June 11th 2008

Automatic Package and Board Decoupling Capacitor Placement Using Genetic Algorithms and M-FDM

<u>Krishna Bharath</u>, Ege Engin and Madhavan Swaminathan School of Electrical and Computer Engineering Georgia Institute of Technology

Outline

- Is there Life in ASICs in the era of nanometer designs?
- I The "Power" argument
 - Multiple-supply voltages
 - Multiple-threshold voltages
 - Voltage Islands
 - Fine Grained, Coarse Grained
 - Leakage control
 - Pushing ASIC performance with power neutral techniques

Competition: the problem with configurable fabrics

- What do you put on there :
 - IP blocks, Memories, Datapaths, top-level logic
- Compounded by the problem of IP on chip.
- Gets even worse by all the options you want to consider to minimize power:
 - Multiple voltages
 - Multi-thresholds
 - Voltage Islands
 - Coarse Grain, Fine Grain
 - Leakage

The Power arrgument: exploiting ASICs

- Multi Vdd
- Multi threshold
- Voltage Islands
 - With headers/footers
- Their application is very design specific.
 - How many voltage islands, what size, what header/footer, how many lowVt gates etc..
- Difficult to capture in configurable fabrics.
- Lead to very interesting physical design problems

Flexible physical Design approach for dual-supply voltage design

Generic Voltage Island Power Grid

Fine grained voltage islands

$$V_{ddl} = 1.2V$$

Physical Design for Ultra--low leakage

The same concept can be used to control leakage current with F/H cells in SOC designs

Voltage Island Power Issues

Power Islands design

Pros

- Reducing switching power dissipation
- Saving Standby component of power dissipation
- 🗆 Cons
 - More complicated with respect to static timing,
 - Power planning and routing
 - Floorplaning

Basic Data Structure

Each core for individual islands

- Move two core each other
- Possibility of merging them each other
- Lead to lower cost
- Lower over head for level shifter

Integrated Floorplanning

Chip level floorplanning

Trying arrange the compatible islands in adjacent position by cost function

Island level floorplanning

- Applying to each newly merged island
- □ The composing cores inside the merged islands
- Legalizing the newly generated floorplan

Solution Perturbation

- Island split move
 - Split up into a set of islands
- Island voltage change move
 - Voltage island support two or more legal supply voltage
 - Voltage level switched to one of its legal voltages
- Multi-island voltage change move
 - All the islands which supports li will be assigned to voltage li

Island Merging

- Chip level floorplanning
- The islands that are compatible are likely to be placed in adjacent position
- Two high power consumers and heater dissipater can not be placed each to relief the heat and power issue.

Reliability-Aware SoC Voltage Islands Partition and Floorplan

C1: v1(r11), v2(r12), v3(r13) C2: v1(r21), v2(r22) C3: v2(r31), v3(r32), v4(r33) C4: v3(r41), v4(r42) C5: v4(r51) C6: v1(r61) v1>v2>v3>v4

Soft Error Rate (SER) & Component Reliability Level (CRL)

Characterization of component reliability level for a particular node:

$$Q_{critical} = \int_0^{t_{critical}} I_{drain}(t) dt$$

Soft error rate:

$$SER_i = exp(\frac{Q_{criticalN} - Q_{criticali}}{Q_s})$$

• Component reliability level: $CRL_{i} = exp(-\alpha \cdot SER_{i} \cdot t)$ Soft Error Rate (SER) & Component Reliability Level (CRL) (cont.)

 Component reliability level for a macro cell

$$CRL_i = \prod_{j=1}^n R_j$$

• Chip reliability level $RL(SOC) = \prod_{i=1}^{m} RL(\Lambda_i)$

$$RL(\Lambda_i) = \prod_{j=1}^n CAR_{ij} * CRL_{ij}$$

 $CAR_{i} = \frac{i_{th} \ component \ access \ time}{application \ execution \ time}$

Reliability-aware SoC voltage Island Partition Algorithm

Input Output Ci(Vi, Ri, Pi, CARi), RL(SOC)*, DT* All possible solutions which meet the criterion

Algorithm :

- 1: For each SOC component Ci Do
- 2: calculate CRLi and CPi
- 3: End For
- 4: construct a link list (VILL) for possible voltage island partitions
- 5: For each partition in VILL Do
- 6: update the CARi for each component
- 7: calculate the deadline time DT for this partition
- 8: If $DT > DT^*$ Then

delete this partition from VILL

10: Else

9:

- 11: calculate the reliability level RL(SOC)
- 12: If $RL(SOC) < RL(SOC)^*$ Then
- 13: delete this partion from VILL
- 14: Else
- 15: calculate the power reduction
- 16: End If
- 17: End If
- 18: output the head of VILL

19: End For

- 20: sort VILL by the value of power reduction
- 21: output all the possible solutions

Penalty $DT = (1 + \delta) \times DT$ $RL(SOC) = (1 - \epsilon) \times RL(SOC)$ $P(SOC) = (1 + \eta) \times P(SOC)$

Broadband Decoupling with Multiple Decoupling Capacitors

- Multiple decoupling capacitors with resonance at different frequencies are used for broadband decoupling
- However cross resonances (or anti resonances) occur and are undesirable
- Response is a function of placement
- Of all possible combinations of decaps and corresponding placements, only a small fraction will satisfy specs
- Automatic placement can be accomplished using an optimization engine

Single Plane Pair Case: Finite Difference Scheme

$$\nabla_t^2 = \left(\frac{d^2}{dx^2} + \frac{d^2}{dy^2}\right)$$
$$k = \omega \sqrt{\mu \varepsilon} \qquad L = \mu d \qquad C = \varepsilon \frac{h^2}{d}$$

- Helmholtz wave equation: $(\nabla_t^2 + k^2)u = -j\omega\mu dJ_z$
- Finite difference mesh using square cells (mesh size h)
- At boundary, homogeneous Neumann condition is used (open circuit)
- A five-point approximation is applied to the Laplace operator
- For lossless case, wave equation $\frac{u_{i,j+1} + u_{i+1,j} + u_{i,j-1} + u_{i-1,j} - 4u_{i,j}}{j\omega L} - j\omega C u_{i,j} + I = 0$
- This gives rise to an equivalent circuit

Single Plane Pair Case: Equivalent Circuit

Unit cell model

Representative equivalent circuit

- Number of nodes increases as O(w²) where w is the linear dimension
- Overall admittance matrix size can be large
- What about solution efficiency?

Multilayer Finite Difference Method (M-FDM) Inductance matrix in multilayer unit cells

- An inductive loop is formed between each pair of planes
- However, each inductive loop is with reference to a local ground representing a return current path
- Shift reference nodes of each plane pair to the common ground

Cross-sectional view of 3-layered package

Inductance: Equivalent Circuit and Interpretation

- Combining the grounds results in a pair of coupled inductors
- L1 + L2 represents the total loop inductance between plane 1 and plane 3
- L2 represents the loop inductance between plane 2 and plane 3
- There is complete coupling of the magnetic fields between the two loops
- This is represented by the mutual element L2

M-FDM: Combined Unit Cell and Equivalent Circuit

Equivalent circuit

Matrix structure is similar (block tridiagonal)

K. Bharath, A.E. Engin, M. Swaminathan, K. Uriu and T. Yamada, "Computationally Efficient Power Integrity Simulation for System on Package Applications," in *Proc. of 44th DAC*, pp. 612 – 617, June 2007.

Approach

Inputs:

- □ Library of decoupling capacitors
- □ Package/Board design with noise source locations
- Target impedance requirements (impedance, bandwidth)
- Number of capacitors to place

Methodology:

- Each "chromosome" is a string containing decap values and corresponding locations
- □ GA works on an initial random population
- Uses concepts of elitism, mutation and crossover

Output:

Decap values and location that best satisfy target impedance

GA Encoding and Mechanics

No. of capacitors: 5

Chromosome length: 10

Crossover

Mutation

Fitness Function

- Fitness function: $f_i = \sum_{j=1}^{N_{port}} \sum_{k=1}^{N_{freq}} \left(w_1 \left[Z_{tar,j} - Z_{j,j}(k) \right] + w_2 \left[Z_{tar,j} > Z_{j,j}(k) \right] \right)$
- *w*₁ and *w*₂ : empirically determined weights
- Z_{tar,j}: Target impedance (specification) at the jth port
- Z_{j,j}: Self impedance (simulated) at the jth port

Capacitor Library

Сар	ESR (mΩ)	ESL (nH)	Res. Freq (GHz)	Сар	ESR (mΩ)	ESL (nH)	Re
27 pF	850	0.4	1.5315	8.2	88.9	0.519	
33	700	0.4	1.3853	19.8	44.3	0.572	
130	373.4	0.458	0.6523	41.1	25.7	0.435	(
174.4	313.1	0.509	0.5342	83	19.9	0.416	(
207.1	243.1	0.468	0.5112	179	15.9	0.548	(
304.7	148.6	0.413	0.4487	379	14.1	0.543	(
511.4	139.8	0.4	0.3519	0.81 uF	9.8	0.485	(
598.5	120.0	0.432	0.3137	1.93	6.7	0.686	(
1.0 nF	75.0	0.370	0.2616	3.86	4.8	0.704	(
2.2	62.1	0.426	0.1644	7.87	5.5	0.876	(
2.9	203.8	0.533	0.1280	21.2	2.7	1.628	(
4.2	141.1	0.523	0.1074	81.2	2.5	2.834	(

Madhavan Swaminathan and Ege Engin, Power Integrity Modeling and Design for Semiconductors and Systems, Prentice Hall, 2007

Results: Placement

Results: Test Case 1

Test Case 2: Multilayer Structure

Dimensions 112 mm X 97 mm Solid top and bottom layers

- SSN can couple vertically in multi-layer structures
- Decap placement can be optimized to suppress coupling between vertically separated ports

Results: Test Case 2

Thank you!

Reference Node Assignment for Two-Port Admittance Matrices

$$Y_{11}^{A}V_{1l} + Y_{12}^{A}V_{1r} = I_{1}$$
$$Y_{11}^{B}V_{2l} + Y_{12}^{B}V_{2r} = I_{2}$$

- KCL equations for isolated systems written
- When shifting ground of Y^A to ground of Y^B , enforce node current I_{bl} to contain return I_1
- Rewrite KCL equations for revised system
- Provides complete system matrix

$$I_{bl} = I_2 - I_1$$

where, $I_2 = Y_{11}^B V_{bl} + Y_{12}^B V_{br}$
 $V_{1l} = V_{al} - V_{bl}; V_{1r} = V_{ar} - V_{br}$
 $V_{2l} = V_{bl}; V_{2r} = V_{br}$
 $Y_{11}^A (V_{al} - V_{bl}) + Y_{12}^A (V_{ar} - V_{br}) = I_{al} = I_1$

$$\begin{pmatrix} I_{al} \\ I_{ar} \\ I_{bl} \\ I_{br} \end{pmatrix} = \begin{pmatrix} Y^A & -Y^A \\ -Y^A & Y^A + Y^B \end{pmatrix} \begin{pmatrix} V_{al} \\ V_{ar} \\ V_{bl} \\ V_{bl} \\ V_{br} \end{pmatrix}$$

Reference Assignment for Inductances

In this case,

$$Y^{A} = \begin{pmatrix} \frac{1}{j\omega L_{1}} & -\frac{1}{j\omega L_{1}} \\ -\frac{1}{j\omega L_{1}} & \frac{1}{j\omega L_{1}} \end{pmatrix} \qquad Y^{B} = \begin{pmatrix} \frac{1}{j\omega L_{2}} & -\frac{1}{j\omega L_{2}} \\ -\frac{1}{j\omega L_{2}} & \frac{1}{j\omega L_{2}} \end{pmatrix}$$

The combined 4-port system is represented by

Can this be represented by an equivalent circuit?

M-FDM Results: Scalability and Timing

2 representative layers of a realistic package

Simulation setup:

Dual processor 3.2 GHz workstation with 3 GB RAM

# Layers	# Nodes	Time (s)/freq point
2	38,800	0.93
3	77,600	1.78
4	116,400	3.92
5	155,200	6.8
6	194,000	10.19
7	232,800	16.33
8	271,600	23.56
9	310,400	32.99
10	349,200	42.53

Introduction

VLSI design issues

- Power optimization
- □ High performance, low power consumption
- Multi-function device on single chip
- Battery operated power saving chip

Introduction (cont.)

Power consumption

Active power and dynamic power

Introduction (cont.)

Example of Timing-critical Voltage Island

Voltage islands

- Reduce active power and dynamic power
- Performance critical logics (procesor)use highest voltage
- Memory and control logics use lower voltage
- Place to nearby power pins
- Level converters needed
- Area and delay overhead