov/pubmed/7635449
http://dx.doi.org/10.1002/(SICI)1097-0320(19970601)28:2
http://www.ncbi.nlm.nih.gov/pubmed/9181303
http://dx.doi.org/10.1016/S0165-1684(98)00145-5
http://dx.doi.org/10.1016/S0165-1684(98)00145-5
http://dx.doi.org/10.1109/TBME.2010.2041232
http://www.ncbi.nlm.nih.gov/pubmed/20172780
http://dx.doi.org/10.1109/TMI.2012.2190089
http://www.ncbi.nlm.nih.gov/pubmed/22498689
http://www.ncbi.nlm.nih.gov/pubmed/22787560
http://dx.doi.org/10.1101/gr.1478703
http://www.ncbi.nlm.nih.gov/pubmed/14525932
http://www.ncbi.nlm.nih.gov/pubmed/9266748
http://dx.doi.org/10.1016/j.patcog.2009.10.014
http://dx.doi.org/10.1016/j.patcog.2009.10.014
http://dx.doi.org/10.1002/cyto.a.20951
http://dx.doi.org/10.1002/cyto.a.20951
http://www.ncbi.nlm.nih.gov/pubmed/20872884
http://www.ncbi.nlm.nih.gov/pubmed/8397649
http://dx.doi.org/10.1007/BF00690185
http://www.ncbi.nlm.nih.gov/pubmed/7579507
http://www.ncbi.nlm.nih.gov/pubmed/11531144
http://www.ncbi.nlm.nih.gov/pubmed/16969819
http://dx.doi.org/10.1109/83.217222
http://www.ncbi.nlm.nih.gov/pubmed/18296207
http://dx.doi.org/10.1109/TPAMI.2003.1217601
http://dx.doi.org/10.1109/TMI.2011.2141674
http://www.ncbi.nlm.nih.gov/pubmed/21486712
http://dx.doi.org/10.1109/TBME.2010.2055058
http://www.ncbi.nlm.nih.gov/pubmed/20595077
http://dx.doi.org/10.1016/j.patcog.2007.11.006
http://dx.doi.org/10.1186/1746-1596-3-S1-S1
http://www.ncbi.nlm.nih.gov/pubmed/18673497
http://dx.doi.org/10.1186/1746-1596-4-6
http://www.ncbi.nlm.nih.gov/pubmed/19220904
http://dx.doi.org/10.1186/1746-1596-6-S1-S3
http://www.ncbi.nlm.nih.gov/pubmed/21489198


images. Diagn Pathol 6: 26. doi:10.1186/1746-1596-6-26. PubMed:
21447178.

32. Romo D, Romero E, González F (2011) Learning regions of interest
from low level maps in virtual microscopy. Diagn Pathol 6: S22. doi:
10.1186/1746-1596-6-22. PubMed: 21489193.

33. Veta M, Kornegoor R, Huisman A, Verschuur-Maes AH, Viergever MA
et al. (2012) Prognostic value of automatically extracted nuclear
morphometric features in. Mod Pathol 25: 1559-6155. doi:10.1038/
modpathol.2012.126. PubMed: 22899294.

Nuclei Segmentation in Breast Cancer Images

PLOS ONE | www.plosone.org 12 July 2013 | Volume 8 | Issue 7 | e70221

http://dx.doi.org/10.1186/1746-1596-6-26
http://www.ncbi.nlm.nih.gov/pubmed/21447178
http://dx.doi.org/10.1186/1746-1596-6-22
http://www.ncbi.nlm.nih.gov/pubmed/21489193
http://dx.doi.org/10.1038/modpathol.2012.126
http://dx.doi.org/10.1038/modpathol.2012.126
http://www.ncbi.nlm.nih.gov/pubmed/22899294

	Automatic Nuclei Segmentation in H&E Stained Breast Cancer Histopathology Images
	Introduction
	Materials and Methods
	Breast cancer cases
	Ground truth segmentation
	Overview of the method
	Color unmixing
	Morphological operations
	Fast radial symmetry transform
	Marker imposition and segmentation
	Post-processing
	Merging results from multiple scales
	Evaluation

	Results
	Discussion and Conclusions
	Supporting Information
	References


