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ABSTRACT 

Scientific programs must be transformed and adapted to supercomputers 

to be executed efficiently. Automatic parallelization has been a very active 

research field for the past few years and effective res tructur ing compilers  have 

been developed. 

Although CALL statements are not properly handled by current 

automatic tools, it has recently been shown that parallel execution of subrou- 

tines provides good speedups on multiprocessor machines. 

In this paper, a method to parallelize programs with CALL statements is 

described. It is based on the computation of subroutine effects. The basic prin- 

ciples of the method are to keep the general structure of the program, to com- 

pute the effects of called procedures on those calling and to find out and use 

predicates on scalar variables to improve array handling. 

First it is shown that some knowledge of the CALL statement context is 

necessary to compute accurately a property over a procedure. This leads us to 

define the notions of static procedure occurrence and stat ic  occurrence tree. 

Then a new concept, called region, is introduced to define precisely the 

effect of a procedure execution. These regions allow us to describe, in a calling 

procedure, the parts of arrays which are read or written by the called pro- 
cedure executions. The main lines of the effect computation algorithm are 

given. It is based on a bottom-up analysis of the static occurrence tree. 

The computation and the use of predicates among scalar variables to 

improve array handling are also, as well as regions, new in restructuring com- 
pilers. Classical semantics analysis methods are adapted to our special needs 
and extended to the interprocedural case. It is also briefly explained how the 

predicates these methods provide can be used. 

Finally, the introduction of our method in a restructuring compiler is 

reported. 

I University of :Illinois, Genter for Supereomputar R & D~ 
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Introduction 

To be efficient, scientific programs must undergo various transformations before being 

run on modern supercomputers. Manually implementing these transformations is tedious and 

error prone work. Hence, much research work [All1, Bro, Cot, Kuc] aims at  automating these 
transforms. In order to detect the parallelism inherent in the source program, modern restruc- 

turing compilers build a dependence graph. This graph highlights the conflicts between state- 
ments due to variable accesses [All2, Ban]. It is computed from the knowledge of read and 
writ ten variable sets for each statement;  in the case of procedure calls, no satisfactory method 

for the determination of these sets is known. 

A pessimistic a t t i tude is always possible: take for these sets the union of all arguments 

and global variables. In many cases, this induces a large loss in possible parallelism. 

Another solution is to expand procedure calls in line [Hus]. This solution is very efficient 
in the case of small low-level procedures, but  generates problems when applied to all calls. 
Firstly,  the initial program structure is lost, with a corresponding loss in intelligibility?. 
Secondly, false da ta  dependences are created, especially by local dynamic arrays$. Thirdly, 
the program size is considerably increased. Lastly, in a language like FORTRAN,  there are 
many details and anomalies which must be at tended to, thus greatly increasing the complex- 
i ty of the whole process [Tri2]. 

In this paper we propose to tackle directly the problem of computing the conflicts 
between the program's components. In the first part,  we justify the global design of our 

method: to keep the procedural structure of the program, to treat  each call separately, and to 
use predicates on the values of scalar variables to obtain more precise information on array 
~A~cesses. 

In the second part,  we describe in details all the da ta  we gather on the source program. 
We introduce the notion of a procedure static occurrence. We then show how the data we 

are looking for may be obtained as limit of an iterative process; this limit is guaranteed to be 
found in a finite number of steps. 

In the third part,  we show how to compute each type of data.  In particular, we give a 
precise notation to describe the effect of a procedure call, and a method to compute effects 

that  takes into account the call context. We adapt  classical semantics analysis methods to the 
interprocedurai case. This provides predicates between program variables that  are used to 
sharpen the analysis of array accesses. 

Finally, we show in the fourth part how to use these ideas in a restructuring compiler; in 
particular,  we show in an example how to test dependences between statements due to region 

overlapping. 

This is significant for source to source restructuring compilers only, 
$ This phenomenon is obviated for scalar variables by the technique of scalar expansion; however, there is today 
no corresponding algorithm for arrays. 
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1. G e n e r a l  D e s c r i p t i o n  

1.1. Pr in c ip l e s  

Suppose we are able to calculate exactly the effect of any procedure call on all program 
variables. Furthermore,  suppose that  the description of this effect is such that  we are able to 
compute exactly the dependence graph of the program. We may then parallelize the source 
program as if the procedure calls were blocks of assignment statements.  In favorable cases, the 
result of this process is a program where several procedures (or, in the case of a parallel loop, 

several instances of the same procedure) may be executed in parallel. 

In [Don], Dongarra reported on the manual application of this technique to the well- 

known numerical libraries, LINPACK and BLAS. He obtained speedups between 7 and 9 on a 
Denelcor-HEP, where the maximum possible value is 10; this clearly shows the interest of 

automating this technique. 

1.2. A d v a n t a g e s  

The parallel version has the same structure as the original program, and is still readabie 

by its author. This technique does not increase the size of the program modules. Scalars and 
arrays local to a procedure may be safely ignored when computing its effect. 

The resulting program contains parallel procedure calls. This is very convenient for 

modern MIMD machines: DeneIcor-HEP, Cray-~MP, Cray-2, N~YU-Ultracomputer [Got], RP3 
[Pfi], CEDAR [Gaj], etc... The size of parallel tasks tends to be large; the relative impact of 

the activation overhead is reduced. Furthermore, for many operating systems (Cray-2, Cray- 
XMP, HEP...) the multitasking facility is accessible only through asynchronous CALLs In 

this case, our technique is directly useful. 

1.3. O u t l i n e s  of  the  P r o p o s e d  So lu t ion  

1.3.1 .  D e s c r i b i n g  a P r o c e d u r e  Cal l  Effect  

We define a new concept, called region, to describe the sub-arrays often used in scientific 
programs: rows, columns, diagonals, sub-vectors, ... Statements using a procedure, whether as 

a CALL or through function evaluations, as well as ordinary statements are associated to a 
unique node in the control graph. We compute the read and modified regions t for each node. 

This is a multi-stage process: accessed regions are computed in the notations of the called 

procedure and are translated in the calling program notations, according to associations 

between formal and actual parameters. 

1.3.2. P r e d i c a t e s  
Regions associated to a statement must include the union of accesses done by all itera- 

tions of this statement.  When an array is accessed, unknown subscript values must be 
ignored leading to an inaccurate region. Therefore we compute and use predicates on integer 

scMar variables to constraint subscript values. 

In the following the word accessed will be used instead of read and/or modifi¢d 
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A study has shown that our needs are best served by predicates in the form of linear 

equalities and inequalities among integer scalar variables [Trill. Such predicates will be called 

linear predicates. 

1 . 3 . 3 .  A l i a . s i n g  

To understand a procedure, we need to know all associations between variables t. Alias- 

ing is a speciM form of association, where at least one of the variables is a formal parameter 
[Hec]. It is possible to interpret the FORTRAN-77 standard as restricting aliasing to the read 

only csse, which is harmless. However, as this standard is not enforced by usual compilers, we 

propose to take aliasing into account. Nevertheless, aliasing is a minor problem; the reader is 

referred to [Trill for the details of our technique. 

2. A n  I t e r a t i v e  A l g o r i t h m  To  C o m p u t e  P a r a l l e l i z a t i o n  D a t a  

2 .1 .  S t a t i c  O c c u r r e n c e  o f  a P r o c e d u r e .  

To compute the effect of a procedure, we need properties of its initial state. They are 

computed from predicates valid just before the CALL to the procedure. If this was done only 

once for all CALLs to a procedure, it would be necessary to use a predicate no stronger than 
the or-ing of all these predicates, with a corresponding loss in precision. 

To obviate this problem, we introduce the notion of static occurrence of a procedure. To 
each procedure are associated as many static occurrences as there are distinct sequences of 

CALLs from the main program to the procedure. This may be modeled as a static occurrence 
tree, which is finite since reeursion is forbidden in FORTRAN 77. Figure 1. shows a sample 
program, its call graph and its static occurrence tree. For instance, there are three occurrences 

of the procedure R: R1, R2, R3. 

2.2. Desc r i p t i on  of  P a r a l l e l i z a t i o n  D a t a  

Let 12 = {Wl, w2,... } be the set of static procedure occurrences in a program. If w is an 

element of ~, P (w) is the procedure which w is an occurrence of. The aim of our analysis is 
the construction of the following global functions: 

a (0~) = Jar 

where fa r is a function telling which pairs of variables are alias for w. 

where fir is a function associating to a node of P (w) a set of linear predicates which are 

true before every execution of the corresponding statement for w. 

M ( ~ )  = Ymr 

where fm r is a function giving the sub-arrays accessed by procedure calls in w. 

In the sequel, far, fir and fm~ will be called the aliasing function, predicate function and 

manipulation function, respectively. 

t This is also true for the dependence computation; however associations are often ignored in this case. 



e 

PROGRAM M 

CALL P (a) 

CALL R (b) 
. . o  

CALL P (c) 

END 

SUBROUTINE P SUBROUTINE Q 
, . .  . . .  

CALL Q (d) CALL R (e) 

END END 

Figure 1-(a). Fortran Code 

SUBROUTINE R 
. . o  

E M )  
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Figure 1-(b). Call Tree and Static Occurrence Tree 

2.3. Comput ing  ParMlelization Data  

A direct computation of A , I and M is not optimal: each of them may t use data  sup- 
plied by the othem. For  instance, the computation of M benefits from the knowledge of 
predicates and aliasing, i.e. of I and A. The following iterative algorithm solves this problem: 

i : = 0 ;  
whi le  NOT-TERMINATED do 

compute A i as a function of I i ; 

compute M i us a function of I i and A i ; 

compute I," +1 as a function of M i and A i 

i : =  i+1; 

done 

we use " m a y "  because pessimistic decisions are always po~ible in the absence of further  information. 
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I 0 is the initial predicate function, which associates the empty set to every statement in every 

static occurrence. 

This algorithm terminates provided functions Ai,  I i and Ms" are computed with algo- 
rithms detailed in ITril] and sketched in § 3. Convergence is detected when two successive 
values of I are equal: NOT-TERMINATED is simply/~. ~d I i_1. 

3. C o m p u t i n g  t he  Para l l e l i za t ion  F u n c t i o n s  

(a,b) 

(c) 
(d) 
(e) 
(f) 

and so on. 

3.1. Regions 

As previously discussed, we need a technique to describe sub-arrays usually manipulated 
in scientific programs like: 

array elements: T (3,4), U ( I , J - 3 )  

a regularly spaced subset: V (1,1), Y (1,3), ..., Y (1,2 *N +1) 

a rectangular sub-matrix: W (3:5,I + l : I  +4) 

a triangular sub-matrix of X 

a diagonal of a matrix Y 

The regions allow a precise dependence computation, providing we can decide whether 
two regions have common elements (see § 4). 

A region is a pair r ~--~(T ,Z) where T is a variable name and ~3 is a set of linear predi- 
cates on the values of T ' s  subscripts, which appear in ~ as the special variables (¢1) , j  ~-~1..7. 
The (¢ j )  act as bound variables which may be systematically renamed, for instance when 
computing the intersection of two regions. 

Figure 2 lists the regions which correspond to the sub-arrays of examples (a)-(f) above. 
All these regions are exact descriptions of these sub-arrays. A scalar S is represented by the 
region (S ,0). 

3.2. The Manipulation Function M 

The algorithm is based on a bottom-up traversal of the static occurrence tree. Thus, the 
analysis of a procedure call cp included in a node np of a static occurrence wp is attempted 
after the processing of the static occurrence wq associated to % ; hence regions accessed by all 
wq procedure calls are known. This bottom-up analysis begins at the leaves of the static 
occurrence tree, in which there are no calls. The analysis of a call like % is split into six 
different phases, M1 to M6, whose overall organization is depicted in figure 3. 

3.2.1. D e a d  C o d e  E l imina t ion  (M1) 

We attempt to detect dead code in Wq by evaluating boolean expressions with the help of 
linear predicates provided by I(wq ) (see § 3.5). An algorithm is proposed in [Tril]; the result 
is the set AN (wq ) of Accessible Nodes. 
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(T,{¢I  ----- 3, ¢2 ~-- 4}) 

(U,(¢1 = I ,  ¢ 2 S  = 3 } )  

(V,{¢ 1 = I ,  1 ~ ¢ 2 ~ 2 N + 1  , ¢ 2 - 2 k  ~-  1}) 

(W,{3_<¢1<5, I+1<¢2_<X+4}) 

(X ,(¢2-¢1~-1}) 

(Y,(¢1 = ¢~}) 

(a) 

(b) 

(0) 

(d) 

(e) 

(f) 

Figure 2: A Few Regions 

Cp 

COp 

np 

°°° 

O)q 

6q 

°°° 

r~q 

~. ..... r 6 e fm% (np ) 

var iable  associations 

for P (Wp) and P (Wq) 

1 

I P (wq)'declarations I -+ 

VNMwq ) [ 

-+ ~ ~ r2 ~ 

t T 

[:m%(-,) I 
Figure 3: Computing the Manipulation Function 
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20 

DO 20 I -~- 1, N 
DO 10 J ---- I-K, I + K  

T(I,J)  . . . .  
CONTINUE 

CONTINUE 

Figure 4. T w o  N e s t e d  D O - L o o p s  
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3.2.2. Region Determination (M2) 

For  a node in A N  (Wq), accessed regions are of two different origins: 

* indirectly accessed regions come from procedure calls in the current node. They are given by 
the function M (Wq) ~ fm% which is available since the analysis is bottom-up.  

* directly accessed regions are explicit in the statement associated to the node. 

To translate a reference such as T(xl ,  x2, ..., x d ) into a region, we construct the set X 

of subscript expressions x i which are linear combinations of integer scalars. The correspond- 

ing region is (T  ,E) with: 

s =  U{¢, =x;}- 
z, EX 

For  instance: 

M2 
T ( I , J )  -* r 2 = (T ,{¢ I  = I ,  ¢2 = J } )  

M2 
T ( I + 2 * J + I , I * K )  ~ r 2 = ( T , { ¢ I - I - 2 J  ----- 1}) 

The value of the second index is lost, since I*K is not linear. 

3.2.3. Using the Execution Context (M3) 

The description of a region may be sharpened by including in E all predicates which are 
valid at the current node. These predicates are given by I(wq ). As an example, the assign- 

ment to T(I,J) inside the double DO-loop of figure 4 leads to the following region: 

M3 
r2 -+ r 3 = ( T , { ¢ I = I  ,¢~=J ,I < I  < N  , I - K  < J  < I + K  }). 

3.2.4. Region Widening (M4) 

A region is a symbolic enti ty which may be mapped on real memory addresses when the 
values of all variables (i.e the memory state) are known. 

Our aim is to express all regions found in M3 by reference to the memory state just 
before the execution of np. This is a two step process: going from the state at an arbitrary 

node nq of P (wq) to the state at eq, entry node of P (wq); and then to the state at np. 

The second step is easy, as it depends only on the semantics of the CALL mechanism (see 
M6). The first one is much harder: we need relations between variable values at nq and eq. 
One solution is the technique of symbolic execution [Fea]. 

In the interest of simplicity, we propose to restrict our at tention to the set N M V  (Wq) of 

variables which are not modified by nodes in A N  (Wq). The value of such a variable is equal 

at eq and nq. The construction of NMV(wq ) is straightforward since modified regions at 
each node are known from M3. 

To pass from a region (T ,E) at n¢ to the corresponding one at eq is simply to eliminate 
from E all variables outside N M V  (wq) while keeping all relations they induce on the variables 
of N M V  (wq). This implies an information loss, hence the name widening. 
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If for instance NMV (wq) ~ ( N , K  } the region r 3 quoted in § 3.2.3. is widened to: 

r 4 = (T ,{1-<¢I-<N,¢I-K -<¢2-<¢1-+-K }) 

which describes a band centered on the main diagonal of T. 

3.2.5. Using Array Bounds (MS) 

We assume that  arrays are accessed within their bounds. Transformations based on this 
assumption may modify the semantics of incorrect programs. This is no problem since their 
semantics is not well defined: their results may vary from run to run or from machine to 

machine. 

This assumption allows us to add to all regions from M4 another set of constraints 

between indices and corresponding array bounds. Suppose for instance that  T is declared by: 

DIMENSION T(N+I ,  -7 :N 'N)  

We add to each region of T the set: 

{1-<(~I-<N +1, -7_<¢2} 

The upper bound constraint on ¢2 is lost because it is quadratic. This gives r s: 

M5 
r 4 ---+ r 5 = (T , { 1 - < ¢ , - < N , ¢ I - K  -<¢2-<¢1+K ,1 -<¢I_<N+I ,  -7-<¢2}) 

3.2.6. Region Translation (M6) 
Regions from M5 are expressed in the notations of P (c%). Last phase M6 aims at 

translating them in the notations of the calling procedure P (wp). This depends on variable 

associations induced by the CALL and COMMON mechanisms. 

Unusual cases of association, allowed by FORTRAN, are handled in a pessimistic way. 

For  instance, if a global variable A of P (wp) is partially associated with a global variable T of 

P (Wq), the translation of any region of T is (A ,  13). A similar decision is made for partial 

associations between actual and formal parameters. 

A much better  job can be done if the association is sensible: 

• both arrays have equal bounds; 

• the formal array is associated with a sub-array of the actual parameter. 

In this case the base name of the region is simply changed. Then, region predicates are 

translated: each P (Wq) variable must be expressed in term of P (wp) variables. Associations 
implied by the CALL and COMMON mechanisms are studied to provide relations among 
integer scalars of both procedures. Then, each P (Wq) variable is either replaced when a linear 

relation exists for it, or eliminated. 

A few examples of translation are given in Figure 5. For  (T1), M is replaced by 2 I - J  +7 
but L is eliminated since [*J is not linear. This elimination produces C r 2 I + J - - < 7 .  In (T2), 

N ,  being associated with a vector element, must be eliminated; this produces 1-<¢1<_50. In 
example (T3) predicate M <IND from P (¢Vq), found by wq semantics analysis, is propagated 

upward to P (wp). 
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SUBROUTINE Q( L,  M,  N ) 
COMMON/G/MAT(10,20), VEC(50), IND 

END 

PROGRAM P 
COMMON/G/MAT(10,20), VEC(50), INn 

CALL Q( I ' J ,  2"I-J+7, VEC(I) ) 

END 

M6 

(MAT,{ ¢ I = L , ¢ 2 = M , L  <_ M }) -+ (MAT,{ ¢2-ZI+J = 7 , ¢ 1 - 2 I + J  _<7}) 

M6 

(VEC,{ ¢ I =  N,  1 <_ g <_ 50}) -+ (VEC,{ I _< ¢1--< 50}) 

M6 

(VEC,{ ¢I-IND = 1, M < IND }) -+ (VEC,( ¢I-IND = 1, 2I-J-IND < -7 }) 

Figure 5. Examples  of  Region Trans lat ion  

(T1) 

(T2) 

(T3) 

3.3. C o m p u t i n g  the  Predicate  Funct ion  I 

Several methods have been proposed in the literature [Cou, Kar, Kil, Jou]. Killdall's 
method gives a technique to detect variables whose value does not depend on the execution 
path. A very general method for approximating fix-points, by Cousot, may be used to obtain 
various type of predicates: bounds on the value of variables, linear constraints, etc... Karr's 
method allows one to propagate linear equalities. Jouvelot nses non-standard semantics to col- 
lect predicates. 

The local analysis of a procedure is done as follows. Initial predicates - attached to its 
entry node - are given and extra predicates are mainly provided by assignment and test nodes. 
The knowledge of modified variables allows one to delete predicates which are no longer valid 
after the execution of a node. This information is available since an approximation of M is 
known when computing I (see § 2.3). As a matter of fact, nodes which contain procedure 
calls only affect predicates by destroying some of them. Finally, predicates are propagated 
through the procedure by an iterative algorithm. 

For the whole program, the algorithm to compute I is bused on a top-down traversal of 
the static occurrence tree. One static occurrence of procedure wp is processed by the local 
analysis to compute predicates for all nodes in P (wp). Then, if wq is a static occurrence of a 
procedure called by a node np in wp, initial predicates for P (wq) are computed from those of 
np by a translation process similar to phase (M6) above. 

This top-down analysis starts from the main program where DATA statements provide 
initial predicates. 

Local analysis is a complex process, hence, a simple method based on DO-loop properties 
is proposed in [Trill to  find predicates useful for program parullelization. 
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3.4. C o m p u t i n g  the  A]iasing Funct ion  A 

The reader is referred to [Trill for a description of a technique for the evaluation of the 
aliasing function A .  Predicates found by the above process are used to improve the results of 

this analysis. 

3.5. Using Predicates  

All algorithms described in this paper depend on techniques to manipulate linear predi- 

cates. Many such techniques are available in the literature and were summarized in [Trill. 

The most important  ones are: 

• methods to eliminate redundancy from linear inequality systems; 

• methods to test the feasibility of linear inequality systems: Shostak [Sho] and Fourier- 

Mot zkin [Duf]; 

• a method to discard a variable from linear inequality systems; 

• a method to find the equations implied by a linear inequality system; 

• a method to solve a system of linear equations on the integer line. 

In a restructuring compiler, these techniques are of paramount importance and are used 
in many algorithms beside the analysis of procedure calls: symbolic evaluation of numerical 

and boolean expressions, dependence computation, etc... 

4. I m p r o v e m e n t  of  a Restructur ing  Compiler  

The data  provided by the three functions A ,  M and I allows an accurate dependence 
graph computation. Of course, dependences created by CALL statements are accurately tested 

thanks to M .  This was our main goal. In addition, predicates provided by I may be used to 

suppress spurious dependences. For  instance, knowing that  K < 0  allows the DO-loop in figure 
6 to be vectorized. Finally, aliasing data may be used to validate transformations against hid- 

den variable associations. 

20 

DO 20 I = 1, N 
T(I+K) = T(I) + ... 

CONTINUE 

Figure 6. A S e q u e n t i a l  D O - l o o p  ? 

Here is a dependence test example. Consider subroutine MM in figure 7. Suppose that  the 
CALL statement (C) to SMXPY modifies only one column of A, described by the following 

region: 

(A ,{1_< ¢1<N 1,¢2=I }) 
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The output dependence test for iterations I and I r of statement (C) is equivalent to 
deciding the feasibility of the following linear system: 

E 

1 < I < N 3 ,  1 ~ I  ~ ~ N 3  

1_<¢1_<N t, C e = I  

1~¢1 t <N1 ,¢21  ~ I  f 

¢1=¢1' , ¢2=¢2' 
I < I  t 

semantics of loop (L ) 
region accessed by iteration I 

region accessed by iteration I t 

existence of a dependence 

iteration I is executed before iteration I I 

It is easy to see that this system is unfeasible by considering I ,  I '  , ¢2 and ¢2' • This 
proves there is no output dependence. The reader can convince himself by testing a few simi- 
lar systems that  loop (L) is parallel. 

10 

SUBROUTINE MM (A,B,C,N1,N2,N3) 
REAL A(N1,N3),B(N1,N2),C(N2,N3) 
D O 1 0 I ~  1,N3 

CALL SMXPY(N2,A(1,I),NI,C(1,I),B) 
CONTIt~%rE 
RETURN 
END 

Figure 7. Subroutine MM 

(L) 
(C) 

5. Conclusion 

In this paper a method to extend restructuring techniques in the presence of procedure 
calls was presented. Computing interactions between several modules and predicates among 
variables allows a finer description of array accesses and an improved dependence test. 

A simplified version of this method has been implemented in PARA_FRASE [Kuc] at the 
Center for Supercomputing Research and Development of the University of Illinois by R. 
Triolet. Experiments were done on LIN~ACK. This package contains 235 DO-loops, 98 of 
them containing CALL statements to BLAS routines. 22 of the later were correctly found 
parallel by the modified version of PARAFRASE, whereas only 20 were hand paratIeIized by 
the authors... 

As a final remark, let us note that the data we gather may have other uses beside 
parallelization/vectorization. For instance, detecting possible array bound violations, interpro- 
cedural type checking or suggesting optimizations is easy in the above framework. 
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