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Abstract—Object-oriented (OO) software is usually orga-
nized into subsystems using the concepts of package or module.
Such modular structure helps applications to evolve when
facing new requirements. However, studies show that as soft-
ware evolves to meet requirements and environment changes,
modularization quality degrades. To help maintainers improve
the quality of software modularization we have designed and
implemented a heuristic search-based approach for automati-
cally optimizing inter-package connectivity (i.e., dependencies).
In this paper, we present our approach and its underlying
techniques and algorithm. We show through a case study how
it enables maintainers to optimize OO package structure of
source code. Our optimization approach is based on Simulated
Annealing technique.

Keywords-Reverse engineering; Re-engineering; Software
modularization; Search algorithms

I. INTRODUCTION

In object-oriented languages such as Java, Smalltalk and

C++, package structure allows people to organize their

programs into subsystems. A well modularized system

enables its evolution by supporting the replacement of

its parts without impacting the complete system. A good

organization of classes into identifiable and collaborating

subsystems eases the understanding, maintenance, test and

evolution of software systems [6].

However code decays: as software evolves over time with

the modification, addition and removal of new classes and

dependencies, the modularization gradually drifts and looses

quality [8]. A consequence is that some classes may not be

placed in suitable packages [12]. To improve the quality of

software modularization, optimizing the package structure

and connectivity is required.

Software modularization is a graph partitioning problem

[27], [28]. Since this last is known as a NP-hard problem [9],

searching for good modularization by using deterministic

procedures or exhaustive exploration of the search space

is not feasible without additional heuristics [4], [27]. We

chose then an alternative approach based on heuristic search

procedures to identify a good solution within a reasonable

amount of computing time [10].

Heuristic search methods have already been successfully

applied to the software modularization problem [5], [13],

for example, to automatically decompose and modularize

software systems. They are mainly based on clustering [1],

[2], [18], [22], [21], [32], [28] and evolutionary algorithms

[7], [14], [17], [19], [20], [26], [27], [28], [31].

Few of these works address the problem of optimizing

software modularization [14], [27], [28], [31], [33]. Often

existing approaches change (to various degrees) the existing

package structure of an application. In such a case, it can be

difficult for a software engineering to understand the resulting

structure and to map it back to the situation he knows. Our

approach is to support remodularisation of existing package

structure by explicitly taking it into account and avoiding

creating new package or related abstractions.

In this paper, we present an approach for automatically opti-

mizing existing software modularizations by minimizing con-

nectivity among packages, in particular cyclic-connectivity.

The objective of the optimization process is inspired by well

known package cohesion and coupling principles already

discussed in [3], [11], [23]. We limit ourselves to direct

cyclic-connectivity and restrict our optimization actions to

moving classes over existing packages. By definition, there

is a direct cyclic-connectivity between two packages if they

mutually depend on each other.

Our approach is based on Simulated Annealing [10], [16],

which is a neighborhood (local) search-based technique.

Simulated Annealing is inspired by the annealing process in

metallurgy [16]. We chose this technique because, it suits well

our problem, i.e., local optimization of an existing solution.

Moreover, it has been shown to perform well in the context of

automated OO class design improvement [29], [30] and more

generally, in the context of software clustering problems [25],

[27].

Contribution: we present an approach, using simulated

annealing technique, for automatically reducing package

coupling and cycles by only moving classes over packages

while taking into account the existing class organization and

package structure. In our approach, maintainers can define

(1) the maximal number of classes that can change their

packages, (2) the maximal number of classes that a package

can contain, and (3) the classes that should not change their

packages or/and the packages that should not be changed.



Section II defines the terminology we use and gives an

overview about challenges in optimizing package structure.

Section III presents the metrics used in evaluation functions

of both modularization and package quality. We detail

our optimization algorithm in Section IV. We validate our

approach using real large applications and discuss the results

in Section V. In Section VI we position our approach with

related works, before concluding in Section VII.

II. BACKGROUND AND VOCABULARY

In this section, we introduce the terminology used in this

paper and give an overview of some challenging issues we

address.
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Figure 1. Example of two modularizations: different decompositions of
the set of classes [c1..c9] into 3 packages [p1, p2, p3].

A. Terminology

Before all, we define OO software Modularization M
as a decomposition of the set of software classes MC into

a set of packages MP . Fig. 1 shows two modularizations,

both consists of 9 classes distributed over 3 packages: where

Package represents an entity that only contains classes, where

every class c belongs to only one package cp. We define

package size psize by the number of its classes.

Every class c can be related to other classes, in conse-

quence to their packages, through a set of Dependencies (cD).

This set consists of two subsets: Outgoing Dependencies

(cOut.D) and Incoming Dependencies (cInc.D). We denote

a dependency that goes from a class ci to another one cj

by the pair (ci, cj). A dependency might be either method

calls, class access, or class inheritance.

Every dependency is either internal if it is related to two

classes belonging to the same package, or external if not.

The set of dependencies related to a package p (pD) repre-

sents the union of the set of internal dependencies (pInt.D)

and the set of external dependencies (pExt.D) relatively to

pC , the set of p classes. The set pExt.D consists of two

subsets: dependencies that are either exiting p (pExt.Out.D)

or that are pointing to p (pExt.Inc.D). The sets pExt.Out.D

and pExt.Inc.D respectively relate p to its provider packages

(pPro.P ) and its client packages (pCli.P ). Modularization1

in Fig. 1 shows that there is one dependency exiting p1 and

three dependencies pointing to p1: p1Ext.Out.D = [(c3, c6)];

p1Ext.Inc.D = [(c7, c1), (c7, c2), (c8, c2)]. It also shows that

p1 has one provider package and two client packages:

p1Pro.P = [p2]; p1Cli.P = [p2, p3].
To determine connectivity at the package level, we say

that there is a Connection from a package y to another

one z if there is n (n > 0) outgoing dependencies y

pointing to z. Modularization1 in Fig. 1 shows that there

are two connections going from p2 to its provider packages:

p2Out.Con = [(p2, p1), (p2, p3)]; and there is one connection

going to p2: p2Inc.Con = [(p1, p2)].
Dependencies can form direct cyclic dependen-

cies/connections between packages. If package y plays

the role of client and provider for package z then

we consider involved dependencies and connections

between y and z as cyclic. We denote the set of cyclic

dependencies related to a package p by pCyc.D. The set

pCyc.D consists also of two subsets: cyclic-dependencies

that are either exiting p (pOut.Cyc.D) or pointing to p

(pInc.Cyc.D). pOut.Cyc.D and pInc.Cyc.D are dependencies

causing cycles between packages (and not classes) in

the context of the client-provider relation. Similarly we

denote the set of cyclic connections related to p by

pCyc.Con: pCyc.Con = pOut.Cyc.Con ∪ pInc.Cyc.Con.

Modularization1 in Fig. 1 shows that p1 has

one outgoing cyclic-dependency [(c3, c6)] and two

incoming cyclic-dependencies [(c7, c1), (c7, c2)]. Those

cyclic-dependencies produce two cyclic-connections:

p1Cyc.Con = p2Cyc.Con = [(p1, p2), (p2, p1)].

B. Challenges in Optimizing Package Structure

Optimizing package structure in existing large applications

is a difficult problem because of the following reasons:

Large applications are usually very complex: they

contain thousands of heavily inter-connected classes. Many of

the dependencies are between classes belonging to different

packages, which increases the inter-package connectivity. In

such situation, the optimization problem is more difficult.

Classes usually are not well distributed over packages:

in real applications, some packages contain large sets of

classes and other packages contain few number of classes.

As consequence, most application packages depend on those

large packages. Furthermore, it is difficult to determine an

ideal package size since it may depend on external factors

such as the team structure, domain, or coding practice...

Optimizing some criteria may degrade others: minimiz-

ing inter-packages dependencies/connections may increase

the number of noncyclic ones. e.g., Fig. 1 shows two

modularizations, Modularization1 and Modularization2.

Both are composed of the same set of classes and packages.

The difference between them is c7 that is moved from p2
to p3 in Modularization2. In Modularization2 there are

2 cyclic-dependencies [(c7, c6), (c6, c9)] compared to 3 in

Modularization1 [(c3, c6), (c7, c1), (c7, c2)]. Thus moving

c7 has reduced the number of cyclic-dependencies. On the



other hand, moving c7 increases the number of inter-package

dependencies. In Modularization2, there are 6 inter-

package dependencies compared to 5 for Modularization1.

III. MODULARIZATION QUALITY

Our goal is to automatically optimize the decomposition

of software system into packages so that the resulting

organization of classes/packages, mainly, reduces connectivity

and cyclic-connectivity between packages. This goal is

inspired from well known quality principles already discussed

in [3], [11], [23] and in particular from the following

principle: packages are desired to be loosely coupled and

cohesive to a certain extent [11]. In such a context, we

need to define measures that evaluate package cohesion and

coupling.

In addition, cyclic dependencies between packages are

considered as an anti-pattern for package design [23].

In this section we define two suites of measures: the first is

used when evaluating modularization quality and the second

is used when evaluating modularity quality of single package.

Note that all measures we define in this section take their

value in the interval [0..1] where 1 is the optimal value and

0 is the worst value.

A. Measuring Modularization Quality

Inter-Package Dependencies: according to Common

Closure Principle (CCP) [23], classes that change together

should be grouped together. In such a context, optimizing

modularization requires reducing the sum of inter-package

dependencies (IPD =
∑|MP |

i=1
|piExt.Out.D

|) [3], [11]. Since

we do not change the dependencies between classes during

our optimization process, we use the sum of inter-class

dependencies (ICD =
∑|MC |

j=1
|cjOut.D

|) as normalizer. We

define the measure CCQ to evaluate the Common Closure

Quality of a modularization M as follows:

CCQ(M) = 1− IPD
ICD

Inter-Package Connections: according to Common

Reuse Principle (CRP) [23], classes that are reused together

should be grouped together. In such a context, optimizing

modularization requires reducing the sum of inter-package

connections (IPC =
∑|MP |

i=1
|piOut.Con

|) [3], [11]. We define

the measure CRQ to evaluate the Common Reuse Quality

of a modularization M as follows:

CRQ(M) = 1− IPC
ICD

Inter-Package Cyclic-Dependencies: according to

Acyclic Dependencies Principle (ADP) [23], dependen-

cies between packages must not form cycles. In such

a context, optimizing modularization requires reducing

the sum of inter-package cyclic-dependencies (IPCD =
∑|MP |

i=1
|piOut.Cyc.D

|). We define the measure ADQ to mea-

sure the Acyclic Dependencies Quality of a modularization

M as follows:
ADQ(M) = 1− IPCD

ICD

Inter-Packages Cyclic-Connections: as for cyclic de-

pendencies between packages, reducing cyclic connections

between packages is required.

For example, in Modularization1 in Fig. 1, there are 3

cyclic dependencies [(c3, c6), (c7, c1), (c7, c2)] and 2 cyclic

connections [(p1, p2), (p2, p1)]; moving c7 to p3 will reduce

the number of cyclic-dependencies: in modularization2

there are only 2 cyclic dependencies [(c6, c9), (c7, c6)], but

it remains 2 cyclic connections [(p2, p3), (p3, p2)]. We thus

deduce that reducing inter-package cyclic dependencies does

not necessarily reduce inter-package direct cyclic-connections

(IPCC =
∑|MP |

i=1
|piOut.Cyc.Con

|).
We define the measure ACQ to evaluate the Acyclic Con-

nections Quality of a modularization M as follows:

ACQ(M) = 1− IPCC
ICD

B. Measuring Package Quality

In addition to measures presented in Section III-A, we

define a set of measures that help us determine and quantify

the quality of a single package within a given modularization.

To normalize the value of those measures we use the number

of dependencies related to the considered package (|pD|)
with |pD| > 0.

Package Cohesion: we relate package cohesion to the

direct dependencies between its classes. In such a context,

we consider that the cohesion of a package p is proportional

to the number of internal dependencies within p (|pInt.D|).
This is done according to the Common Closure Principle

(CCP) [23]. We define the measure of package cohesion

quality similarly to that in [1] as follows:

CohesionQ(p) = |pInt.D|
|pD|

Package Coupling: we relate package coupling to

its efferent and afferent coupling (Ce,Ca) as defined by

Martin in [24]. Package Ce is the number of packages that

this package depends upon (|pPro.P |). Package Ca is the

number of packages that depend upon this package (|pCli.P |).
According to the common reuse principle, we define the

measure of package coupling quality using the number of

package providers and clients as follows:

CouplingQ(p) = 1− |pP ro.P ∪pCli.P |
|pD|

Package Cyclic-Dependencies: for automatically detect-

ing packages that suffer from direct-cyclic dependencies

we define a simple measure that evaluates the quality of

package cyclic dependencies (CyclicDQ) using the number

of package cyclic dependencies:

CyclicDQ(p) = 1−
|pCyc.D|

|pD|

Similarly we define another measure that evaluates package

cyclic connections quality (CyclicDQ) using the number of

package cyclic connections:

CyclicCQ(p) = 1−
|pCyc.Con|

|pD|



IV. OPTIMIZATION TECHNIQUE (METHODOLOGY)

To optimize package connectivity, we use an optimization

procedure that starts with a given modularization and

gradually modifies it, using small perturbations. At each

step, the resulting modularization is evaluated to be possibly

selected as an alternative modularization. The evaluation

of modularization quality is based on measures defined

in Section III-A. This section describes our optimization

approach and algorithm.

A. Technique Overview

To address the problem of optimizing modularization,

we use heuristic optimization technique based on simulated

annealing algorithm [10], [16]. Simulated annealing is an iter-

ative procedure that belongs to the category of Neighborhood

Search Techniques (NST ).

Algorithm 1 Optimization Algorithm

Require: Tstop ≥ 1, Tstart > Tstop, num > 1 and Moriginal

Ensure: Mbest

Mbest ←Moriginal

Mcurrent ←Mbest

Tcurrent ← Tstart

–starting global search–
while Tcurrent > Tstop do

–starting local search–
for i = 1 to num do

–generating a new modularization and evaluating it–
Mtrial ← Neighborhood(Mcurrent)
if F(Mtrial) > F(Mcurrent) then
Mcurrent ←Mtrial

if F(Mcurrent) > F(Mbest) then
Mbest ←Mcurrent

end if
else if AcceptanceCondition then

–accepting a worse modularization–
Mcurrent ←Mtrial

end if
end for
–end of local search–
Tcurrent ← CoolingSchedule(Tcurrent)

end while
–end of global search–
Return Mbest.

Algorithm 1 shows an overview of the optimization

algorithm. The optimization process performs series of local

searches with the global search parameter Tcurrent. Tcurrent

represents in simulated annealing technique the current

temperature of the annealing procedure which started with

the value Tstart. A local search consists of num (num ≥ 1)

searches of suboptimal solution. At each of them, a new mod-

ularization Mtrial is derived from a current one Mcurrent

by applying to this later a modification. The derivation of

Mtrial from Mcurrent is performed by the neighborhood

function. Then, the algorithm evaluates the Mtrial and

Mcurrent fitness using the fitness function F , where the

bigger is the value of F(M), the better is modularization

M: if Mtrial is better than Mcurrent then Mtrial becomes

the Mcurrent; then, if Mcurrent is better than the current

best modularization Mbest, Mcurrent becomes the Mbest.

At the end of each local search, the parameter Tcurrent

decreases and another local search starts with the new value

of Tcurrent. Decreasing Tcurrent is the responsibility of

CoolingSchedule function. This latter is defined according

to Keeffe etal. discussion [30] using a geometric cooling

scheme: CoolingSchedule(T ) = 0.9975∗T . Local searches

are repeated until reaching Tstop (Tcurrent ≤ Tstop).

To circumvent the problem of local optima [10], a less-

good modularization can be accepted with some probability:

a less-good modularization Mtrial can replace Mcurrent

under some conditions AcceptanceCondition. Simulated

annealing technique defines acceptance conditions in a way

that the probability of accepting a less-good modularization

decreases over time. We define AcceptanceCondition as fol-

lows: r > e
−

Tcurrent
Tstart , r ∈ [0..1]. The value of r is generated

randomly in the interval [0..1]. The function e
−

Tcurrent
Tstart

takes its value in the interval [0..1] ∀Tcurrent ≥ 0, and

Tcurrent ≤ Tstart. It increases along the optimization process

–since Tcurrent decreases. By doing so, the probability of

accepting a less-good modularization decreases over time.

B. Evaluating Modularization Quality (Fitness)

As for any search-based optimization problem, the def-

inition of the fitness function represents a central concern

as it guides the search. We define our fitness function as

a combination of the measures defined in Section III-A.

We define dependency quality (DQ) for a modularization

M as the weighted average of Common Closure Quality

(CCQ) and Acyclic Dependencies Quality (ADQ); and we

define connection quality (CQ) for M as the weighted

average of Common Reuse Quality (CRQ) and Acyclic

Connections Quality (ACQ). To give higher intention to

cyclic dependencies/connections between packages we define

a factor of importance γ (γ = β
α
, β > α ≥ 1):

DQ(M) = α∗CCQ(M)+β∗ADQ(M)
α+β

CQ(M) = α∗CRQ(M)+β∗ACQ(M)
α+β

Both functions DQ and CQ take their values in the interval

[0..1] where 1 is the optimal value. The final fitness function

is defined by the average of DQ and CQ:

F(M) = DQ(M)+CQ(M)
2

Our hypothesis is: optimizing F will reduce inter-package

dependencies and connections, particularly cyclic ones.

Furthermore, in addition to AcceptanceCondition for less-

good modularizations we defined in Section IV-A, the

optimization process may accept a less-good resulting modu-

larization only if the number of inter-package dependencies

decreases (i.e., DQ increases). We expect such a decision

facilitates the reduction of inter-package cyclic dependencies.



C. Modularization Constraints

In addition to the fitness function, our approach allows

maintainers to define distinct constraints that should com-

plete the evaluation process and guarantee maintainers’

requirements. The rationale behind those constraints is to

control the optimization process when optimizing a given

modularization. e.g., putting a major partition of classes into

one package can effectively reduce inter-package (cyclic-)

dependencies/connections; such an approach is clearly not the

best one to optimize software modularization. This section

presents three constraints allowing control the optimization

process. Section IV-D explains how the optimization process

favors these constraints when deriving new modularizations.

1) Controlling package size: to avoid having very large

and dominant packages, we introduce the following constraint:

the size of every package (psize) should always be smaller

than a predefined number (sizemax). We define sizemax

for every package p relatively to its size in the original

modularization psizeV 0
: sizemax = δ + psizeV 0

, δ ≥ 0.

Maintainers can define δ according to the context of the

concerned software system. We cannot determine upfront

the good interval in which δ should be taken. In the scope

of this paper, we define δ as the theoretical package size in

M0 which equals to the ratio:
|M0C

|

|M0P
| . It is worth to note

that maintainers can define a different δ for each package:

e.g., for a large package p, δ may be defined to 0; this way,

p will never be larger than before.

2) Controlling modularization modification: maintainers

should be able to define the limit of modifications that the

optimization process can apply on the original modularization

M0 when it proceeds. In other words, the optimization

process must take into account the maximal authorized

distance (distancemax) between resulting modularizations

and M0. In our context, for two modularizations that entail

the same set of classes, we define the distance between

them by the number of classes that changed packages. This

way, distancemax can be defined simply as the maximal

number of classes that can change their packages.

3) Controlling modularization structure: moreover, we

found that it is very helpful to allow maintainers decide

whether some classes should not change their package and/or

whether given packages should not be changed. We say

that such classes/packages are frozen. This constraint is

particularly helpful when maintainers know that a given

package is well designed and should not be changed: e.g., if

a small package p contains a couple of classes that extend

classes from other package, p may be considered a well

designed package, even if it is not cohesive.

D. Deriving New Modularization (Neighbor)

The neighborhood function (N ) is the second main concern

of the optimization process. Defining N requires: (1) the

definition of the set of modifications that N can use to derive

new modularizations, (2) and the definition of a process that

derives a new modularization from another one. This section

presents our definition of N .

Since we search near optimal modularization by applying

near minimal modification to the original modularization, we

limit the set of modifications that N can use to only: moving

a class c from its current package psource to another one

ptarget. In this context, we say that c is the modification actor

(cactor). To minimize search-space we reduce the selection-

space of ptarget to the set of client and provider packages

of cactor: ptarget ∈ (cactorP ro.P
∪ cactorCli.P

).

We specify the derivation of a neighbor modularization

of a modularization M by 4 sequential steps: (1) selecting

psource, (2) selecting cactor, (3) selecting ptarget and then (4)

moving cactor to ptarget. Selections in the first three steps are

done arbitrary using a probability function. The probability

function gives higher probability to the worst package into

MP to be selected as psource, to the worst class into psource

to be selected as cactor and to the nearest package to

cactor to be selected as ptarget. The selection mechanism

performs similarly to a roulette wheel selection, where each

class/package is given a slice proportional to its probability

to be selected and then we randomly take a position in the

roulette and pick the corresponding class/package.

It is worth to note that packages and classes that are defined

as frozen (Section IV-C3), do not belong to the selection

spaces: a frozen package will never be a psource or ptarget,

and a frozen class will never be a cactor.

The following subsections explain our definition of the

probability of being selected as psource, cactor or ptarget.

Note that in our definition of this probability we use the

factor γ, as defined in the fitness function (Section IV-B), to

pay more intention to cyclic dependencies/connections.

1) Selecting psource: the worst package in MP is, the

highest probability to be selected it has. We relate package

badness to the quality of its cohesion, coupling and of its

external dependencies (i.e., the density of cyclic dependen-

cies/connections related to the concerned package). We define

the badness of package by using the measures: CohesionQ,

CouplingQ, CyclicDQ and CyclicCQ (Section III-B): where

we relate CohesionQ and CyclicDQ to package dependency

quality (DQ). Also we relate CouplingQ and CyclicCQ to

package connection quality (CQ). We define package quality

functions, similarly to modularization quality functions

defined in Section IV-B :

DQ(p) = α∗CohesionQ(p)+β∗CyclicDQ(p)
α+β

CQ(p) = α∗CouplingQ(p)+β∗CyclicCQ(p)
α+β

Both functions DQ and CQ take their values in the interval

[0..1] where 1 is the optimal value.

Finally, we define package badness basing on the average of

DQ and CQ:

Badness(p) = 1− DQ(p)+CQ(p)
2



In addition to satisfy constraints discussed in Section IV-C,

we define the probability of selecting a package p as psource

by: ρ∗Badness(p), where ρ is a factor takes its value in the

interval [0..1]. It is the average of two sub-factors (ρ1, ρ2):

• ρ1 is based on psize: relatively to p size in the original

modularization M0 (p0size
), a package whose size

increased has a higher probability to be selected than a

package whose size decreased. By doing so, we expect

that the package size in resulting modularizations will

be similar to that in the original modularization;

• ρ2 is based on the number of new classes into p:

relatively to p0, a package that acquired the largest

number of new classes (i.e., classes are not packaged in

p0) has the highest probability to be selected. By doing

so, we favor moving classes that already changed their

packages until they find their optimal package.

2) Selecting cactor: the worse a class in psource is, the

highest probability to be selected it has. We relate class

badness to the number of external dependencies related to

the class (|cExt.D|) and to the number of its external cyclic-

dependencies (related to its package p):

Badness(c) =
α∗|cExt.D|+β∗|cExt.D∩pCyc.D|

α+β

In addition, to satisfy the constraint of distancemax

(Section IV-C2), when the distance (d) between resulting

modularizations and the original one increases, classes that

have already changed their packages have higher prob-

ability to be cactor. In this context, we use the factor

ρ = 1 − d
distancemax

. If ρ ≤ 0 then only classes which

already changed their original packages can move. Only if

0 < ρ ≤ 1 then the optimization process can move more

classes over packages but with a probability ρ. Thus we

define the probability of selecting a class c as cactor as

following:
{

0 ρ ≤ 0, not(isMoved(c))
ρ ∗ Badness(c) ρ > 0, not(isMoved(c))
Badness(c) isMoved(c)

Where the predicate isMoved(c) is true if c is already moved

from its original package.

3) Selecting ptarget: the nearest package to cactor is, the

highest probability to be selected it has. We simply relate

the nearness of a package p to a class c to the number of

dependencies that c has with p classes (|cD ∩ pD|) and to

the number of dependencies related to c and present cyclic

dependencies between cp and p (|cD ∩ pCyc.D|):

N earness(p, c) =
α∗|cD∩pD|+β∗|cD∩pCyc.D|

α+β

To satisfy the constraint on psize (sizemax defined in

Section IV-C1), when package size increases its probability

to be selected as ptargert decreases. In this context, we use the

factor ρ = 1− psize

sizemax
. If ρ ≤ 0 then the package size should

not increase anymore. Only if 0 < ρ ≤ 1 then the package

size can increase but with a probability ρ which decreases

when psize increases. Thus we define the probability of

selecting a package p as ptarget for a class c, as following:

{

0 ρ ≤ 0
ρ ∗ N earness(p, c) 0 < ρ ≤ 1

V. EXPERIMENTS AND VALIDATION

To validate our optimization approach, we applied it

to several software applications that differ in terms of:

number of classes (|MC |), number of packages (|MP |),
number of inter-class dependencies (ICD); number of inter-

package dependencies (IPD), connections (IPC), cyclic

dependencies (IPCD) and cyclic connections (IPCC).

Table I shows information about the original modularization

of those software applications.

Since the search process is not deterministic, we applied

our algorithm 10 times for each software application and we

calculated the average of modularization parameters cited

in Table I. We used the parameters Tstart, Tstop and num

(Algorithm 1) with value 50, 1 and 30 respectively. On

another hand, we weighted cyclic dependencies/connections

to be three times more important than noncyclic dependen-

cies/connections. We performed our experience twice: the

first time, we did not used the constraint distancemax. In the

second time, we limited distancemax to 5%, which means

that only 5% of classes can change their original packages.

General optimization: Table III shows optimization

results. In the resulting modularization for JEdit (JEdit1),

10.2% of inter-package dependencies IPD, 23.3% of

inter-package cyclic-dependencies IPCD, 24% of inter-

package connections IPC and 37.2% of inter-package cyclic-

connections IPCC have been removed. This significant

improvement of inter-package connectivity was obtained by

moving only 8.9% of the classes (d = 8.9%). Similarly for

other case studies, the optimization process has improved

original modularizations by moving a relatively small number

of their classes. When limiting distancemax to 5%, the

algorithm obtained similar results.

Class distribution and package size: Table IV shows

that some packages were empty in resulting modularizations

-since their classes moved to other packages. For example, in

ArgoUML1, 25.4% of packages were empty. By inspecting

packages in the original modularization we found that those

empty packages are packages which have originally very

small sizes (i.e., in average two or three classes) and have

low quality for cohesion, coupling and/or cyclic dependencies.

This conclusion were also true for the other case studies.

Fig. 2 shows an overview about package size and cohesion

for the original modularization of ArgoUML and for the

resulting modularizations (Table III). We can see that empty

packages in the resulting modularizations are packages whose

sizes are small and whose cohesion is relatively worse. On

another hand, Fig. 2 shows also that the size of some small

packages, annotated by small packages, is increased in the

resulting modularization.

Dominant packages, annotated by dominant packages, is a

main cause of bad distribution of classes: moving classes from



Table I
INFORMATION ABOUT USED SOFTWARE APPLICATIONS.

Original |MC | ICD |MP | IPD IPCD IPC IPCC maxPsize
|MC |
|MP |

JEdit 802 2683 19 1430 1032 110 26 173 42.2

ArgoUML 1671 7432 76 5661 1406 517 63 156 22

Jboss 3094 8859 455 7219 296 1898 41 80 6.8

Azureus 4212 13945 380 10929 1319 2037 136 213 11
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Figure 2. Package size and cohesion into ArgoUML original (dark gray) and resulting (light gray) modularizations. Packages have the same order in
diagrams.

dominant packages to small ones generally produces more

dependencies and connections among packages. Maintainers

can avoid moving classes from small packages to dominant

ones by limiting the sizemax (Section IV-C1) of dominant

packages to their original size: psizemax
= psizeV 0

. This

way, the dominant package size will never increase and the

optimization process will search better modularizations by

moving classes among/to smaller packages.

Fortunately, in the case of JEdit1, only 10.5% (2/19) of

packages are empty (Table IV), where Table III shows that

our optimization process has effectively optimize package

connectivity in JEdit1.

Now as a future work, we have to perform a deep manual

validation since in presence of late-binding and frameworks,

some small packages may extend larger ones and as such may

have a real reason to exist. Note that defining such packages

as forzen (Section IV-C3) will keep those packages existing.

While some packages became empty, Table IV shows

that the average package size (
|MC |
|MP | ) for the resulting

modularizations is really close to the average package size

for the original ones Table I. Similarly, we can see that for

the maximum package size (maxPsize). This shows that the

optimization algorithm conserves the original system shape.

Package quality optimization: Table V shows that

package quality average is also optimized: cohesion qual-

ity average (CohesionQAvg), coupling quality average

(CouplingQAvg) and cyclic-dependency quality average

(CyclicsDQAvg) for resulting packages are also almost all

optimized, even if distancemax is limited to only 5%. This

can be seen also in Fig. 2.

In only one case (JEdit1 and JEdit2), the package

coupling quality (CouplingQ) decreased with a very

good improvement of CyclicsDQ and CohesionQ. We

explain this by the fact that the optimization process gives

more importance to inter-packages cyclic-dependencies.

Indeed, CyclicDQ had a very bad value in the original

modularization JEdit (Table II): the ratio of inter-package

cyclic-dependencies ( IPCD
ICD

) shows that 38.4% of inter-class

dependencies form cyclic-dependencies between packages.

Moreover there are 802 classes distributed over only 19
packages, so that the search space for generating new

modularization is limited.



Table II
PACKAGE QUALITY IN ORIGINAL MODULARIZATIONS

Original CohesionQAvg CouplingQAvg CyclicsDQAvg

JEdit 28.8% 91.4% 40.6%
ArgoUML 17.2% 76.6% 81.6%

Jboss 12.5% 61.8% 96.4%
Azureus 11.7% 72.3% 84.7%

Table III
OPTIMIZATIONS ON INTER-PACKAGE CONNECTIVITY. THE TOP TABLE

SHOWS THE PERCENT OF REDUCTION OF IPD, .. , IPCC (TABLE I) INTO

RESULTING MODULARIZATIONS. THE BIGGEST NEGATIVE VALUE IS, THE BEST

OPTIMIZATION IS. THE BOTTOM TABLE SHOWS THESE INFORMATION WHEN

distancemax IS SPECIFIED AND LIMITED TO 5%.

Optimization1 IPD IPCD IPC IPCC
JEdit1(d = 8.9%) −10.2% −23.3% −24.0% −37.2%

ArgoUML1(d = 8.3%) −04.4% −09.0% −32.7% −31.8%
Jboss1(d = 11.9%) −08.3% −37.7% −18.5% −51.2%

Azureus1(d = 9.5%) −06.0% −23.2% −6.2% −28.4%

Optimization2 IPD IPCD IPC IPCC
JEdit2(d = 05.0%) −06.5% −09.4% −20.6% −24.3%

ArgoUML2(d = 05.0%) −02.5% −04.2% −25.9% −24.9%
Jboss2(d = 05.0%) −03.2% −12.6% −11.3% −21.6%

Azureus2(d = 05.0%) −03.2% −09.3% −05.7% −16.7%

Table IV
MODIFICATIONS ON PACKAGE SIZE. THE TOP TABLE SHOWS THE PERCENT

OF EMPTY PACKAGES (TABLE I), THE BIGGEST AND THE AVERAGE PACKAGE SIZE

INTO RESULTING MODULARIZATIONS. THE BOTTOM TABLE SHOWS THESE

INFORMATION WHEN distancemax IS SPECIFIED AND LIMITED TO 5%.

Optimization1 EmptyP maxPsize
|MC |
|MP |

JEdit1(d = 8.9%) 10.5% 176 47.2
ArgoUML1(d = 8.35%) 25.4% 157 29.3

Jboss1(d = 11.9%) 22.4% 79 8.8
Azureus1(d = 9.48%) 15.8% 219 13.2

Optimization2 EmptyP maxPsize
|MC |
|MP |

JEdit2(d = 05.0%) 5.3% 176 44.6
ArgoUML2(d = 05.0%) 21% 155 27.9

Jboss2(d = 05.0%) 14.7% 81 7.9
Azureus2(d = 05.0%) 12.9% 215 12.7

Consistency of resulting modularizations: since our

optimization approach uses random selection, different exe-

cutions produce different modularizations. To evaluate the

consistency of our optimization approach, we have applied

it 10 times on each case study (Table I). As a result, each

application has 10 modularizations [M1..M10]. Table VI

shows the average distance between every pair (Mi,Mj).
For example, between resulting modularizations for JEdit,

there are, in average, only 3% of classes that have not the

same packages. For Jboss, only 5.6% of the classes have

different packages in distinct resulting modularizations.

We mainly relate this very good consistency of resulting

modularizations to the improvements we introduced to the

neighbor function N Section IV-D (i.e., the probability

function to being selected).

In conclusion, the obtained results are very convincing.

For all the case studies, the new modularizations are clearly

better than the original ones. Moreover, our optimization

process produces very similar results.

Table V
OPTIMIZATIONS ON PACKAGE QUALITY. THE TOP TABLE SHOWS THE

AVERAGE OPTIMIZATIONS ON PACKAGE QUALITY INTO RESULTING

MODULARIZATIONS. VALUES ARE BASED ON TABLE II. THE BIGGEST POSITIVE

VALUE IS, THE BEST OPTIMIZATION IS. THE BOTTOM TABLE SHOWS THESE

INFORMATION WHEN distancemax IS SPECIFIED AND LIMITED TO 5%.

Optimization1 CohesionQAvg CouplingQAvg CyclicsDQAvg

JEdit1 +06.1% −00.8% +10.4%
ArgoUML1 +08.1% +07.4% +00.4%

Jboss1 +08.5% +11.6% +01.8%
Azureus1 +05.8% +03.6% +05.4%

Optimization2 CohesionQAvg CouplingQAvg CyclicsDQAvg

JEdit2 +05.4% −02.2% +05.2%
ArgoUML2 +06.0% +07.4% +00.1%

Jboss2 +04.0% +09.4% +00.5%
Azureus2 +03.9% +04.6% +02.2%

Table VI
RESULTING MODULARIZATION CONSISTENCY. TABLE SHOWS THE AVERAGE

DISTANCE BETWEEN TEN RESULTING MODULARIZATIONS FOR EACH APPLICATION.

Optimization1 DistanceAvg

JEdit1 3%
ArgoUML1 4.1%

Jboss1 5.6%
Azureus1 4.9%

VI. RELATED WORKS

Our work is mostly related to work on software modular-

ization and decomposition [1], [14], [15], [21], [22], [25],

[26], [27], [31].

Mitchell etal. [21], [22], [25] introduced a search-based

approach based on hill-climbing clustering technique to

cluster software modules (classes in our context). Their

approach starts with an initial population of random mod-

ularizations. The clustering algorithm clusters each of the

random modularization and selects the result with the largest

quality as the suboptimal solution. Recently, they used

Simulated Annealing technique to optimize resulting clusters

[25], [26], [27]. Their optimization approach creates new

modularizations by moving randomly some classes (a block

of classes) to new clusters. The goal of their approach is

increasing cluster internal dependencies.

Harman etal. [15] introduces a non-exhaustive hill climbing

approach to optimize and determine a sequence of class

refactorings. Similarly to our approach, they also restricted

their approach to only move methods (classes in our context)

over existing classes (packages in our context). The goal

of their approach is reducing the class coupling, basing on

the Coupling Between Objects (CBO) metric [3]. To avoid

having a very large classes, they also used the dispersion of

methods over classes (the standard deviation of methods per

class metric) as a factor to measure the quality of resulting

class refactoring sequences.

Abreu etal. [1] used hierarchical agglomerative clustering

methods to decompose software classes into packages. Their

clustering methods starts with a set of classes considering

that each class is placed within a singleton cluster.



The goal of their approach is also increasing package internal

dependencies (i.e., package cohesion). In addition to the

package cohesion, they used the dispersion of classes over

packages (i.e., package size dispersion) as a factor to measure

the modularization quality.

Seng etal. [31] and Harman etal. [14] proposed genetic

algorithms to partition software classes into subsystems

(packages). Their algorithms start with an initial population

of modularizations. These algorithms apply genetic operators

on packages to modify current modularizations and/or create

new modularizations into the population. The goal of both

works is increasing package internal dependencies. Seng

etal. consider also cyclic-dependencies between packages as

anti-pattern for package design quality.

Our approach has several advantages compared to those

works.

Considering explicitly the original modularization and

controlling the optimization process: our approach tackles

the problem of optimizing existing software modularizations

rather than the problem of software re-modularization. Indeed,

our optimization approach starts from one original modular-

ization instead of an initial population of modularizations

or a flat set of classes. Although we use an optimization

technique similar to that in Mitchell etal. work, we restrict

ours to moving classes over existing packages rather than

creating new packages since we want to minimize the

distance for a maintainer between the initial situation and

the resulting one. Even if some prior works support the

notion of importing a defined clustering [33] and restrict

modifications to only moving classes over existing packages

[15], we did not found, in the software re-modularization

literature, approaches that explicitly take into account the

original modularization structure as we do. Our approach

allows maintainers to specify a set of constraints (e.g.,

the number of classes that may change their package, the

package maximal size and the packages/classes which should

not be changed/moved) and therefore make them control

the optimization process. Although those constraints are

simple, they are very important and helpful for the automatic

optimization of software modularization.

Searching better modularizations by doing near-minimal

modifications: differently of those cited works, which search

good modularizations without considering the distance be-

tween resulting modularizations and the original ones, we

introduce a probability function that improves the derivation

of neighbor modularizations by taking into account the dis-

tance between resulting modularizations and the original one,

in addition to other constraints (Section IV-C) and package

quality parameters (Section III-B). The great advantage of

the probability function is finding better modularization by

doing near-minimal modifications (Section V, the distance

between resulting modularizations and the original one is

very small).

Reducing package coupling and cycles in two levels

(inter-package dependencies and connections): another ad-

vantage of our approach is that we use an evaluation function

consisting of a combination of multiple measures. This allows

us to have a much richer quality model than the approaches

cited above which are mostly based on the unique goal

of maximizing package internal dependencies. Although

those approaches aim at reducing the global number of inter-

package dependencies (e.g., the fitness measure MQ used

by Mitchell etal. [25], [26], [27]), they do not take into

account the number of coupled packages (i.e., the number

of inter-package connections). As consequence, they do not

check whether package coupling is reduced or not along the

optimization process. In addition, those cited prior works do

not consider package cycles. Excepted Seng etal. [31], they

consider inter-package cyclic-dependencies, without taking

in account inter-package cyclic-connections.

VII. CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of optimizing

existing modularizations by reducing the connectivity, partic-

ularly the cyclic-connectivity, among packages. We proposed

an optimization algorithm and a set of measures that our

optimization process uses to automatically evaluate the

quality of a modularization. When designing our optimization

approach, we exploited several principles of package design

quality to guide and to optimize the automatic derivation of

new modularizations from an existing one. We limited the

optimization process to only moving classes over existing

packages. We also introduced constraints related to package

size, to the number of classes that are allowed to change

their packages and to the classes/packages that should not be

moved/changed. The results obtained from 4 case studies on

real large applications shown that our optimization algorithm

has been able to reduce, significantly, package coupling and

cycles, by moving a relatively small number of classes from

their original packages. These results are important because

the chosen applications have radically different original

modularizations (in terms of number of classes/packages,

inter-class/inter-package dependencies, etc.).

As future work, we intend to enhance our approach by:

(1) supporting indirect cyclic-dependencies among packages,

(2) taking into account visibility of classes and particular

cases of classes (e.g., inner classes in Java). Indeed in this

paper, we considered that classes are always public and then

can change their packages, (3) setting up a real validation

supported by proper statistics and qualitative analyses of

resulting source code structures. We also envisage a deep

comparison with the closest related work (e.g., Bunch).
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