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Automatic Parking Control of Unmanned Vehicle

Based on Switching Control Algorithm and

Backstepping

Hongbo Gao1, Juping Zhu2, Xinde Li3, Yu Kang2, Jiehao Li4 and Hang Su4

Abstract—This paper presents a simple control method for the
fully automatic parking of an unmanned vehicle. This method
is based on the switching control algorithm and backstepping
theory. The fully automatic parking is hard to accomplish since
it cannot converge to a specified norm, guarantee the convergence
rate, and large uncertainties. Global exponential convergence to
any prescribed norm bound (ǫ-convergence) is guaranteed, and
the convergence rate is explicitly given. For the design of steering
laws, a method based on backstepping is proposed and analyzed
in detail. The backstepping-based design of a multichain system
is obtained. Moreover, an exponentially ǫ-convergent control
algorithm is adopted to guarantee both converge norm and
convergence rate. Real road experiment results are presented
and the results show the effectiveness of the control strategies.

Index Terms—Automatic parking control, unmanned vehicle,
switching control algorithm, backstepping, exponential conver-
gence.

I. INTRODUCTION

Most recently, the limited number of vacant parking spots

has become a challenging problem for many cities [1-2]. In

this situation, how to park a vehicle connected with the robot

behavior was widely considered in the nonholonomic motion-

planning problem [3]. It is not easy for the drivers to search

a bigger spot, and hence they need to be experienced and

This work was supported in part by the Key Research and Development
Plan of Anhui Province under Grant No. 202004a05020058, the Fundamental
Research Funds for the Central Universities, the Science and Technology
Innovation Planning Project of Ministry of Education of China, NVIDIA
NVAIL program, the National Natural Science Foundation of China under
Grant No. U1804161, and Key Laboratory of Advanced Perception and
Intelligent Control of High-end Equipment of Ministry of Education (Anhui
Polytechnic University, Wuhu, China, 241000) under Grant No. GDSC202001.
And experiments are conducted on NVIDIA DGX-2. (Corresponding author:

Hang Su.)
1Hongbo Gao is with the Department of Automation, University of Science

and Technology of China, Hefei 230026, China, and also with Institute of
Advanced Technology, University of Science and Technology of China, Hefei
230088, China, (e-mail: ghb48@ustc.edu.cn).

2Juping Zhu and Yu Kang are with the Department of Automation,
University of Science and Technology of China, Hefei 230026, China, (e-
mail: luguo qt@163.com; kangduyu@ustc.edu.cn).

3Xinde Li is with the Key Laboratory of Measurement and Control of CSE,
School of Automation, Southeast University, Nanjing 210096, China, and also
with the School of Cyber Science and Engineering, Southeast University,
Nanjing 210096, China (e-mail: xindeli@seu.edu.cn).

4Jiehao Li and Hang Su are with the Dipartimento di Elettronica, Infor-
mazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy, (e-mail:
jiehao.li@mail.polimi.it; hang.su@polimi.it).

attentive to park their vehicles. However, even for experi-

enced drivers, their vehicles also suffer from minor scratches.

Competition of drivers for a parking spot and the maneuvers

of repositioning will increase the possibility of traffic jams.

Therefore, this kind of parking is harmful to vehicles and

troublesome for drivers.

Many works have been implemented and performed for

automatic parking control. The stable analysis of the park-

ing spot was presented in [4] using the Lyapunov function.

The steering angle and command duration for executing the

parking maneuvers are obtained using the optimization of two

parameters [5]. However, the mentioned approaches rely on

the gain and parameters so that it is challenging to evaluate

the parking performance. An improved sliding mode control

scheme was discussed in [6] for the autonomous parking. In

[7], a navigation function was introduced. In order to improve

the tracking capacity, an improved model associated with the

velocity vector was discussed in [8-9]. Furthermore, work

in [10] used a method based on a potential field, and it is

based on a direction field to ensure the parking. However, the

solution’s generation requires a lot of calculation time, and the

convergence cannot be guaranteed under complex conditions

and depends on the optimization parameters.

In the scheme mentioned above, most of the vehicles are

operated under the conditions of continuous, longitudinal

speed, and steering angle. Therefore, how to deal with the

parking problem is the main challenge in real engineering

applications. For example, a two-stage path planning method

is proposed, and collision-free paths are achieved without

considering motion constraints [11-13]. In order to find a

feasible path, path planning usually has the characteristic of

continuous curvature. A cyclotron curve is designed to solve

the collision avoidance and nonholonomic constraint problems

[14-15]. However, when the path planning methods are not

applicable to automatic parking, otherwise, it will become very

complicated.

However, the above control methods do not consider that

the model’s input is generally required to be continuous and

piecewise differentiable, which greatly limits the feasibility of

the control. Moreover, many residential quarters, enterprises,

and institutions have now adopted a 45◦ oblique parking space,

which was few considered in previous articles. This paper

compares different parking schemes to choose the best parking

method, parallel parking, vertical parking, and 45◦ oblique

parking is considered respectively. The main contributions in
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this article are concluded as below:

1) An exponential ǫ-convergence control algorithm is ap-

plied, the convergence bound, and rate problems are

solved.

2) According to that, a switching control algorithm is

established. The backstepping-based design of a mul-

tichain system is obtained. Therefore, the stabilizing

feedback gains can be solved directly without solving

any equation.

3) A switching control algorithm and backstepping theory

are adopted to guarantee that the driving input is free,

and the design parameters determine the convergence

rate.

This paper is organized as follows: In Section II, the Prelim-

inaries and problem formulation are presented. Section III de-

scribes the switching algorithm and introduces the algorithm’s

application to chained systems and steering laws. In Section

IV, the park system is proposed. Section V demonstrates the

effectiveness of the automatic parking system via experiment

results. Section VI gives the conclusion and future work.

II. PRELIMINARIES

A. Vehicle Kinematic Model

Firstly, a kinematic model of the vehicle is presented [16-

17]. The Ackermann theory is used to present the front wheels,

where φ represents the steering angle. Define the longitudinal

speed as u(t). Particularly, a pure rolling situation is also

considered in this article. Thus, the constraints are:

ẋ(t) sinΘ(t)− ẏ(t) cosΘ(t) = 0

Θ̇(t) = u(t) tanφ(t)/l.
(1)

Respecting the constraints (1) and with the transformation

to a path-curvature description, k1(t) = tanφ(t)/l and after

introducing the required comfort state k2 and the acceleration

state k3, the complete kinematic model Σ becomes

ẋ(t) = u(t) cosΘ(t), ẏ(t) = u(t) sinΘ(t)

Θ̇(t) = u(t)k1(t)

k̇1(t) = k2(t), k̇2(t) = k3(t)

(2)

subjected to

|k1(t)| ≤ c1, |k2(t)| ≤ c2, |k3(t)| ≤ c3 (3)

where k1(t) = tanφ(t)/l, and the state k2 and k3 denote the

speed and acceleration, respectively. Noting that c2 is based

on the actuator. The kinematic model is determined by the

trajectory curvature k1, derivative k2 and acceleration k3.

B. Vehicle Dynamics Model

In this subsection, a dynamic model of the vehicle is

considered [18-19], and the model is adopted from the related

works in [20]. First, define the center vehicle body as the

gravity point, where (x, y) presents the body coordinate. u
denotes the vehicle speed. β represents slip angle. Thus, the

dynamic model can be described as follows:
[

β̇
ṙ

]

=

[

a11 a12
a21 a22

] [

β
r

]

+

[

b11 b12
b21 b22

] [

φf
φr

]

ψ∗ = ψ + r ×∆t

(4)

subjected to

a11 = −Cf+Cr

mgu
, a12 = −1− Cf lf−Crlr

mgu2

a21 = −Cf lf−Crlr
Igz

, a22 = −Cf l
2
f+Crl

2
r

Igzu

b11 =
Cf

mgu
, b12 = Cr

mgu

b21 =
Cf lf
Igz

, b22 = −Crlr
Igz

Cf = µcf , Cr = µcr.

(5)

When considering the steering in the vehicle parking system,

it should be studied the controllability [13]. In other words,

the vehicle system is fully controllable in the small-time. It

can be used the point set from qstart to a given time T . The

free configuration state Cfree can be utilized to determine the

maneuverability of the system. If the input [k1(t), u(t)] with

ci > 0 ∀i ∈ {1, 2, 3}, and sign(u(t)), the dynamic system is

small-time controllable [4], [14].

C. Parking Strategy

In order to make the vehicle park the designated position

well, there is three-step guidance using in the Chinese driving

environment [21-22]. The specific steps are summarized as

follows:

1) Operate the vehicle directly from the initial position to

the desired position in (x0, y0), and then achieve the

angle ψ from the X-axis to the Y-axis.

2) With the movement speed u, control the vehicle from the

start point to the critical angle position when ψ (ψ = Θ)
from the X-axis to the Y-axis.

3) Operate the vehicle from a critical angle position to the

final position, and the angle ψ from the X-axis to the

Y-axis converts nearly 0 at the same time.

Therefore, there are five parameters in the three-step parking

system, including the initial position (x0, y0), vehicle speed u,

steering angle φf and yaw angle Θ. Define the length, width

and maximum distance parameters, respectively.

III. GLOBAL EXPONENTIAL ǫ-CONVERGENCE

Definition 1: Denote a nonlinear function as ẋ = f(x).

1) For ∀ ǫ > 0, if there exists T (ǫ, ‖x(0)‖) > 0 and for ∀
t > T ,

‖x(t)‖ < ǫ (6)

is guaranteed, where ‖ · ‖ presents the Euclidean norm.

Then the nonlinear system is defined as ǫ-convergent.

2) Furthermore, for ∀t ≤ T , if there exists k > 0,

‖x(t)‖ ≤ ‖x(0)‖e−kt (7)

is guaranteed for any x(0). Then the nonlinear system

is defined as global exponential ǫ-convergence.

A. Feedback Laws

Noting that the Ackerman kinematic four-wheeled vehicle

model is the typical chain system, which can be written as:

ẏ0 = v, ẏ =Myv +Nθ (8)

in which v is the driving input, θ is the steering input and

y=[y1, . . . , yn]
T
, M=

[

0 In−1

0 0

]

, N=

[

0
1

]

. (9)
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Denote the system ẏ =Myv+Nθ as y-subsystem. The system

is controlled if the driving input v 6= 0.

Because of the stability of (M,N), the states (M −NK1)
and −(M − NK2) are stable, where K1 and K2 are the

feedback states. Define R1 and R2 as the positive variables.

Thus, for X1, X2 > 0, the Lyapunov functions are defined as

below:
{

(M −NK1)
TR1 +R1(M −NK1) +X1 = 0

−(M −NK2)
TR2 −R2(M −NK2) +X2 = 0.

(10)

Theorem 1: Since (M − NK1) and −(M − NK2) are

stable, we have

1) If v > 0, let θ = −K1yv, then

‖y(t)‖≤‖y(0)‖
√

λmax(R1)

λmin(R1)
e−

λmin(X1R
−1
1 )

2 |y0(t)−y0(0)|. (11)

2) If v < 0, let θ = −K2yv, then

‖y(t)‖≤‖y(0)‖
√

λmax(R2)

λmin(R2)
e−

λmin(X2R
−1
2 )

2 |y0(t)−y0(0)|. (12)

Proof: The following is the proof of case v > 0, and the

other case is similar.

The Lyapunov candidate is defined as V1(y) = yTR1y.

Combining θ = −K1yv and equality

λ(R
−1/2
1 X1R

−1/2
1 ) = λ(X1R

−1
1 ) (13)

yields

V̇1(y) =
(

(M−NK1)yv
)T
R1y+y

TR1(M−NK1)yv

= −yTX1y · |v|
≤ −λmin(X1R

−1
1 )V1(y) · |v|.

(14)

Deformation of (14) and integration obtain

V1(y(t)) ≤ V1(y(0))e
−λmin(X1R

−1
1 )

∫
t

0
|v|ds. (15)

According to properties
{

λmin(R1)‖y(t)‖2 ≤ V1(y) ≤ λmax(R1)‖y(t)‖2
∫ t

0
|v(s)|ds = |

∫ t

0
v(s)ds| = |y0(t)− y0(0)|

(16)

the conclusion is guaranteed.

B. Switching Algorithm

To ensure the boundedness and the stability of y0 in chained

system, the switching algorithm is proposed as follows:

C. Convergence Guarantee

Theorem 2: Based on Theorem 1 and the proposed algo-

rithm, all states are ǫ-convergence.

Proof: Denote the average switching period as T0, the

total steering time as qT0 and the mean of |v| as v, ie.,

v = 1
t

∫ t

0
|v|ds. Define constants:











k = 1
2 min{λmin(X1R

−1
1 ), λmin(X2R

−1
2 )}

τ = max
{
√

λmax(R1)
λmin(R1)

,
√

λmax(R2)
λmin(R2)

}

γ = 1
T0

ln τ.

Similar to the proof of Theorem 1,

‖y(t)‖ ≤ ‖y(ti)‖τe−k
∫

t

ti
|v(s)|ds

(17)

Algorithm: A natural switching control algorithm

Input: a finite interval
[

ymin

0
, ymax

0

]

, any y0(0), v(0), norm bound

ǫ > 0 and finite switching periods Ti > 0 (i = 1, 2, . . . )
Set t∗ = T1

if v(0) < 0 or
{

v(0) = 0 and |y0(0)− ymax

0
| ≤ |y0(0)− ymin

0
|
}

then
∣

∣

∣
Construct a v(t) satisfying: C1, sign(v) = −1 and v(t∗) = 0

∣

∣

∣
So that y0(t∗) is brought close to ymin

0
∣

∣

∣
Apply this v and the corresponding θ to the system

∣

∣

∣
Set i = 2

∣

∣

∣
if ‖y(t∗)‖ ≥ ǫ then

∣

∣

∣

∣

∣

∣
Set t = 0, t∗ = Ti

∣

∣

∣

∣

∣

∣
Construct a v(t) satisfying: C1, sign(v) = +1 and v(t∗) = 0

∣

∣

∣

∣

∣

∣
So that y0(t∗) is brought close to ymax

0
∣

∣

∣

∣

∣

∣
Apply this v and the corresponding θ to the system

∣

∣

∣

∣

∣

∣
if ‖y(t∗)‖ ≥ ǫ then

∣

∣

∣

∣

∣

∣

∣

∣

∣
i=i+1

∣

∣

∣

∣

∣

∣
end, and continue

∣

∣

∣
end

else
∣

∣

∣
Construct a v(t) satisfying: C1, sign(v) = +1 and v(t∗) = 0

∣

∣

∣
So that y0(t∗) is brought close to ymax

0
∣

∣

∣
Apply this v and the corresponding θ to the system

∣

∣

∣
Set i = 2

∣

∣

∣
if ‖y(t∗)‖ ≥ ǫ then

∣

∣

∣

∣

∣

∣
Set t = 0, t∗ = Ti

∣

∣

∣

∣

∣

∣
Construct a v(t) satisfying: C1, sign(v) = −1 and v(t∗) = 0

∣

∣

∣

∣

∣

∣
So that y0(t∗) is brought close to ymin

0
∣

∣

∣

∣

∣

∣
Apply this v and the corresponding θ to the system

∣

∣

∣

∣

∣

∣
if ‖y(t∗)‖ ≥ ǫ then

∣

∣

∣

∣

∣

∣

∣

∣

∣
Set i = i+ 1, t = 0, t∗ = Ti

∣

∣

∣

∣

∣

∣

∣

∣

∣
Construct a v(t) satisfying: C1, sign(v) = +1 and v(t∗) = 0

∣

∣

∣

∣

∣

∣

∣

∣

∣
So that y0(t∗) is brought close to ymax

0
∣

∣

∣

∣

∣

∣

∣

∣

∣
Apply this v and the corresponding θ to the system

∣

∣

∣

∣

∣

∣

∣

∣

∣
if ‖y(t∗)‖ ≥ ǫ then

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
continue

∣

∣

∣

∣

∣

∣

∣

∣

∣
end

∣

∣

∣

∣

∣

∣
end

∣

∣

∣
end

end

Apply a stable control law to the dynamics of y0. Then apply the
determined v and the corresponding steering input θ to the system.

holds in the ith switching, where ti =
∑i

j=1 Tj , ti < t ≤ ti+1.

Repeating the process, then

‖y(qT0)‖ ≤ ‖y((q − 1)T0)‖τe−k
∫ qT0
(q−1)T0

|v(s)|ds

≤ · · · ≤ ‖y(0)‖τ qe−k
∫ qT0
0 |v(s)|ds

= ‖y(0)‖e−(kv−γ)qT0

(18)

ie., for ∀ ǫ > 0, if q ≥ ln(‖y(0)‖/ǫ)/(kv̄ − γ)T0, then

‖y(qT0)‖ ≤ ǫ. Due to its simple structure, y0 is also ǫ-
convergence.
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Therefore, the proposed algorithm guarantees global ex-

ponential ǫ-convergence of the chained system under the

steering laws of Theorem 1 and v > γ/k. If the range of

y0 is sufficiently enough, the error can be constrained in a

reasonable range. Besides, v cannot rise too much to avoid

the invalidation of the model. The convergence speed is more

than vk−γ. Moreover, noticing that the bigger v is, the quicker

convergence rate will be.

D. The Backstepping-based Design of One-chain System

The above subsections guarantee the stability of the system,

which is based on Lyapunov equations. In order to get the

feedback gains conveniently, the method based on backstep-

ping is presented. And the convergence speed can be clearly

given, which depends on the designed parameters.

Definition 2: The linear function Hi(y1, . . . , yi) is defined

as follows:

x1 = y1; H1(y1) = sign(v)k1y1

xi = yi +Hi−1(y1, . . . , yi−1)

Hi(y1,. . ., yi)=Hi−1(y2,. . ., yi)+xi−1+sign(v)kixi

(19)

in which i = 2, . . . , n. Thus x = [x1, . . . , xn]
T is a linear

function of y satisfying x = A±y. A± is a lower triangular

matrix with diagonal elements of 1, and A− and A+ are

distinguished by the sign of v.

Definition 3: For ∀i = 1, . . . , n, quadratic function is

defined as

Ii(y1, . . . , yi) =
1

2
(x21 + · · ·+ x2i ) (20)

where the values of x1, . . . , xi are given in Definition 2.

Based on Definitions 2 and 3, two feedback gains are

constructed.

Lemma:

‖x(t)‖ ≤ ‖x(0)‖e−k
∫

t

0
|v(s)|ds. (21)

.

Proof: Firstly, we prove

İi(y1, . . . , yi)=−|v|
i

∑

j=1

kjx
2
j+xi+1xiv, ∀i ≤ n− 1. (22)

1) For i = 1, ẋ1 = [x2 −H1(y1)]v guarantees

İ1(y1)=x1[x2−H1(y1)]v=−|v|k1x21+x2x1v. (23)

2) Assume in the (i− 1)th step:

İi−1(y1, . . . , yi−1) = −|v|
i−1
∑

j=1

kjx
2
j + xixi−1v. (24)

3) For the ith step: İi = İi−1 + xiẋi and

ẋi = ẏi +Hi−1(ẏ1, . . . , ẏi−1)

= yi+1v +Hi−1(y2, . . . , yi)v
(25)

guarantee

İi(y1, . . . , yi)

=−|v|
∑

i−1
j=1kjx

2
j+xi[yi+1+Hi−1(y2,. . .,yi)+xi−1]v

=−|v|
i

∑

j=1

kjx
2
j+xi[yi+1 +Hi(y1, . . . , yi)]v

=− |v|
i

∑

j=1

kjx
2
j + xi+1xiv.

(26)

Secondly, for i = n,

ẋn = ẏn +Hn−1(ẏ1, . . . , ẏn−1)

= θ +Hn−1(y2, . . . , yn)v
(27)

guarantees the steering law. Therefore

İn(y1, . . . , yn)

=−|v|
n−1
∑

j=1

kjx
2
j+xnθ+xn[Hn−1(y2,. . ., yn)+xn−1]v

=− |v|
n
∑

j=1

kjx
2
j + xn[θ +Hn(y1, . . . , yn)v]

=− |v|
n
∑

j=1

kjx
2
j ≤ −2k|v|In

(28)

i.e., the Lemma holds.

Theorem 3: Assume v has the same sign and ki > 0, ∀i.
Based on the steering law of θ = −Hn(y1, . . . , yn)v,

‖y(t)‖ ≤ ‖y(0)‖ςe−k
∫

t

0
|v(s)|ds (29)

holds, where k = min
1≤i≤n

{ki} > 0,

ς = max

{

√

λmax(AT
+A+)

λmin(AT
+A+)

,

√

λmax(AT
−A−)

λmin(AT
−A−)

}

.

Proof: Property

λmin(A
T
±A±)‖y(t)‖2 ≤ ‖x‖2 ≤ λmax(A

T
±A±)‖y(t)‖2 (30)

guarantees

λmin(A
T
±A±)‖y(t)‖2≤ ‖A±y(0)‖2e−2k

∫
t

0
|v(s)|ds

≤ ‖y(0)‖2λmax(A
T
±A±)e

−2k
∫

t

0
|v(s)|ds (31)

therefore ‖y(t)‖ ≤ ‖y(0)‖ςe−k
∫

t

0
|v(s)|ds holds.

E. The Backstepping-based Design of Multichain System

Similarly, Hnjj(y1j , . . . , ynjj) is defined as follows,

x1j = y1j ; H1j(y1) = sign(v)k1jy1j

xij = yij +H(i−1)j

(

y1j , . . . , y(i−1)j

)

Hij(y1j ,. . ., yij)=H(i−1)j(y2j , . . . , yij)+x(i−1)j+sign(v)kijxij
(32)

in which j = 1, . . . ,m, and Ai,± presents A in Definition 2

for the ith.

Theorem 4: Assume that v does not change its sign and

kij > 0, ∀i, j. Based on the steering laws, the multichain

system satisfies

‖y(t)‖ ≤ ‖y(0)‖ςe−k
∫

t

0
|v(s)|ds (33)



5

where ςj = max

{
√

λmax(AT
j,+Aj,+)

λmin(AT
j,+Aj,+)

,

√

λmax(AT
j,−

Aj,−)

λmin(AT
j,−

Aj,−)

}

,

kj = min
1≤i≤nj

{kij}, ς = max
1≤j≤m

ςj , k = min
1≤j≤m

kj .

Proof: Similar to Theorem 3, we have: ∀j = 1, . . . ,m

‖[y1j(t), . . ., ynjj(t)]‖ ≤‖[y1j(0), . . . , ynjj(0)]‖
· ςje−kj

∫
t

0
|v(s)|ds.

(34)

Therefore,

‖y(t)‖2 =

m
∑

j=1

‖[y1j(t), . . . , ynjj(t)]‖2

≤e−2k
∫

t

0
|v(s)|dsς2

m
∑

j=1

‖[y1j(0), . . . , ynjj(0)]‖2

=‖y(0)‖2ς2e−2k
∫

t

0
|v(s)|ds.

(35)

Combining the proposed algorithm and Theorem 4, the global

exponential ǫ- convergence of chained system (with a rate

greater than vk−γ) and the stability of state y0 is guaranteed

if v > γ/k. As shown in Theorems 3 and 4, the proposed

method guarantees convergence every time.

IV. AUTOMATIC PARKING SYSTEMS

The method designed in this paper can perform the parking

task in any parking scene, but the efficiency is not high because

the vehicle needs to move back and forth many times to park in

the garage. Therefore, this paper introduces suitable auxiliary

parking destinations for three common parking scenes: parallel

parking, vertical parking and 45◦ oblique parking, so as to

improve parking efficiency. Similar paths can also be designed

for other parking scenes. For common parking scenes, two

or three schemes are proposed and compared, based on the

criterion of “lower lane width of the straight stage before

warehousing and size of the parking space require better

method”. Related parameters are shown in Table I.

TABLE I
THE PARAMETER OF ZHIHONG UNMANNED VEHICLE AND PARKING

SPACE

Symbols Meaning Value

L1 Full length of vehicle 3200[mm]

L2 Width of vehicle 1670[mm]

L3 Wheelbase 2150[mm]

d Safety margin determined by designer 150[mm]

d1 Distance from rear wheel axle center to rear of vehicle 485[mm]

Φmax Maximum steering angle of front wheel 25◦

Rmin Minimum radius of rotation at rear wheel center 4550[mm]

d2 Width of the line of three parking space

150[mm]

220[mm]

150[mm]

LG,1 Length of three parking space including line

6150[mm]

4990[mm]

5690[mm]

LG,2
Width of three parking space including line

2460[mm]

2500[mm]

2670[mm]

A. Parallel Parking

For parallel parking, four methods are designed, according

to the following two criteria: the front or rear of the vehicle

enters the parking space firstly, there are two or three main

steps. It can be proved that the method that the rear of the

vehicle enters the parking space firstly with two steps is better.

This method can be specifically described as follows:

Fig. 1. The first method of parallel parking.

1) As in Fig. 1, the green figures present the safety margin.

Using L2, LG2, d, d1 and under the condition that the

distances from point O to both sides of parking space are

equal, the position of point O can be determined, which

presents the final position of the vehicle. The center

coordinate can be defined as O(x, y). Point O is also

denoted as C. Determine a circle O1 with radius Rmin

centered at (0, Rmin), which guarantees the rotation is

realizable and simplest, the steering angle is maximum.

Denote the inside point of the front of the vehicle in

the final parking position as D. The red circular arc of

circle O1 represents one of the reversing steps.

2) Before entering the warehouse, the body is parallel to

the garage. In order to minimize the requirement for lane

width, two lines l1 and l2 can be obtained first, which is

respectively parallel to the x-axis and the y-axis at the

center of the two rear wheels of the vehicle in the initial

position. Second, concentric circles O2 centered at line

l1 is obtained, satisfying that the bigger circle O2,1 is

tangential to line l1 at point A with radius Rmin and the

smaller circle O2,2 crosses the rear inside corner.

3) Now determine the specific location of concentric circles

O2 and the initial position.

(i) The circle O2,1 is tangential to the circle O1 at

point B, guaranteeing two consecutive turns at B can

be realized.

(ii) The circle O2,2 is tangential to the circle Od, which

is centered at the outside corner of parking space with

radius d. This ensures the first turn A−B does not touch

the line.

(iii) The inside boundary line of the vehicle is located

above the circle Od. This ensures the safety of straight

travel before warehousing.

The parking path can be simply expressed as A − B − C,

i.e., the red line in Fig. 1. The vehicle is required to not touch

the garage in the process of B − C, which means point D
will not touch circle Od. In fact, the general parallel parking
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space can meet this condition. So that safety is ensured in the

whole designed route.

From the above paragraph, the related parameters in O(x, y)
are obtained through geometric computations as follows:







































Od(xd, yd)
O2(x0, y0)
A(x0, y0 +Rmin)
B
(

x0/2, (y0+Rmin)/2
)

C(0, 0)
D(L1 − d1,−L2/2)
ΘB = tan−1 x0/(Rmin − y0)

(36)

in which xd = LG,1 − d− d1 − 2d2, yd = LG,2/2, x0 and y0
are the solutions of following equations, satisfying y0 < 0 :

{

x20 + (y0 −Rmin)
2 = 4R2

min

(x0 − xd)
2 + (y0 − yd)

2 = (RO2,2
− d)2

in which RO2,2
=

√

d21 + (Rmin − L2/2)2.
The detailed control process is as follows:

1) Establish two rectangular coordinate systems with the

origin at A and B, and each x-axis is tangent to circle

O2,1.

2) Use the designed steering input, let the vehicle pass

through the point A, point B, and point C automatically

along the designed route.

3) Utilize the switching algorithm until the stopping accu-

racy is satisfactory.

This method is better than the other three methods based on

the narrated criterion. To see this clearly, we give the situation

of the front of the vehicle entering the garage with three main

steps, as shown in Fig. 2. The other two situations are similar.

Fig. 2. The second method of parallel parking.

1) As shown in Fig. 2, the position of point O can be deter-

mined easily. Establish a similar rectangular coordinate

system O(x, y). Point O is also denoted as D. Circle

O1 is centered at (0, Rmin) with radius Rmin.

2) We expect to finish the parallel parking by three main

steps. As in Fig. 2, circle O2 is centered at the outside

corner P0 with radius L2

2 + d.

3) Determine the circle O3, which is tangential to the line

l1 at point B and the radius is Rmin. The line l2 is

tangential to the circle O3 at point A and parallel to

the x-axis. The distance from the straight line l2 to the

garage line is L2/2+d, and the line is the central vehicle

axis in the starting position.

4) Therefore, the parking path can be simply expressed as

A−B − C −D.

In Fig. 2, the red dotted lines show that the parking space’s

width needs to be large enough to guarantee this turning

process without touching line.

B. Vertical Parking

For vertical parking, two methods are presented. The

method shown in Fig. 3 will be introduced specifically:

Fig. 3. The first method of vertical parking.

1) Line l1 is the axisymmetric line of parking space.

2) Denote the point across line l1 and the distance d1 + d
from the garage as D, which presents the vehicle’s final

position.

3) Similar to Fig. 1, there are also circles Od, O2, O2,1,

O2,2, but circle O2,1 is tangent to line l1 at point C and

circle O2,2 is tangent to circle Od. Determine the circular

arc l3, taking the center of circle O2 as the center and

the radius is long enough to across the outside corner of

the vehicle rear as the purple dotted line. The vehicle is

required not to touch the garage in the process of B−C,

which means circular arc l3 will not touch the parking

spaceline. In fact, the general vertical parking space can

meet this condition.

4) Denote the point as O, which is on the outside line of

parking space and above the center of circle O2. The

center coordinate is O(x, y).
5) Line l2 is across the axisymmetric line of the vehicle.

The vehicle is parallel to the outside line of the parking

space and their distance is the safety margin d.

6) Determine the circle O1 with radius Rmin. The circle

O1 is tangent to the circle O2,1 at point B and tangent

to the line l2 at point A.

7) Therefore, the safety is ensured in the whole designed

route, and the parking path can be simply expressed as

A−B − C −D.

From the above paragraph, the related parameters in O(x, y)
are obtained through geometric computations:















































O1(x2, y2 +Rmin)
O2(0,−h0)
Od(Rmin + d2 − LG,2/2, 0)
A(x2, y2)
B
(

x2/2, (y2 +Rmin − h0)/2
)

C(Rmin,−h0)
D(Rmin, d+ d1 + d2 − LG,1)
ΘB = tan−1 (y2 +Rmin + h0)/x2 + 90◦

(37)
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in which






















RO2,2
=

√

d21 +
(

Rmin − L2/2
)2

h0 =

√

(

RO2,2
− d

)2 −
(

Rmin + d2 − LG,2/2
)2

x2 =
√

4R2
min − (y2 +Rmin + h0)2

y2 = d+ L2/2.

The parking control procedure is similar and the specific

process of the second method is as follows:

Fig. 4. The second method of vertical parking.

1) Similar to the circles Od, O2,1 O2,2, line l1, point B,

C and a coordinate system O(x, y) in the Fig. 2, there

are also circles, line, points and coordinate system as in

Fig. 4.

2) Determine the line as l2, which is parallel to the x-

axis and tangent to circle O2 at point A. Therefore, the

parking path can be simply expressed as A−B − C.

3) Determine the circular arc l3, take the center of circle

O2 as the center, and the radius is long enough to across

the outside corner of the vehicle rear. The vehicle must

not touch the garage the process of A−B, which means

circular arc l3 will not touch the parking spaceline.

4) Determine the circle l4, take the center of circle O2

as the center and the radius is long enough to across

the outside corner of the vehicle head. The point M is

the standard of lane width requirements, which is the

intersection of y-axis and line l4. So that the method of

Fig. 3 is better than that of Fig. 4.

C. 45◦ Oblique Parking

For 45◦ oblique parking, the given parameters are similar,

however LG,1 presents the length of the longer diagonal line,

and the LG,2 presents the distance between two diagonal lines.

Three methods are presented. The method shown in Fig. 5 will

be introduced specifically:

1) Line l1 is the axisymmetric line of parking space.

2) Similar to Fig. 3, there are also circles Od, O2, O2,1,

O2,2 and line l2, but with circle O2,1 is tangent to line

l1 at point C and circle O2,2 is tangent to circle Od as

in Fig. 5.

3) Denote the point as O, which is on the outside corner

of the parking space.

4) Determine the circle O1 with radius Rmin, and circle O1

is tangent to the circle O2,1 at point B, tangent to the

line l2 at point A.

Fig. 5. The first method of 45◦ oblique parking.

5) Similar to Fig. 3, the vehicle is required to not touch

the garage in the process of B − C, and the condition

is mostly satisfied for 45◦ oblique parking. Therefore,

safety is ensured in the whole designed route. The

parking path can be simply expressed as A−B−C−D.

From the above paragraph, the related parameters in O(x, y)
are obtained through geometric computations as











































O1(x0, y0)
O2(x1, y1)
A(x0, y0 −Rmin)
B((x0+x1)/2, (y0+y1)/2)

C
(√

2(x1−y1)+LG,2−2d2

2
√
2

,
√
2(y1−x1)+LG,2−2d2

2
√
2

)

D(x2, y2)
ΘB = tan−1 (y0 − y1)/(x0 − x1) + 90◦

(38)

in which x1 and y1 are the solutions of following equations

and y1 takes the smaller solution:
{

x21 + y21 = (RO2,2 − d)2

x1 + y1 −
√
2LG,2/2 +

√
2d2 = −

√
2Rmin

where






















RO2,2 =
√

d21 + (Rmin − L2/2)2

y0 = Rmin + L2/2 + d

x0 = x1 +
√

4R2
min − (y0 − y1)2

y2 = (−LG,1 + LG,2/2 + d+ d1 + d2)/
√
2

x2 =
√
2LG,2/2− y2 −

√
2d2.

The parking control procedure is similar. Two other methods

Fig. 6. The second method of 45◦ oblique parking.
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for 45◦ oblique parking, one is similar to Fig. 5, and the other

is similar to Fig. 4. Because these two methods are not better

than Fig. 5 with similar reasons to vertical parking, so we will

just briefly describe them.

For the method similar to Fig. 5, as shown in Fig. 6.

1) Line l1 is the axisymmetric line of parking space.

2) Similar to Fig. 5, there are also line l2, point C and a

coordinate system O(x, y).
3) Determine the circle O1 with radius Rmin, and circle

O1 is tangent to the line l1 at point B, tangent to the

line l2 at point A. Therefore, the designed path can be

simply expressed as A−B − C.

For the method similar to Fig. 4, as shown in Fig. 7.

Fig. 7. The third method of 45◦ oblique parking.

1) Line l1 is the axisymmetric line of parking space.

2) Similar to Fig. 4, there are also point C, line l1, circles

Od, O2,1 O2,2 but the circle O2,1 is tangent to line l1 at

point B.

3) Denote a similar coordinate system as O(x, y). Point O
is also the center of circle Od.

4) Determine the line l2, which is parallel to x-axis and

tangent to the circle O2,1 at the point A. Therefore, the

designed path can be simply expressed as A−B − C.

V. EXPERIMENT AND RESULTS ANALYSIS

A. Experiment Setup

Fig. 8. Zhihong unmanned vehicle.

In the three parking experiments, the used vehicle is

Zhihong unmanned vehicle. The sensor deployment of the

Zhihong unmanned vehicle is shown in Fig. 8, which consists

of 1 vision sensor, seven radar sensors and one integrated

position/attitude sensor. The vision sensor is a camera (Mo-

bileye C2-270), equipped on the frontal mirror’s back. The

radar sensors include 1 MMW (Millimeter-wave) radar (Del-

phi ESR), 2 sixteen-line laser radars (Velodyne VPL-16), 2

ultrasonic radars (Softec R©) and 2 MMW (Millimeter-wave)

radars (Chuhhang ARC1.01). The integrated position/attitude

sensor includes a global positioning system (GPS) and an

inertial navigation system (INS), which is from Huace R©.

In these experiments, different feedback gains are used in

the stability control for each auxiliary destination as well as the

final destination. For the sake of safety, the Zhihong unmanned

vehicle started the collision avoidance mode. The relevant

experimental parameters are shown in table I. The safe margin

of d in these experiments is designed as 150 mm.

B. Experiment Results and Analysis

0 2000 4000 6000 8000 10000

x [mm]

0

500

1000

1500

2000

2500

y
[m

m
]

*

*

*

C

B

A

(a)

0 10 20 30 40 50

time [s]

0

2000

4000

6000

8000

10000

x
[m

m
]

*

*

*

A

B

C

(b)

0 10 20 30 40 50

time [s]

0

500

1000

1500

2000

2500
y
[m

m
]

*

*

*

A

B

C

(c)

0 10 20 30 40 50

time [s]

-10

0

10

20

30

40

50

or
ie
nt
at
io
n
an

gl
e
[d
eg
]

*

*

*
A

B

C

(d)

0 10 20 30 40 50

time [s]

0

0.1

0.2

0.3

0.4

0.5

d
ri
vi
n
g
ve
lo
ci
ty

[m
/s
]

* *

*

A B

C

(e)

0 10 20 30 40 50

time [s]

0

0.1

0.2

0.3

0.4

0.5

d
ri
vi
n
g
in
p
u
t
[m

/s
] *

*

*

A

B

C

(f)

Fig. 9. The result of parallel parking experiment. (a) x − y path, (b) x
coordinate, (c) y coordinate, (d) orientation angle Θ, (e) driving velocity u,
(f) driving input: u ∗ cosΘ.

Compared with the simulation experiment, the real experi-

ment mainly has the following system errors:

1) The certain errors between the theoretical and actual

parameters of the vehicle;

2) The data measured by the sensor has error;

3) The actual operation cannot reach the ideal level, for

example, actual operation has inertia delay.

The experimental results are shown in Figs. 9, 10, and 11,

which are marked with key points. They are the theoretical

values of the auxiliary destinations and the final destination.

For parallel parking, the experimental result is shown in

Fig. 9. Comparing experimental diagram Fig. 9 (a) with

the theoretical diagram Fig. 1, it can be concluded that the

experiment is ideal. The curve in Fig. 9 (a) is smooth and

has a small deviation at points A, B and C, so the system
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Fig. 10. The result of vertical parking experiment. (a) x − y path, (b) x
coordinate, (c) y coordinate, (d) orientation angle Θ, (e) driving velocity u,
(f) driving input: u ∗ cosΘ.

errors are adjusted to be very small by the feedback of system;

that is, the designed system is stable and converges quickly.

Combined with Fig. 9 (d), noting that the final parking errors

are about (x, y, θ) = (180mm, 50mm, 1.7◦). Considering

that Zhihong unmanned vehicle is equipped with a collision-

avoidance system, Figs. 9 (a), (b), (c) and (d) show that there

are no changing track. Therefore, the vehicle does not touch

the line in the whole process. Fig. 9 (e) shows that the speed

is basically constant and low, which is about 0.47 m/s. That is

because of the experimental environment and safety factors.

During the whole experiment, the driving input is free, and

naturally, other driving input different from those in Fig. 9 (f)

can also be accepted.

For vertical parking, according to the IV-B formulas, the

auxiliary destinations and the final destination are calculated

and marked in Fig. 10. Fig. 10 (a) shows that the curve has a

certain distance from point B, there is a slight jitter at point

C in Figs. 10 (b), (c), (d) and (e), but the final parking result

is ideal. Therefore, the designed system is stable enough and

the convergence speed is ideal. Similarly, the driving input in

Fig. 10 (f) is free, and the whole process is safe and collision-

free, the parking speed is not high, which is about 0.63 m/s.

Noting that the final parking errors are about (x, y, θ)=(77

mm, 770 mm, 2.4◦), parking time is 22 s. Compared with the

garage’s size, it is obvious that the vehicle can stop at the

desired position accurately.
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Fig. 11. The result of 45◦ oblique parking experiment. (a) x− y path, (b) x
coordinate, (c) y coordinate, (d) orientation angle Θ, (e) driving velocity u,
(f) driving input: u ∗ cosΘ.

For 45◦ oblique parking, the result is shown in Fig. 11.

The theoretical path in Fig. 5 shows that the A-B-C process

is difficult because the distance is short and there are many

operation changes, especially the A-B process. Figs. 11 (a),

(b), (c) and (d) show that the parking process has high

accuracy, which further proves the designed system is efficient.

Fig. 11 (e) shows that the overall average speed is about 0.48

m/s. The driving input in Fig. 10 (f) is also free. Noting

that the final parking errors are about (x, y, θ)=(43 mm, 160

mm, 1.3◦), parking time is 25 s. So that the control strategies

and parking path are reasonable and efficient. Compared with

theoretical experiments, real experiments have more reliable

conclusions.

VI. CONCLUSION AND FUTURE WORK

This paper has proposed a simple feedback control method

to guarantee the global exponential convergence rate in fully

automatic parking. The continuous and piecewise smooth

control inputs guarantee the reliability in real road experiment.

The essential convergence of the switching algorithm depends

on the horizontal velocity of vehicle y0. The switching control

algorithm and backstepping theory have been applied to deal

with the stability constraints. The convergence rate problem

has been solved successfully. However, some issues, such as

systems with delay problems and constrained path planning

[23-24], need to be researched in the future.
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