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ABSTRACT

Automatic oracle generation techniques can find optimized quan-

tum circuits for classical components in quantumalgorithms. How-

ever, most implementations of oracle generation techniques require

that the classical component is expressed in terms of a conven-

tional logic representation such as logic networks, truth tables, or

decision diagrams. We implemented LLVM passes that can auto-

matically generate QIR functions representing classical Q# func-

tions into QIR code implementing such functions quantumly. We

are using state-of-the-art logic optimization and oracle generation

techniques based on XOR-AND graphs for this purpose. This en-

ables not only a more natural description of the quantum algo-

rithm on a higher level of abstraction, but also enables technology-

dependent or application-specific generation of the oracles.
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1 INTRODUCTION

Implementing quantum oracles is difficult. Classical Boolean ora-

cles are treated as black boxes in description of algorithms (see, e.g.,

Hamiltonian simulation [5], numerical gradient estimation [13], or

amplitude amplification [8, 10]). While the quantum parts (reflec-

tion operator in Grover, QFT in QPE) of the algorithmare described

in detail, the oracle is just a placeholder with no implementation

or at best an an example for a simple classical function. In this pa-

per, we show how to make use of the LLVM [16] infrastructure to

create a QIR-based1 tool that can automatically generate Q# oper-

ations [12, 30] for such classical oracles from Q# functions.

With the help of our approach, a developer can write a quantum

program as follows:

namespace Operations.Classical {

internal function Majority3 (a: Bool , b: Bool , c: Bool): Bool {

return (a or b) and (a or c) and (b or c);

1https://qir-alliance.org
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}

5 }

namespace Operations {

operation Majority3 (

inputs : (Qubit, Qubit, Qubit),

10 output : Qubit

): Unit {}

@EntryPoint()

operation Program (): Unit {

15 use (a, b, c) = (Qubit (), Qubit (), Qubit ());

use y = Qubit ();

Majority3 ((a, b, c), y);

}

20 }

The program contains an internal classical function Majority3 that

takes as input 3 Boolean arguments and returns a single Boolean

value that is true if and only if the majority of the input arguments

is true. The operation Majority3, with the same name but a different

namespace, is empty and will be derived using our approach. It

can then be automatically used anywhere in the code, e.g., in the

Program operation shown in the sample.

In our approach we investigate the case in which the classical

input function is defined over tuples of Boolean input arguments

and returns tuples of Boolean output values. Since Q# functions

are side-effect free, such functions can be represented by combi-

national Boolean functions 5 : B= → B
< . We will first derive

such a Boolean function from the LLVM code generated for the

Q# function. This function is then mapped to a quantum circuit

using state-of-the-art logic synthesis based quantum compilation

algorithms (see, e.g., [17–20, 22, 28]). Finally, the quantum circuit

is mapped to QIR and combined with the LLVM file generated for

the rest of the Q# program before linking. This enables a seamless

experience, in which the user is relieved from the burden of imple-

menting the classical function as a quantum operation. In addition,

the automatic quantum compilation tools employ logic optimiza-

tion to reduce the implementation cost for the oracles in terms of

operation depth and qubit count.

We implemented the proposed approach in C++ and embedded

it into a CMake compilation script. The complete implementation

is publicly available as part of the Microsoft Quantum Develop-

ment Kit samples.2

2 RELATED WORK

In [26], the authors have shown how to integrate phase oracle syn-

thesis and permutation synthesis into ProjectQ [29] using RevKit [25]

2https://github.com/microsoft/Quantum/tree/main/samples/qir/oracle-generator

http://arxiv.org/abs/2212.01740v1
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Figure 1: Proposed compilation flow

and how to integrate automatic permutation synthesis in Q# [30].

In [1], the authors describe a quantum programming flow that al-

lows to augment openQASM programs with Verilog code, which

is automatically translated into quantum circuits using tweedle-

dum [27]. In [6], the authors present the quantum programming

language silq, which maps common arithmetic operations to quan-

tum operations and supports automatic uncomputation.

3 WORKFLOW

In this section, we illustrate the complete workflow of our pro-

posed approach bywalking through the running Majority3 example

from the introduction. Fig. 1 shows an overview of the overall flow.

The Q# file is translated into QIR using the Q# compiler. This file

contains an LLVM function definition F for the classical Q# func-

tion for which an oracle should be generated and an LLVM func-

tion declaration O (without code body) for the empty operation. A

logic network is then created for F, which is further optimized us-

ing logic synthesis techniques. More precisely, we will make use of

XOR-AND-inverter graphs (XAGs), which are logic networks con-

sisting of binary XOR and binary AND gates, in which signals may

be inverted. From the logic network, LLVM code is generated to be

used as the code body for O. The resulting QIR file is compiled into

a quantum executable using additional information from a target

runtime. All thick arrows and boxes are contributions of our pro-

posed flow on top of the existing QIR compilation flow. Each sub-

section in the remainder describes one of the arrows in the figure.

3.1 Translating LLVM into a logic network

The initial LLVM code for the Majority3 function in Q# function

looks as follows:

define internal i1 @Classical_Majority3(i1 %a , i1 %b , i1 %c) {

entry:

%0 = or i1 %a , %b

br i1 %0 , label %condTrue__1 , label %condContinue__1

5

condTrue__1:

%1 = or i1 %a , %c

br label %condContinue__1

10 condContinue__1:

%2 = phi i1 [ %1 , %condTrue__1 ], [ %0, %entry ]

br i1 %2 , label %condTrue__2 , label %condContinue__2

condTrue__2:

15 %3 = or i1 %b , %c

br label %condContinue__2

condContinue__2:

%4 = phi i1 [ %3 , %condTrue__2 ], [ %2 , %condContinue__1 ]

20 ret i1 %4

}

We do not cover LLVM’s syntax in detail, but describe few concepts

that are important for the remainder of the paper. Every variable,

function, and statement is typed. The type i1 describes a 1-bit in-

teger type, which can encode a Boolean value. Variable names are

prefixed by a %. Lines such as entry: and condTrue__1: are labels and

mark the beginning of a basic block. Each basic block contains

a continuous sequence of statements. Statements may produce a

value which is assigned to some variable. The basic block entry:

marks the first basic block of the function. Examples for LLVM

statements are or which computes the Boolean or of two variables

and stores it into a result variable, or the br which jumps to some

basic block unconditionally.

The translation makes use of static single assignment (SSA) q-

nodes [16], however, their implicitness make an automatic transla-

tion into logic networks difficult.We thereforemake use of LLVM’s

reg2mem transformation pass which introduces explicit memory in-

structions to explicitly store intermediate variables. Since our ap-

proach only parses the transformed result to create a logic net-

work (and not to execute it as is), these instructions will not cause

any overhead in memory access in the target program. The trans-

formed function looks as follows:

define internal i1 @Classical_Majority3(i1 %a , i1 %b, i1 %c) {

entry:

%.reg2mem = alloca i1 , align 1

%.reg2mem1 = alloca i1, align 1

5 %.reg2mem4 = alloca i1, align 1

%.reg2mem6 = alloca i1, align 1

%.reg2mem9 = alloca i1, align 1

%.reg2mem11 = alloca i1, align 1

%"reg2mem ␣alloca␣point" = bitcast i32 0 to i32

10 %0 = or i1 %a, %b

store i1 %0 , i1* %.reg2mem6 , align 1

%.reload8 = load i1 , i1* %.reg2mem6 , align 1

br i1 %.reload8 , label %condTrue__1 , label %entry.

↩→ condContinue__1_crit_edge

15 entry.condContinue__1_crit_edge:

%.reload7 = load i1 , i1* %.reg2mem6 , align 1

store i1 %.reload7 , i1* %.reg2mem11 , align 1

br label %condContinue__1

20 condTrue__1:

%1 = or i1 %a, %c

store i1 %1 , i1* %.reg2mem4 , align 1

%.reload5 = load i1 , i1* %.reg2mem4 , align 1

store i1 %.reload5 , i1* %.reg2mem11 , align 1

25 br label %condContinue__1

condContinue__1:

%.reload12 = load i1 , i1* %.reg2mem11 , align 1

store i1 %.reload12 , i1* %.reg2mem1 , align 1

30 %.reload3 = load i1 , i1* %.reg2mem1 , align 1

br i1 %.reload3 , label %condTrue__2 , label %condContinue__1.

↩→ condContinue__2_crit_edge

condContinue__1.condContinue__2_crit_edge:

%.reload2 = load i1 , i1* %.reg2mem1 , align 1

35 store i1 %.reload2 , i1* %.reg2mem9 , align 1

br label %condContinue__2

condTrue__2:

%2 = or i1 %b, %c

40 store i1 %2 , i1* %.reg2mem , align 1

%.reload = load i1 , i1* %.reg2mem , align 1

store i1 %.reload , i1* %.reg2mem9 , align 1
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Figure 2: Initial logic network generated from LLVM code

br label %condContinue__2

45 condContinue__2:

%.reload10 = load i1, i1* %.reg2mem9 , align 1

ret i1 %.reload10

}

This adds a lot of boilerplate, but most of the statements corre-

spond to simple operations when building the logic network. Start-

ing with nodes for the primary inputs based on the function pa-

rameters %a, %b, and %c, all alloca statements in the basic blocks will

create temporary variables. These will be assigned some signal in

the logic network when load statements are encountered. For ex-

ample, in line 10 we first create a new signal %0 by computing the

OR of %a and %b, then store this value in variable %.reg2mem6, and load

it into another variable %.reload8. A basic block is also assigned a

signal based on the last statement in the block. The br statement,

which is the last statement in the entry basic block, translates into

a MUX operation in the logic network. Fig. 2 shows the resulting

logic network after the LLVM code for the function bas been com-

pletely processed.

3.2 Optimizing the logic network

Only simple logic optimizations such as constant propagation (e.g,

1 ∧ G = G) or structural hashing [15] (never creating nodes with

the same operator and the same operands twice) are applied when

creating the initial logic network. We can apply more advanced

logic optimization techniques to the resulting network. It is pos-

sible to give the developer control over which cost function to as-

sume, or even which sequence of optimization techniques to apply.

However, a typical optimization flow would target reducing the

number of AND gates in the logic network in favor of XOR gates,

since AND gates correspond to more complicated operations both

in near-term and error-corrected quantum computing devices [2].

This cost function relates to the multiplicative complexity [23] of

Boolean functions. Several algorithms to reduce the number of

AND gates in logic networks have been proposed [4, 7, 24, 31, 32].

In our example workflow, we employ the cut rewriting technique

described in [31]. When the number of primary inputs does not

exceed 8, we first collapse all outputs into their truth tables and

2 0 1

5 = 〈012 〉

+ +

∧

+

Figure 3: Optimized logic network

decompose them using Shannon’s decomposition rule until all in-

ternal logic nodes have 6 inputs, and use the database in [9] to map

each node into its optimal XAG representation beforehand. Fig. 3

shows the logic network after optimization. Because the network

has a single output and not more than 6 inputs, an optimum repre-

sentation is found.

3.3 Compiling a logic network into QIR

There exist various techniques that describe how to map logic net-

works into quantum circuits, such as [17–20, 22, 28]. XAG-based

methods are of particular interest due to recent optimization meth-

ods for multiplicative complexity and its close connection to re-

source cost of the quantum implementation [19, 20]. The mapping

of an XAG into an LLVM function based on QIR is straightforward.

One only needs function calls to allocate and deallocate qubits, as

well as calls to CNOT and Toffoli operations. For each AND gate

in the logic network, one computes the linear fanin in-place into

two existing qubits and then applies a Toffoli gate controlled on

these two qubits targeting a helper qubit. Eventually all outputs are

copied out using CNOT gates, before all helper qubits are uncom-

puted by applying all operations in reverse order. For our running

example the generated LLVM function looks as follows (note that

we shortened some function names for the quantum operations for

better readability):

define dso_local void @Majority3__body({ %Qubit *, %Qubit *, %Qubit *

↩→ }* %inputs , %Qubit * %output ) {

entry:

%0 = getelementptr inbounds { %Qubit *, %Qubit *, %Qubit * }, {

↩→ %Qubit *, %Qubit *, %Qubit * }* %inputs , i32 0, i32 0

%a = load %Qubit*, %Qubit ** %0 , align 8

5 %1 = getelementptr inbounds { %Qubit *, %Qubit *, %Qubit * }, {

↩→ %Qubit *, %Qubit *, %Qubit * }* %inputs , i32 0, i32 1

%b = load %Qubit*, %Qubit ** %1 , align 8

%2 = getelementptr inbounds { %Qubit *, %Qubit *, %Qubit * }, {

↩→ %Qubit *, %Qubit *, %Qubit * }* %inputs , i32 0, i32 2

%c = load %Qubit*, %Qubit ** %2 , align 8

%qs = call %Array * @__quantum__rt__qubit_allocate_array(i64 1)

10 call void @__quantum__rt__array_update_alias_count(%Array * %qs ,

↩→ i32 1)

call void @CNOT(%Qubit* %c , %Qubit* %a)

call void @CNOT(%Qubit* %c , %Qubit* %b)

%3 = call i8* @__quantum__rt__array_get_element_ptr_1d(%Array*

↩→ %qs , i64 0)

%4 = bitcast i8* %3 to %Qubit **

15 %5 = load %Qubit*, %Qubit ** %4 , align 8

call void @CCNOT(%Qubit* %a , %Qubit * %b , %Qubit * %5)

call void @CNOT(%Qubit* %c , %Qubit* %a)

call void @CNOT(%Qubit* %c , %Qubit* %b)

call void @CNOT(%Qubit* %c , %Qubit* %output )

20 call void @CNOT(%Qubit* %5 , %Qubit* %output )

call void @CNOT(%Qubit* %c , %Qubit* %a)

call void @CNOT(%Qubit* %c , %Qubit* %b)
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%6 = call i8* @__quantum__rt__array_get_element_ptr_1d(%Array *

↩→ %qs , i64 0)

%7 = bitcast i8* %6 to %Qubit **

25 %8 = load %Qubit *, %Qubit ** %7 , align 8

call void @CCNOT (%Qubit * %a , %Qubit * %b , %Qubit* %8)

call void @CNOT(%Qubit* %c , %Qubit * %a)

call void @CNOT(%Qubit* %c , %Qubit * %b)

call void @__quantum__rt__qubit_release_array(%Array * %qs)

30 call void @__quantum__rt__array_update_alias_count(%Array* %qs ,

↩→ i32 -1)

ret void

}

We can provide further control to the developer by allowing

to trade off the number of helper qubits for operation count. Re-

versible pebble games [3, 14, 21] can be used reduce the number

of qubits. This can be useful when targeting near-term devices in

which the number of qubits is highly constrained. This approach

can also supportmapping algorithms that target the operationdepth

rather than operation count [11].

4 CONCLUSION

In this paper, we described a quantum compilation flow based on

Q#, QIR, and LLVM, which creates quantum operations based on

classical function implementations. The approach leverages logic

networks and recent results in logic optimization based on mul-

tiplicative complexity. Many extensions to the proposed flow are

possible, e.g., space-efficient mapping of functions defined over in-

teger values, or automatic approximation-aware mapping of func-

tions defined over floating-point values. Further, it is of interest to

consider mapping parameterized functions, e.g., which take a dy-

namic sized array as input, since no straightforward logic network

representation exists for such cases.
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