Automatic Package and Board Decoupling Capacitor Placement Using Genetic Algorithms and M-FDM

Krishna Bharath, Ege Engin and Madhavan Swaminathan
School of Electrical and Computer Engineering Georgia Institute of Technology

Outline

- Is there Life in ASICs in the era of nanometer designs?
- I The "Power" argument
\square Multiple-supply voltages
\square Multiple-threshold voltages
\square Voltage Islands
- Fine Grained, Coarse Grained
\square Leakage control
\square Pushing ASIC performance with power neutral techniques

Competition: the problem with configurable fabrics

- What do you put on there :
\square IP blocks, Memories, Datapaths, top-level logic
- Compounded by the problem of IP on chip.
- Gets even worse by all the options you want to consider to minimize power:
\square Multiple voltages
\square Multi-thresholds
\square Voltage Islands
\square Coarse Grain, Fine Grain
\square Leakage

The Power arrgument: exploiting ASICs

- Multi Vdd
- Multi threshold
- Voltage Islands
\square With headers/footers
- Their application is very design specific.
\square How many voltage islands, what size, what header/footer, how many lowVt gates etc..
- Difficult to capture in configurable fabrics.
- Lead to very interesting physical design problems

Flexible physical Design approach for dual-supply voltage design

Generic Voltage Island Power Grid

Fine grained voltage islands

Physical Design for Ultra--low leakage

- The same concept can be used to control leakage current with F / H cells in SOC desiqns

Voltage Island Power Issues

- Power Islands design
\square Pros
- Reducing switching power dissipation
- Saving Standby component of power dissipation
\square Cons
- More complicated with respect to static timing,
- Power planning and routing
- Floorplaning

Basic Data Structure

- Each core for individual islands
\square Move two core each other
\square Possibility of merging them each other
\square Lead to lower cost
\square Lower over head for level shifter

Integrated Floorplanning

- Chip level floorplanning
\square Trying arrange the compatible islands in adjacent position by cost function
- Island level floorplanning
\square Applying to each newly merged island
\square The composing cores inside the merged islands
\square Legalizing the newly generated floorplan

Solution Perturbation

- Island split move
- Split up into a set of islands
- Island voltage change move
- Voltage island support two or more legal supply voltage
- Voltage level switched to one of its legal voltages
- Multi-island voltage change move
- All the islands which supports li will be assigned to voltage li

Island Merging

- Chip level floorplanning
- The islands that are compatible are likely to be placed in adjacent position
- Two high power consumers and heater dissipater can not be placed each to relief the heat and power issue.

Reliability-Aware SoC Voltage Islands Partition and Floorplan


```
C1:v1(r11),v2(rl2),v3(r13)
C2: v1(r21),v2(r22)
C3: v2(r31),v3(r32),v4(r33)
C4: v3(r41),v4(r42)
C5:v4(r51)
C6:vl(r61)
v1>v2>v3>v4
```


Soft Error Rate (SER) \& Component Reliability Level (CRL)

- Characterization of component reliability level for a particular node:

$$
Q_{\text {critical }}=\int_{0}^{t_{c r i t i c a l}} I_{d r a i n}(t) d t
$$

- Soft error rate:

$$
S E R_{i}=\exp \left(\frac{Q_{\text {criticalN }}-Q_{\text {criticali }}}{Q_{s}}\right)
$$

- Component reliability level:

$$
C R L_{i}=\exp \left(-\alpha \cdot S E R_{i} \cdot t\right)
$$

Component Reliability Level (CRL) (cont.)

- Component reliability level for a macro cell

$$
C R L_{i}=\prod_{j=1}^{n} R_{j}
$$

- Chip reliability level

$$
\begin{gathered}
R L(S O C)=\prod_{i=1}^{m} R L\left(\Lambda_{i}\right) \\
R L\left(\Lambda_{i}\right)=\prod_{j=1}^{n} C A R_{i j} * C R L_{i j} \\
C A R_{i}=\frac{i_{\text {th }} \text { component access time }}{\text { application execution time }}
\end{gathered}
$$

Relliability-aware SoC voltage Island Partition Algorithm

- Penalty

ᄃ. $-\overline{D T}=(1+\bar{\delta})^{-} \times D T$
$R L(S O C)=(1-\epsilon) \times R L(S O C)$
$P(S O C)=(1+\eta) \times P(S O C)$

Broadband Decoupling with Multiple Decoupling Capacitors

- Multiple decoupling capacitors with resonance at different frequencies are used for broadband decoupling

- However cross resonances (or anti resonances) occur and are undesirable
- Response is a function of placement
- Of all possible combinations of decaps and corresponding placements, only a small fraction will satisfy specs
- Automatic placement can be accomplished using an optimization engine

Single Plane Pair Case: Finite Difference Scheme

$$
\nabla_{t}^{2}=\left(\frac{d^{2}}{d x^{2}}+\frac{d^{2}}{d y^{2}}\right)
$$

$k=\omega \sqrt{\mu \varepsilon}$

$$
L=\mu d
$$

$$
C=\varepsilon \frac{h^{2}}{d}
$$

- Helmholtz wave equation:

$$
\left(\nabla_{t}^{2}+k^{2}\right) u=-j \omega \mu d J_{z}
$$

- Finite difference mesh using square cells (mesh size h)
- At boundary, homogeneous Neumann condition is used (open circuit)
- A five-point approximation is applied to the Laplace operator
- For lossless case, wave equation reduces to

$$
\frac{u_{i, j+1}+u_{i+1, j}+u_{i, j-1}+u_{i-1, j}-4 u_{i, j}}{j \omega L}-j \omega C u_{i, j}+I=0
$$

- This gives rise to an equivalent circuit

Single Plane Pair Case: Equivalent Circuit

Representative equivalent circuit

- Number of nodes increases as $\mathrm{O}\left(w^{2}\right)$ where w is the linear dimension
- Overall admittance matrix size can be large
- What about solution efficiency?

Multilayer

 Finite Difference Method (M-FDM) Inductance matrix inmultilayer unit cells

- An inductive loop is formed between each pair of planes
- However, each inductive loop is with reference to a local ground representing a return current path
- Shift reference nodes of each plane pair to the common ground

Cross-sectional view of 3-layered package

Inductance: Equivalent Circuit and Interpretation

- Combining the grounds results in a pair of coupled inductors
- L1 + L2 represents the total loop inductance between plane 1 and
 plane 3
- L2 represents the loop inductance between plane 2 and plane 3
- There is complete coupling of the magnetic fields between the two loops

- This is represented by the mutual element L2

M-FDM: Combined Unit Cell and Equivalent Circuit

Equivalent circuit

Matrix structure is similar (block tridiagonal)

Approach

- Inputs:
\square Library of decoupling capacitors
\square Package/Board design with noise source locations
\square Target impedance requirements (impedance, bandwidth)
\square Number of capacitors to place
- Methodology:
\square Each "chromosome" is a string containing decap values and corresponding locations
\square GA works on an initial random population
\square Uses concepts of elitism, mutation and crossover
- Output:
\square Decap values and location that best satisfy target impedance

GA Encoding and Mechanics

No. of capacitors: 5

Chromosome length: 10

Parent | C1 | C3 | C1 | C5 | C4 | 1 | 9 | 11 | 20 | 29 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Parent | C 3 | C 2 | C 1 | C 4 | C 5 | 5 | 8 | 15 | 24 | 31 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Crossover

C 1	C 3	C 1	C 4	C 5	1	9	15	24	31

Mutation

Child | C1 | C2 | C1 | C4 | C5 | 1 | 9 | 15 | 30 | 31 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fitness Function

- Fitness function:

$$
f_{i}=\sum_{j=1}^{N_{\text {onar }}} \sum_{k=1}^{N_{k i q}}\left(w_{1}\left[Z_{t r, j, j}-Z_{j, j}(k)\right]+w_{2}\left[Z_{t r, j}>Z_{j, j}(k)\right]\right)
$$

- w_{1} and w_{2} : empirically determined weights
- $Z_{\text {tar, }, j}$: Target impedance (specification) at the $j^{t h}$ port
- $Z_{j, j}$: Self impedance (simulated) at the $j^{\text {th }}$ port

Capacitor Library

Cap	ESR (mQ)	ESL (nH)	Res. Freq (GHz)
27 pF	850	0.4	1.5315
33	700	0.4	1.3853
130	373.4	0.458	0.6523
174.4	313.1	0.509	0.5342
207.1	243.1	0.468	0.5112
304.7	148.6	0.413	0.4487
511.4	139.8	0.4	0.3519
598.5	120.0	0.432	0.3137
1.0 nF	75.0	0.370	0.2616
2.2	62.1	0.426	0.1644
2.9	203.8	0.533	0.1280
4.2	141.1	0.523	0.1074

Cap	$\left.\begin{array}{c}\text { ESR } \\ (\mathrm{m} \Omega\end{array}\right)$	ESL (nH)	Res. Freq (GHz)
8.2	88.9	0.519	0.0771
19.8	44.3	0.572	0.0473
41.1	25.7	0.435	0.0376
83	19.9	0.416	0.0271
179	15.9	0.548	0.0161
379	14.1	0.543	0.0111
0.81 uF	9.8	0.485	0.0080
1.93	6.7	0.686	0.0044
3.86	4.8	0.704	0.0031
7.87	5.5	0.876	0.0019
21.2	2.7	1.628	0.0009
81.2	2.5	2.834	0.0003

Madhavan Swaminathan and Ege Engin, Power Integrity Modeling and Design for Semiconductors and Systems, Prentice Hall, 2007

Results: Placement

$50 \mu \mathrm{~m}-$
170 Capacitors

$25 \mu \mathrm{~m}-$
120 Capacitors

$18 \mu \mathrm{~m}-$
40 Capacitors

Results: Test Case 1

Test Case 2: Multilayer Structure

Dimensions $112 \mathrm{~mm} \times 97 \mathrm{~mm}$ Solid top and bottom layers

- SSN can couple vertically in multi-layer structures
- Decap placement can be optimized to suppress coupling between vertically separated ports

$\mathrm{Z}_{\mathrm{tar}}=200 \mathrm{mOhm}$

Results: Test Case 2

0 0 0 $0-\frac{1}{0}$ 0 0 0 0 0 0	
After Cap Placement	

Thank you!

Reference Node Assignment for

 Two-Port Admittance Matrices

$$
\begin{aligned}
& Y_{11}^{A} V_{1 l}+Y_{12}^{A} V_{1 r}=I_{1} \\
& Y_{11}^{B} V_{2 l}+Y_{12}^{B} V_{2 r}=I_{2}
\end{aligned}
$$

- KCL equations for isolated systems written
- When shifting ground of Y^{A} to ground of Y^{B}, enforce node current I_{b} to contain return I_{1}
- Rewrite KCL equations for revised system
- Provides complete system matrix

Reference Assignment for Inductances

- In this case,

$$
Y^{A}=\left(\begin{array}{cc}
\frac{1}{j \omega L_{1}} & -\frac{1}{j \omega L_{1}} \\
-\frac{1}{j \omega L_{1}} & \frac{1}{j \omega L_{1}}
\end{array}\right) \quad Y^{B}=\left(\begin{array}{cc}
\frac{1}{j \omega L_{2}} & -\frac{1}{j \omega L_{2}} \\
-\frac{1}{j \omega L_{2}} & \frac{1}{j \omega L_{2}}
\end{array}\right)
$$

- The combined 4-port system is represented by

$$
Y=\left(\begin{array}{cccc}
\frac{1}{j \omega L_{1}} & -\frac{1}{j \omega L_{1}} & -\frac{1}{j \omega L_{1}} & \frac{1}{j \omega L_{1}} \\
-\frac{1}{j \omega L_{1}} & \frac{1}{j \omega L_{1}} & \frac{1}{j \omega L_{1}} & -\frac{1}{j \omega L_{1}} \\
-\frac{1}{j \omega L_{1}} & \frac{1}{j \omega L_{1}} & \frac{1}{j \omega L_{1}}+\frac{1}{j \omega L_{2}} & -\left(\frac{1}{j \omega L_{1}}+\frac{1}{j \omega L_{2}}\right) \\
\frac{1}{j \omega L_{1}} & -\frac{1}{j \omega L_{1}} & -\left(\frac{1}{j \omega L_{1}}+\frac{1}{j \omega L_{2}}\right) & \frac{1}{j \omega L_{1}}+\frac{1}{j \omega L_{2}}
\end{array}\right)
$$

- Can this be represented by an
 equivalent circuit?

M-FDM Results: Scalability and Timing

Simulation setup:
Dual processor 3.2 GHz workstation with 3 GB RAM

\# Layers	\# Nodes	Time $(\mathbf{s}) /$ freq point
2	38,800	0.93
3	77,600	1.78
4	116,400	3.92
5	155,200	6.8
6	194,000	10.19
7	232,800	16.33
8	271,600	23.56
9	310,400	32.99
10	349,200	42.53

2 representative layers of a realistic package

Introduction

- VLSI design issues
\square Power optimization
\square High performance, low power consumption
\square Multi-function device on single chip
\square Battery operated power saving chip

Introduction (cont.)

- Power consumption
\square Active power and dynamic power

Introduction (cont.)

- Voltage islands

\square Reduce active power and dynamic power
\square Performance critical logics (procesor)use highest voltage
\square Memory and control logics use lower voltage
\square Place to nearby power pins
\square Level converters needed
\square Area and delay overhead

