
A U T O M A T I C P A R A L L E L I Z A T I O N O F F O R T R A N
P R O G R A M S IN T H E P R E S E N C E OF P R O C E D U R E

CALLS

R~mi TRIOLET 1

Paul FEA UTRIER 2 Franfois IRIGOIN 3

ABSTRACT

Scientific programs must be transformed and adapted to supercomputers

to be executed efficiently. Automatic parallelization has been a very active

research field for the past few years and effective res tructur ing compilers have

been developed.

Although CALL statements are not properly handled by current

automatic tools, it has recently been shown that parallel execution of subrou-

tines provides good speedups on multiprocessor machines.

In this paper, a method to parallelize programs with CALL statements is

described. It is based on the computation of subroutine effects. The basic prin-

ciples of the method are to keep the general structure of the program, to com-

pute the effects of called procedures on those calling and to find out and use

predicates on scalar variables to improve array handling.

First it is shown that some knowledge of the CALL statement context is

necessary to compute accurately a property over a procedure. This leads us to

define the notions of static procedure occurrence and stat ic occurrence tree.

Then a new concept, called region, is introduced to define precisely the

effect of a procedure execution. These regions allow us to describe, in a calling

procedure, the parts of arrays which are read or written by the called pro-
cedure executions. The main lines of the effect computation algorithm are

given. It is based on a bottom-up analysis of the static occurrence tree.

The computation and the use of predicates among scalar variables to

improve array handling are also, as well as regions, new in restructuring com-
pilers. Classical semantics analysis methods are adapted to our special needs
and extended to the interprocedural case. It is also briefly explained how the

predicates these methods provide can be used.

Finally, the introduction of our method in a restructuring compiler is

reported.

I University of :Illinois, Genter for Supereomputar R & D~
2 Universit~ PARIS VI, MASI
3 Eeole des Mines de Paris, Centre d'Automatique et Inforrnatique.

211

Introduction

To be efficient, scientific programs must undergo various transformations before being

run on modern supercomputers. Manually implementing these transformations is tedious and

error prone work. Hence, much research work [All1, Bro, Cot, Kuc] aims at automating these
transforms. In order to detect the parallelism inherent in the source program, modern restruc-

turing compilers build a dependence graph. This graph highlights the conflicts between state-
ments due to variable accesses [All2, Ban]. It is computed from the knowledge of read and
writ ten variable sets for each statement; in the case of procedure calls, no satisfactory method

for the determination of these sets is known.

A pessimistic a t t i tude is always possible: take for these sets the union of all arguments

and global variables. In many cases, this induces a large loss in possible parallelism.

Another solution is to expand procedure calls in line [Hus]. This solution is very efficient
in the case of small low-level procedures, but generates problems when applied to all calls.
Firstly, the initial program structure is lost, with a corresponding loss in intelligibility?.
Secondly, false da ta dependences are created, especially by local dynamic arrays$. Thirdly,
the program size is considerably increased. Lastly, in a language like FORTRAN, there are
many details and anomalies which must be at tended to, thus greatly increasing the complex-
i ty of the whole process [Tri2].

In this paper we propose to tackle directly the problem of computing the conflicts
between the program's components. In the first part, we justify the global design of our

method: to keep the procedural structure of the program, to treat each call separately, and to
use predicates on the values of scalar variables to obtain more precise information on array
~A~cesses.

In the second part, we describe in details all the da ta we gather on the source program.
We introduce the notion of a procedure static occurrence. We then show how the data we

are looking for may be obtained as limit of an iterative process; this limit is guaranteed to be
found in a finite number of steps.

In the third part, we show how to compute each type of data. In particular, we give a
precise notation to describe the effect of a procedure call, and a method to compute effects

that takes into account the call context. We adapt classical semantics analysis methods to the
interprocedurai case. This provides predicates between program variables that are used to
sharpen the analysis of array accesses.

Finally, we show in the fourth part how to use these ideas in a restructuring compiler; in
particular, we show in an example how to test dependences between statements due to region

overlapping.

This is significant for source to source restructuring compilers only,
$ This phenomenon is obviated for scalar variables by the technique of scalar expansion; however, there is today
no corresponding algorithm for arrays.

212

1. G e n e r a l D e s c r i p t i o n

1.1. Pr in c ip l e s

Suppose we are able to calculate exactly the effect of any procedure call on all program
variables. Furthermore, suppose that the description of this effect is such that we are able to
compute exactly the dependence graph of the program. We may then parallelize the source
program as if the procedure calls were blocks of assignment statements. In favorable cases, the
result of this process is a program where several procedures (or, in the case of a parallel loop,

several instances of the same procedure) may be executed in parallel.

In [Don], Dongarra reported on the manual application of this technique to the well-

known numerical libraries, LINPACK and BLAS. He obtained speedups between 7 and 9 on a
Denelcor-HEP, where the maximum possible value is 10; this clearly shows the interest of

automating this technique.

1.2. A d v a n t a g e s

The parallel version has the same structure as the original program, and is still readabie

by its author. This technique does not increase the size of the program modules. Scalars and
arrays local to a procedure may be safely ignored when computing its effect.

The resulting program contains parallel procedure calls. This is very convenient for

modern MIMD machines: DeneIcor-HEP, Cray-~MP, Cray-2, N~YU-Ultracomputer [Got], RP3
[Pfi], CEDAR [Gaj], etc... The size of parallel tasks tends to be large; the relative impact of

the activation overhead is reduced. Furthermore, for many operating systems (Cray-2, Cray-
XMP, HEP...) the multitasking facility is accessible only through asynchronous CALLs In

this case, our technique is directly useful.

1.3. O u t l i n e s of the P r o p o s e d So lu t ion

1.3.1 . D e s c r i b i n g a P r o c e d u r e Cal l Effect

We define a new concept, called region, to describe the sub-arrays often used in scientific
programs: rows, columns, diagonals, sub-vectors, ... Statements using a procedure, whether as

a CALL or through function evaluations, as well as ordinary statements are associated to a
unique node in the control graph. We compute the read and modified regions t for each node.

This is a multi-stage process: accessed regions are computed in the notations of the called

procedure and are translated in the calling program notations, according to associations

between formal and actual parameters.

1.3.2. P r e d i c a t e s
Regions associated to a statement must include the union of accesses done by all itera-

tions of this statement. When an array is accessed, unknown subscript values must be
ignored leading to an inaccurate region. Therefore we compute and use predicates on integer

scMar variables to constraint subscript values.

In the following the word accessed will be used instead of read and/or modifi¢d

213

A study has shown that our needs are best served by predicates in the form of linear

equalities and inequalities among integer scalar variables [Trill. Such predicates will be called

linear predicates.

1 . 3 . 3 . A l i a . s i n g

To understand a procedure, we need to know all associations between variables t. Alias-

ing is a speciM form of association, where at least one of the variables is a formal parameter
[Hec]. It is possible to interpret the FORTRAN-77 standard as restricting aliasing to the read

only csse, which is harmless. However, as this standard is not enforced by usual compilers, we

propose to take aliasing into account. Nevertheless, aliasing is a minor problem; the reader is

referred to [Trill for the details of our technique.

2. A n I t e r a t i v e A l g o r i t h m To C o m p u t e P a r a l l e l i z a t i o n D a t a

2 .1 . S t a t i c O c c u r r e n c e o f a P r o c e d u r e .

To compute the effect of a procedure, we need properties of its initial state. They are

computed from predicates valid just before the CALL to the procedure. If this was done only

once for all CALLs to a procedure, it would be necessary to use a predicate no stronger than
the or-ing of all these predicates, with a corresponding loss in precision.

To obviate this problem, we introduce the notion of static occurrence of a procedure. To
each procedure are associated as many static occurrences as there are distinct sequences of

CALLs from the main program to the procedure. This may be modeled as a static occurrence
tree, which is finite since reeursion is forbidden in FORTRAN 77. Figure 1. shows a sample
program, its call graph and its static occurrence tree. For instance, there are three occurrences

of the procedure R: R1, R2, R3.

2.2. Desc r i p t i on of P a r a l l e l i z a t i o n D a t a

Let 12 = {Wl, w2,... } be the set of static procedure occurrences in a program. If w is an

element of ~, P (w) is the procedure which w is an occurrence of. The aim of our analysis is
the construction of the following global functions:

a (0~) = Jar

where fa r is a function telling which pairs of variables are alias for w.

where fir is a function associating to a node of P (w) a set of linear predicates which are

true before every execution of the corresponding statement for w.

M (~) = Ymr

where fm r is a function giving the sub-arrays accessed by procedure calls in w.

In the sequel, far, fir and fm~ will be called the aliasing function, predicate function and

manipulation function, respectively.

t This is also true for the dependence computation; however associations are often ignored in this case.

e

PROGRAM M

CALL P (a)

CALL R (b)
. . o

CALL P (c)

END

SUBROUTINE P SUBROUTINE Q
,

CALL Q (d) CALL R (e)

END END

Figure 1-(a). Fortran Code

SUBROUTINE R
. . o

E M)

214

a

d b

e

\
e

d

e

Figure 1-(b). Call Tree and Static Occurrence Tree

2.3. Comput ing ParMlelization Data

A direct computation of A , I and M is not optimal: each of them may t use data sup-
plied by the othem. For instance, the computation of M benefits from the knowledge of
predicates and aliasing, i.e. of I and A. The following iterative algorithm solves this problem:

i : = 0 ;
whi le NOT-TERMINATED do

compute A i as a function of I i ;

compute M i us a function of I i and A i ;

compute I," +1 as a function of M i and A i

i : = i+1;

done

we use " m a y " because pessimistic decisions are always po~ible in the absence of further information.

215

I 0 is the initial predicate function, which associates the empty set to every statement in every

static occurrence.

This algorithm terminates provided functions Ai, I i and Ms" are computed with algo-
rithms detailed in ITril] and sketched in § 3. Convergence is detected when two successive
values of I are equal: NOT-TERMINATED is simply/~. ~d I i_1.

3. C o m p u t i n g t he Para l l e l i za t ion F u n c t i o n s

(a,b)

(c)
(d)
(e)
(f)

and so on.

3.1. Regions

As previously discussed, we need a technique to describe sub-arrays usually manipulated
in scientific programs like:

array elements: T (3,4), U (I , J - 3)

a regularly spaced subset: V (1,1), Y (1,3), ..., Y (1,2 *N +1)

a rectangular sub-matrix: W (3:5,I + l : I +4)

a triangular sub-matrix of X

a diagonal of a matrix Y

The regions allow a precise dependence computation, providing we can decide whether
two regions have common elements (see § 4).

A region is a pair r ~--~(T ,Z) where T is a variable name and ~3 is a set of linear predi-
cates on the values of T ' s subscripts, which appear in ~ as the special variables (¢1) , j ~-~1..7.
The (¢ j) act as bound variables which may be systematically renamed, for instance when
computing the intersection of two regions.

Figure 2 lists the regions which correspond to the sub-arrays of examples (a)-(f) above.
All these regions are exact descriptions of these sub-arrays. A scalar S is represented by the
region (S ,0).

3.2. The Manipulation Function M

The algorithm is based on a bottom-up traversal of the static occurrence tree. Thus, the
analysis of a procedure call cp included in a node np of a static occurrence wp is attempted
after the processing of the static occurrence wq associated to % ; hence regions accessed by all
wq procedure calls are known. This bottom-up analysis begins at the leaves of the static
occurrence tree, in which there are no calls. The analysis of a call like % is split into six
different phases, M1 to M6, whose overall organization is depicted in figure 3.

3.2.1. D e a d C o d e E l imina t ion (M1)

We attempt to detect dead code in Wq by evaluating boolean expressions with the help of
linear predicates provided by I(wq) (see § 3.5). An algorithm is proposed in [Tril]; the result
is the set AN (wq) of Accessible Nodes.

216

(T,{¢I ----- 3, ¢2 ~-- 4})

(U,(¢1 = I , ¢ 2 S = 3 })

(V,{¢ 1 = I , 1 ~ ¢ 2 ~ 2 N + 1 , ¢ 2 - 2 k ~- 1})

(W,{3_<¢1<5, I+1<¢2_<X+4})

(X ,(¢2-¢1~-1})

(Y,(¢1 = ¢~})

(a)

(b)

(0)

(d)

(e)

(f)

Figure 2: A Few Regions

Cp

COp

np

°°°

O)q

6q

°°°

r~q

~. r 6 e fm% (np)

var iable associations

for P (Wp) and P (Wq)

1

I P (wq)'declarations I -+

VNMwq) [

-+ ~ ~ r2 ~

t T

[:m%(-,) I
Figure 3: Computing the Manipulation Function

r5

1

t
r 4

T

t
r3

10
20

DO 20 I -~- 1, N
DO 10 J ---- I-K, I + K

T(I,J)
CONTINUE

CONTINUE

Figure 4. T w o N e s t e d D O - L o o p s

217

3.2.2. Region Determination (M2)

For a node in A N (Wq), accessed regions are of two different origins:

* indirectly accessed regions come from procedure calls in the current node. They are given by
the function M (Wq) ~ fm% which is available since the analysis is bottom-up.

* directly accessed regions are explicit in the statement associated to the node.

To translate a reference such as T(xl , x2, ..., x d) into a region, we construct the set X

of subscript expressions x i which are linear combinations of integer scalars. The correspond-

ing region is (T ,E) with:

s = U{¢, =x;}-
z, EX

For instance:

M2
T (I , J) -* r 2 = (T ,{¢ I = I , ¢2 = J })

M2
T (I + 2 * J + I , I * K) ~ r 2 = (T , { ¢ I - I - 2 J ----- 1})

The value of the second index is lost, since I*K is not linear.

3.2.3. Using the Execution Context (M3)

The description of a region may be sharpened by including in E all predicates which are
valid at the current node. These predicates are given by I(wq). As an example, the assign-

ment to T(I,J) inside the double DO-loop of figure 4 leads to the following region:

M3
r2 -+ r 3 = (T , { ¢ I = I ,¢~=J ,I < I < N , I - K < J < I + K }).

3.2.4. Region Widening (M4)

A region is a symbolic enti ty which may be mapped on real memory addresses when the
values of all variables (i.e the memory state) are known.

Our aim is to express all regions found in M3 by reference to the memory state just
before the execution of np. This is a two step process: going from the state at an arbitrary

node nq of P (wq) to the state at eq, entry node of P (wq); and then to the state at np.

The second step is easy, as it depends only on the semantics of the CALL mechanism (see
M6). The first one is much harder: we need relations between variable values at nq and eq.
One solution is the technique of symbolic execution [Fea].

In the interest of simplicity, we propose to restrict our at tention to the set N M V (Wq) of

variables which are not modified by nodes in A N (Wq). The value of such a variable is equal

at eq and nq. The construction of NMV(wq) is straightforward since modified regions at
each node are known from M3.

To pass from a region (T ,E) at n¢ to the corresponding one at eq is simply to eliminate
from E all variables outside N M V (wq) while keeping all relations they induce on the variables
of N M V (wq). This implies an information loss, hence the name widening.

218

If for instance NMV (wq) ~ (N , K } the region r 3 quoted in § 3.2.3. is widened to:

r 4 = (T ,{1-<¢I-<N,¢I-K -<¢2-<¢1-+-K })

which describes a band centered on the main diagonal of T.

3.2.5. Using Array Bounds (MS)

We assume that arrays are accessed within their bounds. Transformations based on this
assumption may modify the semantics of incorrect programs. This is no problem since their
semantics is not well defined: their results may vary from run to run or from machine to

machine.

This assumption allows us to add to all regions from M4 another set of constraints

between indices and corresponding array bounds. Suppose for instance that T is declared by:

DIMENSION T(N+I , -7 :N 'N)

We add to each region of T the set:

{1-<(~I-<N +1, -7_<¢2}

The upper bound constraint on ¢2 is lost because it is quadratic. This gives r s:

M5
r 4 ---+ r 5 = (T , { 1 - < ¢ , - < N , ¢ I - K -<¢2-<¢1+K ,1 -<¢I_<N+I , -7-<¢2})

3.2.6. Region Translation (M6)
Regions from M5 are expressed in the notations of P (c%). Last phase M6 aims at

translating them in the notations of the calling procedure P (wp). This depends on variable

associations induced by the CALL and COMMON mechanisms.

Unusual cases of association, allowed by FORTRAN, are handled in a pessimistic way.

For instance, if a global variable A of P (wp) is partially associated with a global variable T of

P (Wq), the translation of any region of T is (A , 13). A similar decision is made for partial

associations between actual and formal parameters.

A much better job can be done if the association is sensible:

• both arrays have equal bounds;

• the formal array is associated with a sub-array of the actual parameter.

In this case the base name of the region is simply changed. Then, region predicates are

translated: each P (Wq) variable must be expressed in term of P (wp) variables. Associations
implied by the CALL and COMMON mechanisms are studied to provide relations among
integer scalars of both procedures. Then, each P (Wq) variable is either replaced when a linear

relation exists for it, or eliminated.

A few examples of translation are given in Figure 5. For (T1), M is replaced by 2 I - J +7
but L is eliminated since [*J is not linear. This elimination produces C r 2 I + J - - < 7 . In (T2),

N , being associated with a vector element, must be eliminated; this produces 1-<¢1<_50. In
example (T3) predicate M <IND from P (¢Vq), found by wq semantics analysis, is propagated

upward to P (wp).

219

SUBROUTINE Q(L, M, N)
COMMON/G/MAT(10,20), VEC(50), IND

END

PROGRAM P
COMMON/G/MAT(10,20), VEC(50), INn

CALL Q(I ' J , 2"I-J+7, VEC(I))

END

M6

(MAT,{ ¢ I = L , ¢ 2 = M , L <_ M }) -+ (MAT,{ ¢2-ZI+J = 7 , ¢ 1 - 2 I + J _<7})

M6

(VEC,{ ¢ I = N, 1 <_ g <_ 50}) -+ (VEC,{ I _< ¢1--< 50})

M6

(VEC,{ ¢I-IND = 1, M < IND }) -+ (VEC,(¢I-IND = 1, 2I-J-IND < -7 })

Figure 5. Examples of Region Trans lat ion

(T1)

(T2)

(T3)

3.3. C o m p u t i n g the Predicate Funct ion I

Several methods have been proposed in the literature [Cou, Kar, Kil, Jou]. Killdall's
method gives a technique to detect variables whose value does not depend on the execution
path. A very general method for approximating fix-points, by Cousot, may be used to obtain
various type of predicates: bounds on the value of variables, linear constraints, etc... Karr's
method allows one to propagate linear equalities. Jouvelot nses non-standard semantics to col-
lect predicates.

The local analysis of a procedure is done as follows. Initial predicates - attached to its
entry node - are given and extra predicates are mainly provided by assignment and test nodes.
The knowledge of modified variables allows one to delete predicates which are no longer valid
after the execution of a node. This information is available since an approximation of M is
known when computing I (see § 2.3). As a matter of fact, nodes which contain procedure
calls only affect predicates by destroying some of them. Finally, predicates are propagated
through the procedure by an iterative algorithm.

For the whole program, the algorithm to compute I is bused on a top-down traversal of
the static occurrence tree. One static occurrence of procedure wp is processed by the local
analysis to compute predicates for all nodes in P (wp). Then, if wq is a static occurrence of a
procedure called by a node np in wp, initial predicates for P (wq) are computed from those of
np by a translation process similar to phase (M6) above.

This top-down analysis starts from the main program where DATA statements provide
initial predicates.

Local analysis is a complex process, hence, a simple method based on DO-loop properties
is proposed in [Trill to find predicates useful for program parullelization.

220

3.4. C o m p u t i n g the A]iasing Funct ion A

The reader is referred to [Trill for a description of a technique for the evaluation of the
aliasing function A . Predicates found by the above process are used to improve the results of

this analysis.

3.5. Using Predicates

All algorithms described in this paper depend on techniques to manipulate linear predi-

cates. Many such techniques are available in the literature and were summarized in [Trill.

The most important ones are:

• methods to eliminate redundancy from linear inequality systems;

• methods to test the feasibility of linear inequality systems: Shostak [Sho] and Fourier-

Mot zkin [Duf];

• a method to discard a variable from linear inequality systems;

• a method to find the equations implied by a linear inequality system;

• a method to solve a system of linear equations on the integer line.

In a restructuring compiler, these techniques are of paramount importance and are used
in many algorithms beside the analysis of procedure calls: symbolic evaluation of numerical

and boolean expressions, dependence computation, etc...

4. I m p r o v e m e n t of a Restructur ing Compiler

The data provided by the three functions A , M and I allows an accurate dependence
graph computation. Of course, dependences created by CALL statements are accurately tested

thanks to M . This was our main goal. In addition, predicates provided by I may be used to

suppress spurious dependences. For instance, knowing that K < 0 allows the DO-loop in figure
6 to be vectorized. Finally, aliasing data may be used to validate transformations against hid-

den variable associations.

20

DO 20 I = 1, N
T(I+K) = T(I) + ...

CONTINUE

Figure 6. A S e q u e n t i a l D O - l o o p ?

Here is a dependence test example. Consider subroutine MM in figure 7. Suppose that the
CALL statement (C) to SMXPY modifies only one column of A, described by the following

region:

(A ,{1_< ¢1<N 1,¢2=I })

221

The output dependence test for iterations I and I r of statement (C) is equivalent to
deciding the feasibility of the following linear system:

E

1 < I < N 3 , 1 ~ I ~ ~ N 3

1_<¢1_<N t, C e = I

1~¢1 t <N1 ,¢21 ~ I f

¢1=¢1' , ¢2=¢2'
I < I t

semantics of loop (L)
region accessed by iteration I

region accessed by iteration I t

existence of a dependence

iteration I is executed before iteration I I

It is easy to see that this system is unfeasible by considering I , I ' , ¢2 and ¢2' • This
proves there is no output dependence. The reader can convince himself by testing a few simi-
lar systems that loop (L) is parallel.

10

SUBROUTINE MM (A,B,C,N1,N2,N3)
REAL A(N1,N3),B(N1,N2),C(N2,N3)
D O 1 0 I ~ 1,N3

CALL SMXPY(N2,A(1,I),NI,C(1,I),B)
CONTIt~%rE
RETURN
END

Figure 7. Subroutine MM

(L)
(C)

5. Conclusion

In this paper a method to extend restructuring techniques in the presence of procedure
calls was presented. Computing interactions between several modules and predicates among
variables allows a finer description of array accesses and an improved dependence test.

A simplified version of this method has been implemented in PARA_FRASE [Kuc] at the
Center for Supercomputing Research and Development of the University of Illinois by R.
Triolet. Experiments were done on LIN~ACK. This package contains 235 DO-loops, 98 of
them containing CALL statements to BLAS routines. 22 of the later were correctly found
parallel by the modified version of PARAFRASE, whereas only 20 were hand paratIeIized by
the authors...

As a final remark, let us note that the data we gather may have other uses beside
parallelization/vectorization. For instance, detecting possible array bound violations, interpro-
cedural type checking or suggesting optimizations is easy in the above framework.

222

References

~111. J.R. Allen and K. Kennedy, "PFC: a program

to convert Fortran to a parallel form," in

Sup~reomputers, Design and Application, ed.

K. Hwang (1982). COMPSAC, Tutorial

All2. J. R. Alien, "Dependence Analysis for Sub-

scripted Variables and its Application to Pro-

gram Transformations," PhD Thesis, Dept. of

Mathematical Science, Rice University (1988).

Ban. U. Banerjee, "Speedup of Ordinary Pro-

grams," Report No UIUG'DCS-R-79-989,

University of Illinois (1979). PhD Thesis

Bro. B. Q. Brode, "VAST: A Veetorisation Tool for

the Cyber-205," Internal Report, Pacific-

Sierra Research Corp. (1982).

Cot. J. Cottet, C. Renvoise, and D. Sciamma,

"Vesta: Vectorisation automatique et

param{trge de programmes," Pros. of the 6th

Int. Symp. on Programming (1984).

Cou. P. Cousot and N. Halbwachs, "Automatic

Discovery of Linear Restraints Among Vari-

ables of a Program," Prec. of the 5th POPL

Conf. (1978).

Don. J. J. Dongarra and R. E. I-]iromoto, "A Collec-

tion of Parallel Linear Equations Routine for

the Deneleor ttEP," Parallel Computing 1(2),

pp.133-142, North-Holland (1984).

Duf. R. J. Duffm, "On Fourier's Analysis of Linear

Inequality Systems," Mathematical Program-

ming Study 1, North-Holland (1974).

Fen. P. Feautrier, "Projet "vESTA: Outil de eMcul

symbolique," Pros. of the 6th Int. Syrup. on

Programming (Apr. 1984).

Gaj. D. Gajski, D. Kuck, D. Lawrie, and A. Sameh,

"CEDAR: A Large Scale Multiprocessor,"

Prec. of the 1988 Int. Conf. on Parallel Pro-

sesslng (1983).

Got. A. Gottlieb, R. Grishman, C. Kruskat, K.

MacAuliffe, L. Rudolph, and M. Snir, "The

NYU Ultraeomputer, Designing a MIMD,

Shared-Memory Parallel Machine," Prec. of

the 9th Syrup. on Computer Architecture

(1982).

Hec. M.S. Hecht, Flow Analysis of Computer Pro-

grams, North-Holland (1977).

Hus. C~k. Huson, "An In-Line Subroutine Expander

for Parafrase~" Report No UIUCDCS-R-82-

1118, University of Illinois (1982). M.S.

Thesis

Jou. P. Jouvelot, "Evaluation s4mantique des con-

ditions de Bernstein," Rapport Interne MASI

#70, Universit4 Paris VI (Feb. 1985).

Kar. M. Karr, "Affine Relationships Among Vari-

ables of a Program," Acta Information(6)

(197s).
Kil. G. KilldaI, "A Unified Approach to Global

Program Optimization," Proceeding8 of the 1st

POPL Conference (1973).

Kuc. D. Kuck, R. Kuhn, B. Leasure, and M. Wolfe,

"The Structure of an Advanced Veetorizer for

Pipelined Processors," Prec. of the tth Int.

Conf. on Computer Software and Application

(Oct. 1980).

Pfi. G. F. Pfister and al., "The IBM Research

Parallel Processor Prototype (RP3): Introduc-

tion and Architecture," Prec. of the 1985 Int.

Conf. on Parallel Processing (1985).

She. R. Shostak, "Deciding Linear Inequalities by

Computing Loop Residues," ACM Journal

28(4), pp.769-779 (1981).

Tril. R. Triolet, "Contribution ~ la parall41isation

automatique de programmes," Th~se de

Docteur-Ing4nieur, Universit4 Paris VI (Dee.

1984).

Tri2. R. Triolet, "Probl~mes pos4s par l'expansion

de proc4dure en Fortran 77," Rapport Tech-

nique, Centre d'Automatique st.

d'Informatique de l'Ecole des Mines de Paris

(1985).

