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Automatic Ontology Matching Via Upper
Ontologies: A Systematic Evaluation

Viviana Mascardi, Angela Locoro, Paolo Rosso

Abstract—“Ontology matching” is the process of finding correspondences between entities belonging to different ontologies. This
paper describes a set of algorithms that exploit upper ontologies as semantic bridges in the ontology matching process and presents
a systematic analysis of the relationships among features of matched ontologies (number of simple and composite concepts, stems,
concepts at the top level, common English suffixes and prefixes, ontology depth), matching algorithms, used upper ontologies, and
experiment results. This analysis allowed us to state under which circumstances the exploitation of upper ontologies gives significant
advantages with respect to traditional approaches that do no use them. We run experiments with SUMO-OWL (a restricted version of
SUMO), OpenCyc and DOLCE. The experiments demonstrate that when our “structural matching method via upper ontology” uses
an upper ontology large enough (OpenCyc, SUMO-OWL), the recall is significantly improved while preserving the precision obtained
without upper ontologies. Instead, our “non structural matching method” via OpenCyc and SUMO-OWL improves the precision and
maintains the recall. The “mixed method” that combines the results of structural alignment without using upper ontologies and structural
alignment via upper ontologies improves the recall and maintains the F-measure independently of the used upper ontology.

Index Terms—Ontology Matching, Upper Ontology.
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1 INTRODUCTION

In a paper that dates back to 2001, J. A. Hendler predicted
that “in the next few years virtually every company, university,
government agency or ad hoc interest group will want their
web resources linked to ontological content - because of the
many powerful tools that will be available for using it” [20].
Hendler’s vision has found a partial realisation: ontologies,
web services, and the combination of both, i.e., semantic
web services, are increasingly exploited to share knowledge
within and outside the boundaries of companies and other
organisations.

However, although probably most companies, universities,
and government agencies would want to link their web re-
sources to a common ontological content, few of them have
already implemented this vision.

The delay with respect to Hendler’s predictions has a
theoretical explanation in the impossibility theorem applied to
ontologies: when independent and autonomous organisations
need to select one common ontology in order to interoperate,
“no ontology can be maximum for all individuals and the
group, i.e. some individuals or the group will lose when an
ontology is adopted over some other ontology” [31].

Suggestions for overcoming the impediments in the use
of one single shared ontology in an integrated knowledge-
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based system come from consolidated research results by the
database community. There, the addressed issue was to support
semantic heterogeneity in a federation of autonomous, hetero-
geneous, loosely-coupled database systems, allowing each of
them to keep its own database and its own independence. In
that situation, the impossibility theorem does not apply: the
problem is not to agree upon one single database that meets
the needs of all the federated systems, but to provide each fed-
erated system with the means to interoperate with others. One
solution ([19], [23], [37]) is to find the correspondences be-
tween objects that model similar information in distinguished
database systems and allow each federated system to exploit
these correspondences for exchanging information. To fully
support interoperability, the federated database systems must
share a set of commonly understood concepts and relationships
among them which may be structured in different ways: a “se-
mantic dictionary” [19], a “dynamic classificational ontology”
[23], a “federated schema” [37]. This common knowledge
is used as a “semantic bridge” between the systems to be
integrated, which keep using their own underlying databases.

The set of commonly understood concepts may be designed
before the integration takes place, and may be developed by
hand. This is the solution adopted by [19] and [37] where a
“sharing advisor” and the user are in charge of defining the
semantic dictionary and the federated schema, respectively.
The dynamic classificational ontology [23] consists of one por-
tion built by a human administrator, and another automatically
derived from it.

In order to keep the human out of the loop, an alternative
approach is to draw the set of commonly understood concepts
and relationships from some existing repository containing
general concepts that are the same across all domains. In the
ontology field, ontologies of this kind are known as “upper
ontologies” [47]. Within a group of interoperating organisa-
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tions, the upper ontology would only be exploited for boosting
the retrieval of semantically meaningful correspondences. No
organisation would be asked to substitute its own domain
ontology with it, thus agreeing on it should not raise the
problems discussed in [31].

This paper is about the usage of existing upper ontologies
for improving the results of automatic ontology matching,
namely the activity of automatically finding correspondences
between entities belonging to two or more ontologies.

Many events and publications address ontology match-
ing. Starting from 2004, an Ontology Alignment Contest
(now named Ontology Alignment Evaluation Initiative, OAEI,
http://oaei.ontologymatching.org/) is run every year with the
purpose of establishing a consensus for evaluating schema
matching and ontology integration methods. The Ontology
Matching portal, http://www.ontologymatching.org, lists more
than 250 publications and provides free access to all of them,
and in 2007 the book Ontology Matching [10] was published.
The use of ontologies in computer science dates back to the
early nineties [17]. The problem of finding correspondences
among them was raised about seven years later, although
similar problems had been addressed many years before in
the database community as discussed above. Semi-automatic
ontology matching and merging systems appeared since 1998
([22], [30], [28], just to cite some of the oldest ones) but
the first formalisation of the ontology matching problem dates
back to 2000 [5]. As an effect of such a growing interest in the
ontology matching problem, many matching techniques have
been proposed including those that use background knowledge
and domain ontologies for improving the matching results.
Surprisingly, very few attempts to exploit “upper ontologies”
in a systematic way have been made so far. The work described
in this paper consists of a systematic and repeatable experi-
mentation on the use of a selected set of upper ontologies
as bridges for improving the results of the matching process,
together with a careful analysis of the obtained results.

The paper is organised in the following way: Section 2
introduces the ontology matching problem, upper ontologies,
and existing proposals to use background knowledge for
boosting the ontology matching process. Section 3 discusses
the algorithms we used, whereas Section 4 describes the
methodology we followed for running our experiments, the
ontologies we matched, and the results we obtained. Section
5 concludes and outlines the future directions of our work.

2 RELATED WORK

To the best of our knowledge, no concrete attempts to exploit
upper ontologies to face the ontology matching problem have
been reported in the literature, apart from our preliminary
work described in [26] and LOM, a Lexicon-based Ontology
Mapping Tool [25].

LOM uses four methods to match the vocabularies from any
two ontologies: (1) whole term matching; (2) word constituent
matching; (3) synset matching; and (4) type matching.

Type matching exploits the mappings from WordNet synsets
to the SUMO and MILO ontologies (see Section 2.2), for the
source terms that are unmatched in the first three methods.

The main difference between our approach and LOM’s one,
is that ours can be adopted with any upper ontology which
is given as an input parameter to our matching algorithm,
whereas LOM is based on SUMO. Although we are not
aware of other approaches like LOM’s one and ours for
ontology matching via upper ontologies, research on both
ontology matching and upper ontologies is extremely lively
and produced important results. Having some knowledge on
these results is needed to understand our approach.

This section discusses the state-of-the-art of ontology
matching techniques and tools, and describes the upper on-
tologies used in our experiments: Cyc, DOLCE and SUMO.
Finally, this section analyses existing proposals of exploiting
background knowledge for boosting ontology matching.

2.1 Ontology Matching

In the sequel we give an account of the concepts that we
will use throughout the paper and of the metrics that we
used for computing our alignments. We follow the terminology
proposed in [10] and we adopt the same definitions given there,
as well as the same symbols within figures, simplifying them
for our purposes if it is the case.

Definition 2.1. (Matching Process). A matching process can
be seen as a function f which takes two ontologies o and o′,
a set of parameters p and a set of oracles and resources r,
and returns an alignment A between o and o′.

A schematic representation of this process is given in Figure
1.

Figure 1. Matching process, adapted from [11]

Definition 2.2. (Correspondence). A correspondence between
an entity e belonging to ontology o and an entity e′ belonging
to ontology o′ is a 5-tuple < id, e, e′, R, conf > where:

• id is a unique identifier of the correspondence;
• e and e′ are the entities (e.g. properties, classes, individ-

uals) of o and o′ respectively;
• R is a relation such as “equivalence”, “more general”,

“disjointness”, “overlapping”, holding between the enti-
ties e and e′.

• conf is a confidence measure (typically in the [0, 1]
range) holding for the correspondence between the en-
tities e and e′;

In our experiments, we only considered classes as entities
and equivalence as relation.

Definition 2.3. (Alignment). An alignment of ontologies o
and o′ is a set of correspondences between entities of o and
o′.
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Very often, the main activity of a matching method is to
measure a pair-wise similarity between entities and to compute
the best match between them. These methods exploit the
definitions of similarity and of distance, and may be roughly
classified into “name-based”, “structure-based”, “extensional”
and “semantic-based” according to the kind of input they
operate on. We only use name-based techniques that enable
to measure how much an entity of an ontology is related to
an entity of another ontology by comparing the names of the
entities themselves. In particular, we adopt both string-based
and language-based methods.

Definition 2.4. (Similarity measure). A similarity measure
σ : o × o → R is a function from a pair of entities to a real
number expressing the similarity between two objects such
that:

∀x, y ∈ o, σ(x, y) ≥ 0 (positiveness)

∀x, y, z ∈ o, σ(x, x) ≥ σ(y, z) (maximality)

∀x, y ∈ o, σ(x, y) = σ(y, x) (symmetry)

The dissimilarity is the dual operation of the similarity.

Definition 2.5. (Distance). A distance (or metric) δ : o×o→
R is a dissimilarity function such that:

∀x, y ∈ o, δ(x, y) = 0 iff x = y (definiteness)

∀x, y, z ∈ o, δ(x, y) + δ(y, z) ≥ δ(x, z) (triangular ineq.)

A (dis)similarity is normalised if it ranges over the interval
[0, 1] of real numbers.

The methods introduced below use normalised measures1.
String-based methods. These methods measure the similarity
of two entities just looking at the strings (seen as mere
sequences of characters) that label them. They include:

Substring Distance: measures the ratio of the longest
common substring of two strings with respect to their length.
n-gram Distance: two strings are the more similar, the more

n-grams (sequences of n characters) in common they have [7].
SMOA Measure: similarity of two strings is a function of

their commonalities (in terms of substrings) as well as of their
differences [39].

We used the above measures for implementing our algo-
rithms. The experiments reported in [39] demonstrate that
they are the most stable2 ones if compared to others such as
Levenstein, Jaro-Winkler, Monge-Elkan, Smith-Waterman, and
Needleman-Wunsch.
Language-based methods. These methods exploit natural lan-
guage processing techniques to find the similarity between two
strings seen as meaningful pieces of text rather than sequences
of characters. Some of these methods exploit external re-
sources, such as WordNet [27], that provide semantic relations
such as synonymy, hyponymy, hypernymy, to compute the
similarity.

1. In its original formulation, SMOA returns a value in [−1, 1], but most
existing implementations map this value to the [0, 1] interval.

2. “Stability” is defined as the ability of a string metric to perform almost
optimal even if small divergences from the optimal threshold take place.

Many implemented tools and algorithms for ontology
matching exist. Chapter 6 of [10] analyses 50 systems divided
into schema-based (25), instance-based (12), mixed (11), and
meta-matching (2). Discussing them is out of the scope of this
paper.

2.2 Upper Ontologies

There are few implemented upper ontologies: BFO [16], Cyc
[24], DOLCE [11], GFO [21], PROTON [8], Sowa’s ontology
[38], and SUMO [29].

Synoptic tables for comparing them are provided in Ap-
pendix A. The choice of Cyc, DOLCE and SUMO for carrying
our experiments out is motivated by their dimension: together
with PROTON, they are the largest upper ontologies available.
As our experiments demonstrated, we expected that using a
small upper ontology would not help the matching process
and thus dimension was the first criterion we followed in our
choice. However, while PROTON is no longer maintained,
Cyc, DOLCE and SUMO are extremely lively projects.

Cyc: The Cyc Knowledge Base (KB), http://www.cyc.
com/, developed by Cycorp, is a formalised representation
of facts, rules of thumb, and heuristics for reasoning about
the objects and events of everyday life. The KB consists of
terms and assertions which relate those terms. These assertions
include both simple ground assertions and rules. The Cyc KB
is divided into thousands of “microtheories” focused on a
particular domain of knowledge, a particular level of detail,
a particular interval in time, etc. Cyc is a commercial product,
but Cycorp also released OpenCyc (http://www.cyc.org/), the
open source version of the Cyc technology, and ResearchCyc
(http://research.cyc.com/), namely the Cyc ontology delivered
with a research-only license. Both OpenCyc and ResearchCyc
are more limited than the commercial version. The Commer-
cial Cyc KB (including Cyc’s microtheories) contains more
than 300,000 concepts and nearly 3,000,000 assertions (facts
and rules), using more than 15,000 relations. Instead, OpenCyc
includes about 26,000 concepts, 4,800 data properties, and
62,000 individuals. However, unlike proprietary Cyc, all of the
rules which define these terms are omitted in OpenCyc. Cyc
is represented in the CycL formal language (http://www.cyc.
com/cycdoc/ref/cycl-syntax.html). The latest release of Cyc
includes an Ontology Exporter that allows to export specified
portions of Cyc to OWL [44] files. Cyc has been used in
the domains of natural language processing, in particular
for the tasks of word sense disambiguation and question
answering, of network risk assessment, and of representation
of terrorism-related knowledge. The last release of Cyc (as
well as of OpenCyc and ResearchCyc) includes links between
Cyc concepts and about 12,000 WordNet synsets.

DOLCE: DOLCE (a Descriptive Ontology for Linguis-
tic and Cognitive Engineering), http://www.loa-cnr.it/DOLCE.
html, has been developed by the researchers of the Laboratory
for Applied Ontology, headed by N. Guarino. DOLCE is
the first module of the WonderWeb Foundational Ontologies
Library. It has a clear cognitive bias, in the sense that it
aims at capturing the ontological categories underlying natural
language and human common sense. According to DOLCE,
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different entities can be co-located in the same space-time.
DOLCE is described by its authors as an “ontology of partic-
ulars”, which the authors explain as meaning an ontology of
instances, rather than an ontology of universals or properties.
The taxonomy of the most basic categories of particulars
assumed in DOLCE includes, for example, abstract quality,
abstract region, amount of matter, physical quality, temporal
region. DOLCE is implemented in First Order Logic, KIF [3],
and OWL. Its OWL version contains around 250 concepts
and 320 properties, divided into 10 sub-ontologies. DOLCE
is used in many projects (http://www.loa-cnr.it/dolcevar.html)
that include multilingual information retrieval from legal
databases, semantic web techniques for improving the re-
trieval of learning material, semantic-based knowledge flow
system for the European home textiles industry. DOLCE-
Lite-Plus has been aligned to about 100 WordNet synsets
(http://www.loa-cnr.it/ontologies/OWN/OWN.owl). The OWL
version of DOLCE can be freely downloaded from http:
//www.loa-cnr.it/ontologies/DLP_397.owl.

SUMO: SUMO (Suggested Upper Merged Ontol-
ogy), http://www.ontologyportal.org/, was initially designed at
Teknowledge Corporation by I. Niles and A. Pease, with a
contribution by C. Menzel. SUMO and its domain ontolo-
gies [29] form one of the largest formal public ontology
in existence today. They are being used for research and
applications in search, linguistics and reasoning. SUMO is
extended with many domain ontologies and a complete set of
links to WordNet, and is freely available. SUMO consists of
SUMO itself (the official latest version on the IEEE web site
can be downloaded from www.ontologyportal.org), the MId-
Level Ontology (MILO), and ontologies of Communications,
Countries and Regions, Distributed Computing, Economy,
Finance, Engineering Components, Geography, Government,
Military, North American Industrial Classification System,
People, Physical Elements, Transnational Issues, Transporta-
tion, Viruses, World Airports. Additional ontologies of ter-
rorism are available on request. SUMO contains about 1,000
terms and 4,000 axioms; if we consider also the terms and
axioms of its domain ontologies, however, it reaches the
dimension of 20,000 terms and 60,000 axioms. SUMO is
implemented in the first-order logic language SUO-KIF (http://
suo.ieee.org/SUO/KIF/suo-kif.html) that can be automatically
translated into OWL, although the translation is lossy. The ap-
plications of SUMO are documented by hundreds of published
papers describing its use (http://www.ontologyportal.org/Pubs.
html). The largest user community is in linguistics, but other
classes of applications include “pure” representation and rea-
soning. Applications range from academic to government, to
industrial ones. Since May 2007, SUMO has been mapped to
all of WordNet 3.0 by hand. SUMO is free and owned by the
IEEE. The ontologies that extend SUMO are available under
GNU General Public License.

2.3 Ontology matching with background ontologies
The work closest to ours is the one reported in [2] that
discusses the experiments carried out for matching the
anatomy-related portions of CRISP (The Computer Re-
trieval of Information on Scientific Projects, http://crisp.

cit.nih.gov/) and MeSH (The Medical Subject Headings
(MeSH), http://www.nlm.nih.gov/mesh/) using the FMA ontol-
ogy (The Foundational Model of Anatomy ontology, http://sig.
biostr.washington.edu/projects/fm/) as background knowledge.
Aleksovski and his colleagues performed five experiments.
First of all, a direct alignment of CRISP and MeSH was
computed, based on string-based and structural methods. Then,
both CRISP and MeSH were aligned with FMA, using the
same string-based and structural methods, and the obtained
alignments were used to induce an alignment between CRISP
and MeSH. The results obtained by the authors showed that
matching via FMA found many more narrower-than and
broader-than relations between couples of concepts in CRISP
and MeSH than the direct matching. FMA provided the
knowledge needed for finding relationships that, otherwise,
could not be found by only analysing CRISP and MeSH.

These experiments are less general than ours, both because
the FMA ontology is not an upper ontology, and because
they are restricted to a specific domain. Nevertheless, the
conclusion they lead to is coherent with our results: by in-
creasing the recall and keeping a comparable precision, “using
comprehensive background knowledge in form of ontology can
boost the ontology matching process as compared to a direct
matching of the two ontologies.” Similar experiments, leading
to the same results, are described in [1] and [40]. None of
these three works exploits upper ontologies, and all of them
apply to a specific application domain, the medical one.

The use of textual and lexical resources, WordNet in partic-
ular, as background knowledge has been proposed by many re-
searchers, [41], [15], [34], [6], [13], [14]. An original proposal
comes from [35] who discuss the exploitation of the semantic
resources available online. In [36] a Conceptual Ontological
Graph is used to model concepts representing the key terms
extracted from a document and to perform sophisticated text
retrieval tasks based on term semantics rather than on the
classical term frequency. Since we concentrate on ontology
matching via background ontologies (upper ontologies in our
case), approaches based on textual, lexical, and semantic web
resources fall out of the scope of our paper.

3 ALGORITHMS FOR AUTOMATIC ONTOLOGY
MATCHING VIA UPPER ONTOLOGIES

For demonstrating the advantages of using upper on-
tologies in the matching process, we implemented the
uo_match, structural_uo_match, and mixed_match algo-
rithms. Structural_uo_match looks at the identity between
c ∈ o and a super-concept of c′ ∈ o′ (and vice versa), or
between super-concepts of c and c′, to decide whether c and c′

are related; uo_match does not look at the ontology structure.
Both of them exploit upper ontologies as bridges between
o and o′. Mixed_match aggregates the results obtained by
structural_uo_match and structural_parallel_match, a
matching algorithm discussed in Section 3.1 that does not use
upper ontologies.

The algorithms we implemented compute correspondences
between concepts only. We created reference alignments that
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only match concepts, and we discarded correspondences be-
tween individuals and between properties from the alignments
computed by our algorithms. The reason of our choice is that
finding correspondences between properties in a meaningful
way requires to also take their domain and range into ac-
count. For example, the property “has_pet” between a kid
and a domesticated animal has not the same meaning as
the property “has_pet” between a patient and the results of
a Positron Emission Tomography scanning, and they should
not be related in any way. In a similar way, computing a
correspondence between individuals would require to consider
their class into account. It makes no sense to match the “apple”
individual in o, and the “apple” individual in o′, if they are
instances of “fruit” and “computerBrands”, respectively. The
API we used for computing similarity measures cannot take
domain, range, and class into account in the correct way. This
also explains our choice of discarding property restrictions
when exploring the sub- and super-classes, and considering
only subClassOf relations with simple entities used as their
property values. Implementing algorithms that overcome these
limitations is recognised to be an hard task, and is not our
principal objective.

When computing an alignment, different ontology mis-
matches may arise. In two papers that date back to 1997
[42] and 1998 [43], P. R. S. Visser et al. classify them into
(1) conceptualisation mismatches that arise when two (or
more) conceptualisations of a domain differ in the ontological
concepts distinguished or in the way these concepts are related
and (2) explication mismatches due to differences in the
way the conceptualisation is specified (abstracting from the
ontology implementation language). The process of solving
ontology mismatches is also named “ontology reconciliation”
and it “is generally a human-mediated process, [...] because
most of the decisions on how to resolve the kinds of ontological
mismatches [...] require a human to identify that different
symbols represent the same concept, or that the same symbols
represent different concepts” [18].

Our algorithms are fully automatic and hence they cannot
cope with all the possible ontology mismatches. In particular,
they do not face conceptualisation mismatches, but we are
not aware of any automatic tool that copes with them in
a satisfactory way. Instead, our algorithms can solve many
(even if not all) Term and Definiens and Term mismatches.
These mismatches arise when two concepts are synonyms.
The exploitation of WordNet allows our algorithms to create
correspondences between c and c′ if both of them belong
to WordNet and they are defined as synonyms there. This
happened for example in the third test we run (see Section 4.2),
where the correspondence between Sea in the Geofile ontology
and Ocean in the Space ontology was found because they are
synonyms in WordNet. The usage of upper ontologies may
correctly match two concepts that have the same meaning but
that were not recognised as synonyms in WordNet. Referring
to the third test again, the structural_uo_match algorithm
used with SUMO-OWL allowed us to find the correspondence
between School in Geofile and Educational_structure in Space
which was discovered neither by the WordNet-based method,
nor by string-based ones. On the other hand, our algorithms

cannot recognise Concept and Definiens and Concept mis-
matches that arise when two concepts are homonyms. In
fact, concepts with the same syntax are always matched with
confidence 1. In the ten tests we run, however, concepts
represented by the same string always had the same meaning
(for example, Book in Ka and Book in Bibtex, in the first test).

This section describes our matching algorithms and their
implementation. In section 3.1 we describe the auxiliary
functions we developed for implementing them. Uo_match
is discussed in Section 3.2, structural_uo_match in Section
3.3, and mixed_match in Section 3.4. Section 3.5 provides
some details on their implementation.

3.1 Auxiliary functions
Uo_match is based on three functions: aggregate(a, a′),
parallel_match(o, o′, res, par), and compose(a, a′), where
o and o′ are ontologies, a and a′ are alignments, res are
external resources, and par are parameters. All the three
functions return an alignment.
Aggregate(a, a′) produces the alignment obtained by mak-

ing the union of all the correspondences in a and a′, and
choosing the correspondence with highest confidence measure,
in case the same correspondence3 belongs to both a and a′.
Parallel_match(o, o′, res, par) computes an alignment

between o and o′ by applying substring, n-gram, SMOA,
and language-based methods introduced in Section 2.1 in
parallel, as suggested in [10, Chap. 5.1], and aggregating
them. The only external resource we use is WordNet (res =
{WordNet}), which is given in input to the language-based
method, and the only parameter is a configurable threshold in
[0, 1] used for discarding correspondences that are not relevant,
since their confidence is lower than it (par = {th}). In order to
simulate the parallelism of the aggregation process, aggregate
is initially called on the first two alignments obtained by
running the first two matching algorithms; the output is then
aggregated with the third alignment, and so on. Figure 2 gives
a representation of this process. We may notice that not all the
matching methods take WordNet as input. In fact, substring,
n-gram, SMOA do not use external resources.

Figure 2. Parallel matching:
parallel_match(o, o′, {WordNet}, {th}).

Compose(a, a′) computes the alignment a′′ in such a way
that a correspondence 〈id, c, c′, r, conf〉 belongs to a′′ iff ∃ cu
such that 〈id1, c, cu, r, conf1〉 ∈ a, 〈id2, c

′, cu, r, conf2〉 ∈ a′,
and conf = conf1 ∗ conf2. In our algorithm the inputs of
compose, a and a′, are alignments between o and the upper

3. “Same” apart from the correspondence identifier.
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ontology u, and o′ and u, respectively. Thus, the second
concept cu in the correspondences belongs to u. If both c ∈ o
and c′ ∈ o′ correspond to the same concept cu ∈ u, then
c and c′ are related via r with confidence conf1 ∗ conf2.
The choice of conf1 ∗ conf2 as confidence of the resulting
alignment ensures that the confidence remains in [0, 1], and
that initial high confidences lead to a resulting confidence
which is still high, whereas at least one low confidence leads
to a low resulting confidence.

Besides the parallel_match function, we implemented the
structural_parallel _match function that implements a sort
of “structure-based extension” of the alignment a output
by parallel_match. Structural_parallel_match adds to a
those correspondences 〈id, c, c′, r, conf〉 such that
• either c is identical to one of c′’s super-concepts (or vice

versa, c′ is identical to one of the super-concepts of c),
• or c and c′ have two super-concepts, say s ∈ o and s′ ∈ o′

respectively, identical.
In a similar way, we implemented a structural_compose

function that composes two alignments considering correspon-
dences involving super-concepts into account. We prefixed the
names of these functions with structural because they look
at the structure of the matched ontologies.
Structural_compose takes a decay factor df ∈ [0, 1], used

to measure the “confidence decay” as we consider relations
that involve super-concepts. In our experiments, df has been
set to 0.5. It also takes the upper ontology u used as the
reference ontology for computing a and a′ as input, since it
must be navigated in order to find the super-concepts of a
given concept.
Structural_compose(a, a′, u, df) computes the alignment

a′′ between o and o′ via u in such a way that a correspondence
〈id, c, c′, r, conf〉 belongs to a′′ if either
• ∃ cu such that 〈id1, c, cu, r, conf1〉 ∈
a, 〈id2, c

′, cu, r, conf2〉 ∈ a′, and conf = conf1 ∗ conf2,
or

• ∃ cu, c
′
u such that 〈id1, c, cu, r, conf1〉 ∈

a, 〈id2, c
′, c′u, r, conf2〉 ∈ a′, c′u is a super-concept

of cu in u, and conf = conf1 ∗ conf2 ∗ df (note the
confidence decay multiplicative factor), and vice versa.

• ∃ cu, c
′
u such that 〈id1, c, cu, r, conf1〉 ∈

a, 〈id2, c
′, c′u, r, conf2〉 ∈ a′, cu and c′u have a common

super-concept in u, and conf = conf1 ∗ conf2 ∗ df2

(note the power factor applied to the confidence decay).

3.2 Uo_match algorithm
The uo_match(o, o′, u, res, par) function just calls

compose
(parallel_match(o, u, res, par),
parallel_match(o′, u, res, par))

with res = {WordNet} and par = {th} (Figure 3). The th
parameter has been set to 0.5 in our experiments, and u is an
upper ontology.

3.3 Structural_uo_match algorithm
Figure 4 represents the structural_uo_match function, de-
fined as

Figure 3. Matching via upper ontologies:
uo_match(o, o′, u, {WordNet}, {th}).

structural_compose(
parallel_match(o, u,WordNet, th),
parallel_match(o′, u,WordNet, th),
{u}, {df}).

Figure 4. Structural matching via upper ontologies:
structural_uo_match(o, o′, u, {WordNet}, {df, th}).

The structural_uo_match uses the parallel_match
function for computing the alignments, and not the
structural_parallel_match one. The exploitation of the
structure is deferred to the composition stage. The rea-
son why we also defined a structural_parallel_match
function is that we want to compare homogeneous match-
ing methods. Thus, in our experiments, we compared
the results of uo_match with those of parallel_match
and the results of structural_uo_match with those of
structural_parallel_match.

3.4 Mixed_match algorithm
A mixed_match algorithm obtained by aggregating the align-
ment output by the structural_parallel_match algorithm
(direct matching exploiting structure), and the one output
by the structural_uo_match algorithm (matching via upper
ontology, exploiting structure), has also been implemented.

Figure 5 graphically depicts all the activities to be
performed in order to obtain the alignment a =
mixed_match(o, o′, u, {WordNet}, {df, th}).

3.5 Implementation details
We extended the implementation of the Alignment API version
3.1, delivered on February, the 5th, 2008, and available form
http://alignapi.gforge.inria.fr/ under GNU Lesser General Pub-
lic License, with our matching methods. The methods offered
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Figure 5. Mixed matching:
mixed_match(o, o′, u, {WordNet}, {df, th}).

by the Alignment API, as well as our new methods, accept
ontologies expressed in OWL, RDF [46], RDFS [45].

Among the methods offered by the API, we used StringDis-
tAlignment, that provides the subStringDistance,
ngramDistance, and smoaDistance string metric meth-
ods, and JWNLAlignment, that computes a substring distance
between the entity names of the first ontology and the entity
names of the second ontology expanded with WordNet 3.0
synsets. To compare the performance of WordNet 3.0 w.r.t.
WordNet 2.0, we run experiments using both versions. Table
6 shows the differences in the results we obtained.

We implemented a SubSupClassAlignment method that
finds correspondences between c ∈ o and c′ ∈ o′ by looking
at string equality between one of them, and one super-concept
of the other one, or between super-concepts of both. We
also implemented the methods for alignment aggregation and
composition.

In order to discard property restrictions when exploring the
sub- and super-classes, we pre-processed the ontologies given
in input to our algorithms and removed property restrictions
from them. We used the JENA parser, http://jena.sourceforge.
net/, for the pre-processing activities.

4 EXPERIMENTATION

This section discusses the experiments carried out for un-
derstanding if, and under which circumstances, using upper
ontologies as bridges for matching o and o′ may prove useful.
Our experiments demonstrate that:
• With respect to the results obtained by non structural

direct matching, the usage of non structural methods with
SUMO-OWL and OpenCyc leads to an improvement of the
average precision (+9.7% and +16% respectively), whereas the
recall and F-measure experience a small degradation (-1.2%
with SUMO-OWL, between -1.8% and -1.7% with OpenCyc).
• With respect to the results obtained by structural direct

matching, the usage of structural methods with SUMO-OWL

and OpenCyc leads to an improvement of the average re-
call (+2.8% with SUMO-OWL and +2.9% with OpenCyc).
Precision degrades of -1.7/-1.8% and F-measure increases of
0.3/0.5%.
• The usage of structural and non structural methods with

DOLCE degrades precision, recall, and F-measure with respect
to structural and non structural direct matching.
• Combining direct matching and matching via DOLCE,

SUMO-OWL and OpenCyc always boosts recall: in all the
tests we run, the best recall was obtained by the mixed
matching method (with respect to direct matching, the average
improvement was +6.6% when using SUMO-OWL, +7.1%
with OpenCyc and +2.5% with DOLCE). This good result
is paid with a degradation of the precision (-7.7% with
SUMO-OWL, -7.4% with OpenCyc and -14% with DOLCE).
F-measure improves with SUMO-OWL and OpenCyc, and
degrades with DOLCE.

In the next sections we discuss the methodology and mea-
sures we used (Section 4.1), the ontologies we matched and
the tests we run (Section 4.2), and the results we obtained
(Section 4.3).

4.1 Measures and Methodology
As indicators for measuring how good an alignment is, we
used precision, recall and F-measure adapted for ontology
alignment evaluation [9].

Precision is defined as the number of correctly found cor-
respondences with respect to a reference alignment (true pos-
itives) divided by the total number of found correspondences
(true positives and false positives) and recall is defined as the
number of correctly found correspondences (true positives)
divided by the total number of expected correspondences
(true positives and false negatives). A perfect precision score
of 1.0 means that every correspondence computed by the
algorithm was correct (correctness), whereas a perfect recall
score of 1.0 means that all correct correspondences were found
(completeness).

To compute precision and recall, the alignment a returned
by the algorithm is compared to a reference alignment r.

Precision is given by the formula

P (a, r) =
| r ∩ a |
| a |

whereas recall is defined as

R(a, r) =
| r ∩ a |
| r |

We also use the harmonic mean of precision and recall,
namely F-measure:

F = 2 · precision · recall
precision+ recall

For carrying out our tests we followed a methodology aimed
at ensuring reproducibility of our experiments by reusing
existing ontologies and APIs. It may be summarised in the
following steps:

1) By exploiting the SWOOGLE Semantic Web Search
Engine, http://swoogle.umbc.edu/, we chose 17 ontologies
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available online and described in Appendix B. One of them
has been reduced by hand to make it more tractable. The
other 16 ones are exactly those downloaded from the Web.
Our test ontologies consist of 112 concepts on average. This
dimension is greater than that of the benchmark ontology
used in the OAEI, 2008 (http://oaei.ontologymatching.org/
2008/benchmarks/), which contains 33 concepts only.

2) We chose 3 upper ontologies to use in our tests: SUMO
(in its restricted OWL version, SUMO-OWL), Cyc (in its
open version, OpenCyc) and DOLCE. We downloaded the
OWL versions of OpenCyc and DOLCE from http://www.
cyc.com/2004/06/04/cyc and http://www.loa-cnr.it/ontologies/
DLP_397.owl respectively. The SUO-KIF implementation of
SUMO was retrieved from http://www.ontologyportal.org. Our
last access dates back to January, 15th, 2009. We performed a
translation of SUMO from SUO-KIF into OWL using Sigma
[32]. SUMO-OWL contains restricted versions of SUMO,
MILO, and all the domain ontologies except the terrorism and
airport ones. SUMO-OWL is an order of magnitude smaller
than the original SUMO represented in KIF, if one just counts
terms, and it is even smaller if one looks at all the axioms
necessarily lost in any translation from KIF to OWL.

3) Using the JENA parser, we pre-processed the 17 chosen
ontologies and the 3 upper ontologies to remove property
restrictions, individuals, and properties.

4) We analysed the ontologies used in our tests in terms
of total, simple and composite concepts, concepts including
the most common English suffixes and prefixes, “top-level”
concepts, ontology maximum depth, stems, and amount of
stems that also belong to upper ontologies.

5) We designed 10 tests to run, each consisting of two
ontologies to match. For each test we created a reference
alignment entirely by hand, consulting dictionaries when we
were not sure of the exact meaning of terms. The resulting
reference alignments include only and all the correspondences
entailed by a reasoning process performed by a human being
with a good knowledge of the domain. Although this reasoning
process may lead to some subjective choices, its accuracy can-
not be obtained in any other way. All the reference alignments
are available at http://www.disi.unige.it/person/MascardiV/
Software/OntologyMatchingViaUpperOntology.html.

6) For each test, we run the following algorithms:
direct alignment without exploiting structure
(parallel_match); direct alignment exploiting structure
(structural_parallel_match); alignment via SUMO-
OWL, OpenCyc, and DOLCE without exploiting structure
(uo_match); alignment via SUMO-OWL, OpenCyc, and
DOLCE exploiting structure (structural_uo_match); mixed
alignment obtained by aggregating the structural alignment
via SUMO-OWL, OpenCyc, and DOLCE and the structural
direct one (mixed_match). The computer where we run our
tests is a HP Pavillon Notebook with Intel Core Duo T2250
processor, 1.73 GHz of clock, 2 MB of Level 2 cache, FSB
533 MHz, 1 GB of RAM, and Windows XP.

7) For each test and for each algorithm run within the
test, we computed: number of correspondences found by the
algorithm; number of correct correspondences found by the
algorithm; precision; recall; F-measure; execution time. We

exploited the library of evaluators provided by the Alignment
API 3.1 for computing the first five values.

8) We aggregated the obtained results by identifying, for
each test, the algorithms that give the best precision, recall, and
F-measure and by computing the average advantage of using
upper ontologies (namely, the average difference between the
measures obtained by matching ontologies via upper ontolo-
gies and those obtained by performing the direct alignment).

9) From the obtained results we mined the rules of thumb
stating when matching via upper ontologies is feasible, when
useful, and when useless depending on the features of the
matched ontologies.

4.2 Matched Ontologies and Tests

The 17 ontologies used in our tests are described in Appendix
B. Tables 1, 2, and 3 summarise the features that best charac-
terise them.

Table 1 shows the results of our analysis of ontologies
“as they are”. We divided concepts belonging to an ontology
(TotC) into simple (SC) and composite (CC) depending
on their structure: for example, Classification is a simple
concept whereas GeographicArea, Job_title, Politics-The-Diet
are composite. We computed the number of top concepts of
each ontology, meant as the number of concepts just below
Thing, and the maximum depth of the tree induced by the
subClassOf relation. When there was only one concept below
Thing, we also counted the number of concepts at the second
level. This is highlighted by a number written as 1 + n
in column Top, where 1 is the only concept below Thing,
and n are the concepts below it. We counted the number of
concepts containing the most common English prefixes (Pre)
and suffixes (Suf), as defined by [12]. We only considered
prefixes and suffixes with at least three letters.

Table 2 shows the results of our analysis based on natural
language processing techniques. For each ontology used in our
tests, as well as for the three upper ontologies, we created a
bag of unique stemmed words in the following way:

1) We automatically tokenised composite concepts obtaining
the list of simple words within them. We did not take collo-
cations, namely sequences of words or terms which co-occur
more often than would be expected by chance, into account.

2) We manually corrected tokenisation errors in the 17
test ontologies (for example, the automatic tokeniser divided
PSMevaluation in Ka into PS and Mevaluation, instead of into
PSM and evaluation). Due to their dimension, we could not
perform this manual revision on upper ontologies.

3) We removed stop words from the bags of words ob-
tained after completing steps 1 and 2. We used the 319
stop words defined by the Information Retrieval Research
Group of Glasgow University, http://ir.dcs.gla.ac.uk/resources/
linguistic_utils/stop_words.

4) We applied Porter’s algorithm [33] to remove the com-
moner morphological and inflectional endings from each word
in each bag, thus obtaining bags of unique stemmed words for
the 17 test ontologies and the 3 upper ones.

Column Stems of Table 2 shows the number of stems for
each test ontology; column S-OWL shows the number of
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Table 1
Quantitative analysis of raw data

Onto. TotC SC CC Top
(%)

Depth
(%)

Pre
(%)

Suf
(%)

Agent 130 61
(47%)

69
(53%)

6
(5%)

7
(5%)

5
(4%)

33
(25%)

Bibtex 15 8
(53%)

7
(47%)

1+14
(7%–
100%)

2
(13%)

1
(7%)

2
(13%)

Bios. 88 64
(73%)

24
(27%)

2
(2%)

5
(6%)

0
(0%)

9
(10%)

Eco. 157 46
(29%)

111
(71%)

1+5
(0%–
4%)

8
(5%)

1
(0%)

49
(31%)

Food 139 37
(27%)

102
(73%)

1+4
(1%–
4%)

5
(4%)

2
(1%)

3
(2%)

Geo. 85 36
(42%)

49
(58%)

5
(6%)

4
(5%)

3
(3%)

28
(33%)

HL7. 60 30
(50%)

30
(50%)

6
(10%)

3
(5%)

3
(5%)

10
(17%)

Ka 96 36
(38%)

60
(62%)

1+7
(1%–
8%)

6
(6%)

3
(3%)

33
(34%)

MPEG7 349 240
(69%)

109
(31%)

1+7
(0%–
2%)

5
(1%)

8
(2%)

49
(14%)

Rest. 164 21
(13%)

143
(87%)

17
(10%)

3
(2%)

9
(5%)

17
(10%)

Resume 167 106
(63%)

61
(37%)

19
(11%)

3
(2%)

3
(2%)

51
(31%)

Space 165 103
(62%)

62
(38%)

1+3
(1%–
2%)

6
(4%)

5
(3%)

26
(16%)

Subj. 171 55
(32%)

116
(68%)

8
(5%)

4
(2%)

3
(2%)

22
(13%)

Topbio 65 15
(23%)

50
(77%)

1+2
(2%–
5%)

6
(9%)

5
(8%)

33
(50%)

Travel 84 50
(60%)

34
(40%)

1+2
(1%–
4%)

6
(7%)

1
(1%)

16
(19%)

Vac. 32 14
(44%)

18
(56%)

3
(9%)

3
(9%)

1
(3%)

4
(12%)

Vert. 20 14
(70%)

6
(30%)

20
(100%)

1
(5%)

0
(0%)

0
(0%)

common stems between the test ontology and SUMO-OWL,
and column S-OWL% shows the ratio of common stems with
respect to the total number of stems of the test ontology (S-
OWL/Stems). The last four columns have the same meaning
as the second and third ones, but OpenCyc and DOLCE are
considered.

Table 3 provides an objective description of the ontology
domains. For extracting information on the domains in an
automatic way, we tried three different approaches: 1) a
statistical analysis of occurrence of stems in the bag of unique
stemmed words, 2) the exploitation of WordNet Domains [4]
associated with ontology stems, and 3) the analysis of concepts
at the top level (or at the second level, if the top one contained
only one concept).

The frequency of stems in the bag of unique stemmed words
was significant in some cases (the most frequent stems in
Vacation are “vacation” and “relax” which correctly describe
the ontology purpose), but failed in other cases (each stem in

Table 2
Quantitative analysis of stemmed concepts

Onto. Stems S-
OWL

S-
OWL% OCyc OCyc% DOL DOL%

Agent 135 90 67% 123 91% 13 10%
Bibtex 15 3 20% 6 40% 0 0%
Bios. 83 40 48% 61 73% 0 0%
Eco. 129 82 64% 108 84% 25 19%
Food 94 40 43% 77 82% 5 5%
Geo. 104 84 81% 97 93% 12 12%
HL7. 69 52 75% 65 94% 8 12%
Ka 100 59 59% 84 84% 17 17%
MPEG7 331 151 46% 276 83% 22 7%
Rest. 183 88 48% 166 91% 6 3%
Resume 157 98 62% 139 89% 24 15%
Space 177 118 67% 167 94% 9 5%
Subj. 185 109 59% 151 82% 20 11%
Topbio 60 34 57% 51 85% 17 28%
Travel 71 45 63% 66 93% 8 11%
Vac. 25 17 68% 22 88% 4 16%
Vert. 26 17 65% 24 92% 1 4%

the bag associated with Bibtex appears only once, thus giving
a flat frequency).

The exploitation of WordNet Domains failed in most cases.
Many stems are associated with the factotum domain and many
others are associated with two or three semantically heteroge-
neous domains. Also, the amount of WordNet Domains that
tag stems of an ontology are often too many to give a useful
hint on the prevalent ontology domains. A concrete example
comes from Ka, which models the knowledge acquisition
community (its researchers, topics, products): 30 stems were
tagged as belonging to factotum; 7 stems were tagged with
two domains; 2 stems were tagged with three domains; the
domains associated with stems are more than 30 including art,
photography, religion, sport, town_planning. Some domains
are associated with more than one stem, thus suggesting
that the domain is more important than others, but this is
not enough for understanding what the ontology is about.
The domain person occurs 8 times, whereas pedagogy occurs
5 times, industry 4, university and publishing 3. The stem
“knowledg”, one among those that best characterises Ka, is
tagged with psychological_features that occurs only 2 times
and does not contribute to understanding Ka’s domain.

Since implementing a reliable algorithm for automatic ex-
traction of the ontology domain was far from the scope of this
paper, the failures we experienced with the first two methods
led us to use top concepts for describing ontologies from a
qualitative perspective. This approach, which was the simplest
to implement, gave satisfactory results in many cases, although
it failed for Top-bio, Travel, and Vacation ontologies whose
top concepts are meaningless. We feel that the combination of
the three approaches should lead to better results.

Finally, Table 4 describes the tests we run. For each test, we
show the two matched ontologies (o and o’), the stems they
have in common (CS), and the ratio between common stems
and total number of different stems (CS / (St(o) + St(o’) -
CS)).
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Table 3
Qualitative analysis of the ontology domain

Onto. Concepts at the top level(s)
Agent Activity, Agent, Degree, Gender, Job_title, Language

Bibtex
Entry + (Article, Book, Booklet, Conference, Inbook, Incollec-
tion, Inproceedings, Manual, Mastersthesis, Misc, Phdthesis,
Proceedings, Techreport, Unpublished)

Bios. LivingThing, MarineAnimal

Eco.
EcologicalConcepts + (EcologicalEntity, EcologicalEnviron-
ment, EcologicalProcess, EcologicalTerminology, Ecological-
Trait)

Food ConsumableThing + (EdibleThing, PotableLiquid, Meal-
Course, Meal)

Geo. Classification, GeographicArea, InstallationType, Location,
Status

HL7.
RBAC_Reference_Model_Elements, Human, Industry,
Organizational_Resources, Organization, Organiza-
tional_Tax_Category

Ka Object + (Event, Organization, Person, Product, Project, Pub-
lication, ResearchTopic)

MPEG7 MPEG7Genre + (Animations-special_effect, Drama, Enrich-
ment, Entertainment, Information, Movies, Music)

Rest.

Atmosphere, Beverage, Catering, Cuisine, DatePeriod, Dish,
Facility, Meal, OpeningPeriod, Rating, Restaurant, Restaurant-
GroupParty, RestaurantSeating, Review, Show, SpecialFeature,
TimePeriod

Resume

Accomplishment, Address, Award, Career, ContactInfo, De-
gree, Education, Experience, ExpertiseArea, Industry, Knowl-
edge, Name, Organization, Patents, Person, Publication, Re-
sume, Title, ValuePartition

Space Spatial_entity + (Geographical_feature, Geopolitical_entity,
Place)

Subj. AppliedSciences, ArtsAndHumanities, Business, History, In-
terdisciplinaryStudies, Law, Sciences, SocialSciences

Topbio Domain_entity + (Refining_entity, Self_standing_entity)
Travel MetaObject + (Domain, DomainIndependent)
Vac. CBR_DESCRIPTION, CBR_INDEX, CBRCASE

Vert.

Blood, Body_proper, Brain, Bronchus, Cardiac_valve,
Half_heart, Head, Heart, Laterality_selector_value,
Left_laterality_value, Limb, Liver, Lobe, Lung, Neck,
Pericardium, Right_laterality_value, Stomach, Trachea, Trunk

Table 4
Tests run

Test o o’ CS CS / (St(o) + St(o’) - CS)
1 Ka Bibtex 3 3%
2 Biosphere Top-bio 0 0%
3 Space Geofile 29 12%
4 Restaurant Food 10 4%
5 MPEG7 Subject 49 10%
6 Travel Vacation 4 4%
7 Resume Agent 26 10%
8 Resume HL7_RBAC 28 14%
9 Ecology Top-bio 12 7%
10 Vertebrate Top-bio 3 4%

4.3 Experimental results

In this section we provide a synthesis of the results of our
tests and we discuss them. The complete results can be found
in Appendix C.

Table 5 shows the algorithms that gave the best precision,
recall, and F-measure for each test, together with their values
(in round brackets). S-OWL stands for SUMO-OWL and
OCyc for OpenCyc. Dir stands for “Direct alignment”, NS

Table 5
Algorithm that gives the best precision, recall, F-measure

Best prec. Best rec. (no
mixed)

Best rec.
(mixed) Best F-meas.

1 OCyc, NS
(0.71)

S-OWL, S
(0.12)

S-OWL
(0.13)

S-OWL, S
(0.18)

2 Dir, NS & S
(0.23)

Dir, NS & S;
DOLCE, NS &
S; S-OWL, S
(0.01)

S-OWL;
DOLCE
(0.02)

S-OWL, M;
DOLCE, M
(0.04)

3 OCyc, NS
(0.55)

Dir, NS & S
(0.07)

S-OWL;
OCyc;
DOLCE
(0.10)

OCyc, M
(0.13)

4 OCyc, NS
(0.42) OCyc, S (0.08) OCyc (0.08) OCyc, S & M

(0.12)

5 OCyc, NS
(0.47)

S-OWL, S
(0.17)

OCyc;
DOLCE
(0.23)

S-OWL, NS;
OCyc, NS
(0.22)

6 Dir, NS & S
(0.38)

Dir, NS & S
(0.07)

S-OWL;
DOLCE
(0.09)

S-OWL, M
(0.14)

7 S-OWL, NS
(0.44)

Dir, S; OCyc, S
(0.06) OCyc (0.10) OCyc, M

(0.14)

8 OCyc, NS
(0.71) Dir, S (0.16) S-OWL

(0.22)
OCyc, NS
(0.20)

9 Dir, NS & S
(0.32)

Dir, NS & S; S-
OWL, S (0.09)

S-OWL
(0.15)

Dir, NS &
S; OCyc, M
(0.14)

10 OCyc, NS
(0.67) OCyc, S (0.47) OCyc (0.47) OCyc, S (0.24)

means “No Structure”, S means “with Structure”, and M means
“Mixed”. Sometimes, different algorithms led to the same
result. In those cases we listed them all. As far as recall is
concerned, we show both the results obtained by methods
different from the mixed one (Best rec. (no mixed)) and
those obtained by all methods, including mixed one (Best rec.
(mixed)). Since mixed method outperforms all the other ones,
the results shown in column Best rec. (mixed) always refer
to it and we drop the “M” for readability.

Table 6 synthesises the average advantage in using upper
ontologies vs. not using them. Each row refers to the com-
parison of results obtained by using a given upper ontology
(first element of the row’s name) and a given method (second
element of the row’s name: again, NS means “No Structure”,
S means “with Structure”, and M means “Mixed”), and those
obtained by performing the direct alignment with the same
method.

For example, cell ((S-OWL, NS), Precision) reports the
average difference in precision between aligning ontologies
using SUMO-OWL and performing the direct alignment,
both without exploiting the ontology structure. If we identify
the precision obtained using SUMO-OWL without structure
in experiment i with p(S-OWL, NS, i), and the precision
obtained by performing the direct alignment without structure
in experiment i with p(Dir, NS, i), then

(S-OWL, NS, Precision) =
Σ10

i=1 (p(S-OWL, NS, i) - p(Dir, NS, i)) / 10

When the mixed method is used, we compared its results
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Table 6
Average advantage in using upper ontologies

Precision Recall F-measure
S-OWL, NS 0.097 -0.012 [-0.013] -0.012 [-0.011]
OCyc, NS 0.160 [0.157] -0.018 [0.019] -0.017 [-0.018]
DOLCE, NS -0.131 [-0.145] -0.025 [-0.027] -0.046 [-0.049]
S-OWL, S -0.018 [-0.021] 0.028 0.003 [0.000]
OCyc, S -0.017 [-0.004] 0.029 [0.030] 0.005 [0.014]
DOLCE, S -0.140 [-0.162] -0.021 [-0.031] -0.045 [-0.053]
S-OWL, M -0.077 [-0.089] 0.066 0.014 [0.016]
OCyc, M -0.074 [-0.070] 0.071 [0.070] 0.022 [0.024]
DOLCE, M -0.140 [-0.158] 0.025 [0.020] -0.018 [-0.023]

with those of the direct alignment that gives the best F-measure
on that test.

We run the same experiments by exploiting both WordNet
3.0 and WordNet 2.0 as external resource. In square brackets
we report the results obtained with WordNet 2.0, if different
from those obtained with WordNet 3.0. The improvement with
using WordNet 3.0 is negligible.

In order to explain the results we obtained, we carried out
a systematic analysis of the relationships among ontology
features, methods used, and obtained results, and we
mined rules of thumb when possible. We only compared
“pure direct” methods and “pure upper ontology-based”
ones (second column of Table 5) when we analysed the
relationships between recall and ontology features. For sake
of readability, in the sequel uo stands for upper ontology-
based.

Structural, non structural and mixed uo methods. As far as
precision is concerned, when non structural uo methods suc-
ceed (in 70% of our tests) they ensure a significant precision
(at least 42% in test 4, but the average on the 7 successful tests
is 57%). When they fail, the precision of the succeeding direct
matching is not as good: 38% at most, 31% on average. The
mixed method outperforms all the other ones when we look
at recall but, if we only look at the second column of Table 5,
we note that the best recall is always obtained by methods that
exploit structure. However the precision of structural methods
is greater or equal than that of non structural ones only in tests
2, 6, 9.

By exploiting structure, many correct correspondences that
were not found by non structural methods can be retrieved
and recall improves. Unfortunately, the same holds for wrong
correspondences: those that were not retrieved by non struc-
tural methods, may be found when looking at the ontology
structure. If we think of wrong correspondences as noise, the
exploitation of structure causes a lot of noise which lowers its
precision.

Similar considerations explain the results of the mixed
method. As far as recall is concerned, the mixed method
outperforms all the other ones (third column of Table 5)
because it returns all correct correspondences that can be found
with both direct and structural uo methods. Besides returning
them, however, it also returns all the wrong correspondences
and this easily explains its low precision.

Mined rule: if precision is more important than recall then
choose a non structural uo method, otherwise choose either
one structural uo method or the mixed one.

Ontology dimension. Since the number of concepts of our on-
tologies ranges from 15 (Bibtex) to 349 (MPEG7), we divided
the interval [15, 349] into three sub-intervals with the same
dimension in order to categorise our ontologies into small (less
than 127 concepts), medium (from 127 to 238 concepts), and
large (more than 239 concepts). Bibtex, Biosphere, Geofile,
HL7_RBAC, Ka, Top-bio, Travel, Vacation and Vertebrate are
small. MPEG7 is large. All the remaining ones are medium.

Tests that involve at least one small ontology (1, 2, 3, 6,
8, 9, 10) give very heterogeneous results. In 3 of them the
best precision is obtained by structural and non structural
direct methods, in the remaining ones by uo methods. Similar
considerations on the heterogeneity of results hold for recall.

When no small ontologies are involved (tests 4, 5, 7),
results are more coherent: uo methods give the best precision
(OpenCyc NS in two tests, SUMO-OWL NS in one) and the
best recall (in test 7 the direct structural method has the same
performance as OpenCyc, S). The best F-measure is obtained
with OpenCyc and SUMO-OWL.
Mined rule: when at least one matched ontology is small,
no rule can be mined; when no small ontologies are involved
in the test, uo methods perform better.

Simple and composite terms. We divided the test ontolo-
gies into three broad categories according to the amount of
composite and simple terms: balanced, where both simple
and composite terms are in the range [40%, 60%], composite,
where composite terms are more than 60%, and simple, where
simple terms are more than 60%. Agent, Bibtex, Geofile,
HL7_RBAC, Travel, and Vacation are balanced; Ecology,
Food, Ka, Restaurant, Subject, and Top-bio are composite;
Biosphere, MPEG7, Resume, Space, Vertebrate are simple. In
tests that involve one balanced and one unbalanced ontology
(1, 3, 7, 8), the best precision is always obtained by non
structural uo methods (OpenCyc in tests 1, 3, 8; SUMO-OWL
in test 7), whereas the best recall is obtained by SUMO-OWL
with structure in test 1, by a direct method in tests 3 and 8, and
by both uo and direct methods in test 7. In the only test that
involves two balanced ontologies, test 6, the best precision
and recall are obtained by direct methods (both with and
without structure). Tests that involve simple-composite and
composite-composite ontologies give heterogeneous results:
the best precision is given by direct methods in some tests
(2, 9) and by uo methods in other tests (4, 5, 10). The recall
is the same either using one uo method or a direct one in tests
2 and 9, whereas it is higher when a uo method is used in
tests 4, 5, and 10.
Mined rule: non structural uo methods give the best precision
when one balanced and one unbalanced ontology are matched.

Common English suffixes and prefixes. We divide ontologies
into two balanced categories: those where concepts containing
common prefixes and suffixes are strictly less than 20% (Bio-
sphere, Food, MPEG7, Restaurant, Space, Subject, Vacation,
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Vertebrate), that we name poor, and the other ones (Agent,
Bibtex, Ecology, Geofile, HL7_RBAC, Ka, Resume, Top-bio,
Travel), that we name rich.

In tests that involve both poor ontologies (4, 5), best
precision, recall and F-measure are obtained by uo methods.
In tests that involve one poor and one rich ontology (2, 3, 6,
10), we have 50% of cases where uo perform better than direct
methods as far as both precision and recall is concerned (3,
10).

When two rich ontologies are matched (tests 1, 7, 8, 9), in
75% of cases uo methods give the best precision and recall,
but test 9 witnesses a better performance of direct methods,
even if we look at F-measure.
Mined rule: when both matched ontologies are poor, uo
methods give better results; in the other cases, no clear rule
can be mined.

Concepts at top-level(s). We divided ontologies into broad
(those with at least 5 concepts at the top level(s)) and nar-
row. Agent, Bibtex, Ecology, Food, Geofile, HL7_RBAC, Ka,
MPEG7, Restaurant, Resume, Subject, Vertebrate are broad;
Biosphere, Space, Top-bio, Travel, Vacation are narrow. In
tests that involve two broad ontologies (1, 4, 5, 7, 8), uo
methods perform better: the best precision is always obtained
by uo methods (OpenCyc NS in four cases, SUMO-OWL NS
in one); the best recall is obtained by uo methods in three tests,
by structural direct method in one test, and by both direct and
uo methods in the remaining test. Tests that involve two narrow
ontologies (2, 6) show an out-performance of direct methods
with respect to precision and recall (although in test 2 the same
recall is obtained by uo methods too). Mixed method gives
the best F-measure. In the three tests that involve one narrow
and one broad ontology (3, 9, 10), heterogeneous results are
obtained: the best precision is obtained by OpenCyc NS in
tests 3 and 10 and by direct methods in test 9. The best recall
is obtained by direct methods in test 3 and 9 (SUMO-OWL
S gives the same result) and by OpenCyc S in test 10. The
best F-measure is obtained by OpenCyc either mixed in tests
3 and 9 (where direct methods give the same F-measure) or
structural in test 10.
Mined rule: direct methods give a better precision when
both matched ontologies are narrow; uo methods give the
best precision when two broad ontologies are matched; recall
is not strongly influenced by the number of concepts at the
top level(s).

Maximum depth of the ontology. Eleven ontologies, that we
name shallow, have a maximum depth lower than 6 (Bibtex,
Biosphere, Food, Geofile, HL_RBAC, MPEG7, Restaurant,
Resume, Subject, Vacation, Vertebrate). The remaining six
ontologies, that we name deep, have a depth between 6 and
8. Five tests (1, 3, 6, 7, 9) involve at least one deep ontology.
In these tests uo methods give the best precision in the 60%
of cases (tests 1 and 3 with OpenCyc NS; test 7 with SUMO-
OWL NS). Best recall and F-measure are more often obtained
by direct methods. In the remaining five tests where both
ontologies are shallow the best recall is obtained by a uo
method in 60% of cases (tests 4, 5, 10; test 2 gives the same

recall when both a uo and a direct method is used) and the
best precision is obtained by a uo method in the 80% of cases
(tests 4, 5, 8, 10, with OpenCyc NS). The best F-measure is
always obtained by a uo method.
Mined rule: uo methods perform better when matched
ontologies are both shallow.

Analysis of stems. Table 4 shows, for each experiment we run,
the number of stems that appear in both matched ontologies
(CS, “Common Stems”) and the number of different stems
appearing in both ontologies (Stems(o) + Stems(o’) - CS). We
computed the ratio between these values and we observed that,
when it is greater than 8% (tests 3, 5, 7, 8), the best results
in term of precision and recall are always obtained by uo
methods. When (CS/(Stems(o) + Stems(o′)−CS)) ≤ 7%
no rule can be mined: the best precision is obtained by direct
methods in three tests (2, 6, 9) and by uo methods in the other
three (1, 4, 10).

The number of stems appearing in a test ontology that also
appear in an upper ontology (Table 2) does not influence
the results. Only 20% of Bibtex’s stems appear in SUMO-
OWL, and only 40% appear in OpenCyc. Nevertheless, uo
methods perform better than direct ones in test 1 that involves
Bibtex. On the other hand, many stems of Travel and Vacation
appear in both SUMO-OWL (63% and 68% respectively) and
in OpenCyc (93% and 88% respectively), but direct matching
between Travel and Vacation (test 6) outperforms uo methods
as far as both precision and recall are concerned.
Mined rule: uo methods perform better when the ratio
between the number of common stems and the total number
of stems of the matched ontologies is greater than 7%.

Execution time. Table 7 compares execution time, measured
in seconds, of direct methods (structural vs non structural) and
of structural, non structural and mixed methods via OpenCyc
and SUMO-OWL (considering only the on-line part of the
computation). Direct matching methods always perform better
than uo ones, but their efficiency is payed by a lower recall and
precision in most cases. The alignment a between ontology o
and upper ontology uo can be computed and stored once and
for all, and can be re-used whenever o must be matched with
another ontology o′ via uo. Thus, we consider it an off-line
activity and it does not contribute to the on-line execution
time shown in Table 7. However, we must note that aligning
an ontology o from our test set with OpenCyc turned out to
be a very time-consuming activity and required more than 6
hours in three cases, more than 4 in two cases, and from
5 minutes to 2 hours in the remaining twelve cases. The
average time was 4 hours. Instead, aligning an ontology o
with SUMO-OWL required no more than 20 minutes in all
the 17 alignments we performed (the average time was 7
minutes). In Table 7, execution time of structural and non-
structural direct methods refers to the execution time required
by structural_parallel_match and parallel_match respec-
tively. Execution time of non structural methods that involve
upper ontologies (SUMO-OWL NS vs OpenCyc NS) refers
to the composition phase only. In the same way, execution
time of structural methods via upper ontology (SUMO-OWL
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S vs OpenCyc S) refers to the time required by executing
structural_compose on pre-computed alignments o−uo and
o′ − uo. Finally, execution time of mixed methods (SUMO-
OWL M vs OpenCyc M) refers to the aggregation stage
only. If we only consider on-line activities, OpenCyc is more
efficient than SUMO-OWL when non-structural and mixed
methods are considered. However, if we consider execution
time of both on-line and off-line activities, methods that use
OpenCyc are about 35 times more time-consuming than those
based on SUMO-OWL.
Mined rule: In those situations where the developer might ac-
cept less quality but gain more performance with respect to the
time (considering both on-line and off-line activities), SUMO-
OWL is the best choice. OpenCyc ensure higher quality, but
may require hours for performing the off-line alignments.

Table 7
On-line activities: best execution time in seconds

Dir S vs
dir NS

S-OWL NS vs
OCyc NS

S-OWL S vs
OCyc S

S-OWL M
vs OCyc M

1 NS (13.89) OCyc (0.19) S-OWL (3.27) OCyc (0.16)
2 NS (5.00) OCyc (0.31) S-OWL (4.78) OCyc (0.13)
3 NS (10.85) OCyc (0.39) S-OWL (12.48) OCyc (0.69)
4 NS (30.94) OCyc (0.34) S-OWL (11.53) OCyc (0.38)
5 NS (58.56) OCyc (0.48) S-OWL (36.13) OCyc (0.94)
6 NS (6.99) OCyc (0.31) S-OWL (8.19) OCyc (0.23)
7 NS (29.99) OCyc (0.39) S-OWL (34.52) OCyc (0.55)
8 NS (12.65) OCyc (0.27) S-OWL (7.16) OCyc (0.50)
9 NS (14.47) OCyc (0.38) S-OWL (8.41) OCyc (0.34)
10 NS (3.94) S-OWL (0.25) S-OWL (3.42) OCyc (0.16)

5 CONCLUSIONS
In this paper we described a set of algorithms for exploiting
upper ontologies as bridges in the ontology matching process
and we discussed the results of our experiments.

Someone might argue that DOLCE is the only “pure upper
ontology” we used, since both SUMO-OWL and OpenCyc are
large-coverage general-purpose ontologies that include many
domain-specific concepts in addition to the upper-level ones. A
“pure upper ontology” would by definition fail to cover most
of the concepts present in a domain ontology, and DOLCE
demonstrates that this is the case.

The results of our tests may be summarised in the following
way:

1) In 70% of our experiments, the best precision was ob-
tained by methods based on upper ontologies. The best
recall is always obtained by the mixed method. The best
F-measure is always obtained by methods that exploit
upper ontologies.

2) Methods based on upper ontologies are always less ef-
ficient than direct ones. If we consider both on-line and
off-line activities, methods that use OpenCyc are always
less efficient than methods that exploit SUMO-OWL.

3) Using WordNet 3.0 instead of WordNet 2.0 gives a
negligible advantage.

4) The gap between a “pure” and foundational upper ontol-
ogy like DOLCE and the test ontologies, clearly shown

in Table 2, is too large to make DOLCE a suitable bridge
between test ontologies.

5) OpenCyc and SUMO-OWL are large and detailed enough
and give comparable results, although OpenCyc performs
slightly better than SUMO-OWL.

The main future direction of our work is to improve the
recall of our matching methods. Obtaining a precision higher
than the recall is a typical result of any automatic ontol-
ogy matching system. The results of the OAEI competitions
confirm this claim. For example, the average recall obtained
by the 7 matching systems that participated to the OAEI-
2008 competition on web directories data-set, http://www.
disi.unitn.it/~pane/OAEI/2008/directory/result/, was 30% and
the best one was 41%. These results give a measure of the
intrinsic complexity of obtaining high recall values, despite
the used matching system. The best recall we obtained in
our experiments is 47% but the average is 16%, if we only
consider the best results shown in Table 5. Some reasons
explaining the low average recall of our tests were empirically
mined from the systematic analysis carried out in Section 4.3.
Another explanation is that the ontologies involved in our test
set are definitely larger than those used for the OAEI-2008
competitions: the largest ontology from the OAEI-2008 web
directories data-set contains 16 concepts and the benchmark
OAEI-2008 ontology, http://oaei.ontologymatching.org/2008/
benchmarks/, contains 33 concepts. The largest ontology in our
test set, MPEG7, contains 349 concepts. Also, our ontologies
were neither adapted nor reduced (apart form one) for the
purpose of running our experiments. Identifying the correct
correspondences to be included in the reference alignments,
developed totally by hand to achieve the highest accuracy, was
an hard task even for a human being and it turned out to be
even harder for our automatic matching algorithms.

To overcome the limitations of our approach we are plan-
ning to consider more expressive relations, to extend our
algorithms in order to properly deal with correspondences
between individuals and properties, and to extend structural
matching methods in order to explore a more significant por-
tion of the hierarchy. Structural alignment might be extended
by taking advantage of properties and their arguments, links
among rules, links other than super/subclass structure. Taking
the comments in the OWL description into account would
also help. We are also interested in studying how much an
automatic algorithm would speed up the matching process, and
quantifying the speed-up over manual matching. Quantitative
aspects concerning time and efficiency are often neglected by
the existing literature, but experiments in this direction would
be helpful for the ontology matching community. Studying
methods for extracting the ontology domain in an automatic
way is a challenging activity that we are going to start.
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