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Abstract. Face recognition with partial face images is an important
problem in face biometrics. The necessity can arise in not so constrained
environments such as in surveillance video, or portal video as provided
in Multiple Biometrics Grand Challenge (MBGC). Face alignment with
partial face images is a key step toward this challenging problem.

In this paper, we present a method for partial face alignment based
on scale invariant feature transform (SIFT). We first train a reference
model using holistic faces, in which the anchor points and their corre-
sponding descriptor subspaces are learned from initial SIFT keypoints
and the relationships between the anchor points are also derived. In the
alignment stage, correspondences between the learned holistic face model
and an input partial face image are established by matching keypoints
of the partial face to the anchor points of the learned face model. Fur-
thermore, shape constraint is used to eliminate outlier correspondences
and temporal constraint is explored to find more inliers. Alignment is
finally accomplished by solving a similarity transform. Experiments on
the MBGC near infrared video sequences show the effectiveness of the
proposed method, especially when PCA subspace, shape and temporal
constraint are utilized.
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1 Introduction

Face recognition is an important problem in both computer vision and bio-
metrics. Most of researchers historically dealt with faces under constrained cir-
cumstances. However, with the development of state-of-the-art, researchers are
shifting their interest to less constrained circumstances such as in surveillance
video or portal video, where partial face recognition becomes a new challenge.
Face alignment with partial face images is a prerequisite for solving this prob-
lem. Popular face alignment methods are mostly based on holistic face model,
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such as Active Shape Model (ASM)[1], Active Appearance Model (AAM)[2].
When the integrality of faces cannot be guaranteed, these holistic models will
lose their power. Facial part detectors are not subject to face incompletion. If we
successfully detect two parts or even more, faces can be well aligned. However,
in our setting, facial parts often uncertainly occur in the images and sometimes
only one part occurs, so part detector based method will fail to obtain enough
location information for alignment. Some test partial faces are shown in Fig.1.
In this paper, we present a method for automatic partial face alignment based
on scale invariant feature transform (SIFT)[3].

Fig. 1. Some typical partial faces in a video sequence

As a well-known local feature, SIFT has been used to perform face detection[4].
When performing in faces, SIFT keypoints have good repeatability in the same
semantic region of different faces. By this property a set of uniform keypoints,
called facial anchors, can be learned from a training database of holistic frontal
faces. Descriptors attached to the same facial anchor together form its descrip-
tion. All of facial anchors and their respective descriptions compose a face model.
When dealing with novel partial faces, we can establish point-wise correspon-
dences between novel faces and the face model by matching keypoints to facial
anchors. This sort of point-wise correspondences guarantee alignment robust to
partial faces. Like the method in [3], we use the ratio of first best match and
second best match to estimate the correctness of this correspondence. Some
mismatches, however, still exist. Carneiro and Jepson[5] use shape context as
semi-local feature integrated into SIFT to improve matching performance. Shape
context[6] was originally proposed by Serge Belongie et al. to describe the object
shape by shape point orientation histogram. In our setting, as far as sparsity is
concerned, the orientation histogram of facial keypoints is not a stable feature so
that we directly use shape constraint to prune outlier correspondences. A simi-
larity transform can be solved from valid correspondences by using the method
proposed in [7]. However, the number of valid correspondences established by
one image is limited, which probably increase the risk of incorrect alignment.
Temporal constraint in a video is further explored to enrich the pool of inlier
correspondences. Two implications are derived from temporal constraint: pose
continuity and identity consistency, both of which make it presumably easy to
align faces to the same pose within a video. As a consequence, each of faces
can contribute its inlier correspondences to one common similarity transform. It
improves greatly alignment’s robustness.

Our main contributions include: 1) SIFT based generative face model is learned
and naturally overcomes the difficulties brought by face incompletion. 2) Shape
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constraint of face is used to prune correspondences, which guarantees that true
matches are preserved and meanwhile most of false matches are eliminated. 3) Our
method takes advantage of temporal constraintwithin a video to enrich correspon-
dence inliers and thus obtain more robust results than frame-by-frame alignment.

The rest of this paper is organized as follows. In Section 2, a generative face
model is built up. In section 3, partial face alignment with shape constraint
and with temporal constraint are introduced in detail. In section 4, experiments
are conducted on NIR video sequences released by Multiple Biometrics Grand
Challenge (MBGC)[8] and show the performance of our method. This paper is
finally concluded by discussion and future work in section 5.

2 Learning Face Model with SIFT

Scale Invariant Feature Transform (SIFT) developed by Lowe[3] combines a scale
invariant keypoint detector and gradient histogram based descriptor. First, im-
age scale-space is built and potential keypoints are identified by using difference
of Gaussian (DoG) function. Final keypoints are selected based on measures of
their stability. DoG as a close approximation of scale normalized Laplacian of
Gaussian performed well in term of detection repeatability compared with other
existing detectors[9]. The stability provides a prime basis for our face model.
Second, the local coordinate system of keypoint is built in image scale-space.
Based on the local coordinate system, The descriptor is represented by a 3D his-
togram of gradient locations and orientations. The contribution to the location
and orientation bins is weighted by the gradient magnitude. The quantization of
locations and orientations makes the descriptor robust to small geometric dis-
tortions and small errors in the keypoint detection. Mikolajczyk and Schimid[10]
compared diverse existing descriptors and found SIFT best.

Using a set of holistic frontal faces as training database, we collect their SIFT
keypoints and corresponding descriptors. All the keypoints are plotted in one
typical face in Fig.2(a). Note that most of keypoints concentrate into small
clusters around semantic facial regions such as eyes, nose and mouth. Considering
location errors of DoG detector and feature displacements of different faces, we
presume that each identifiable cluster of keypoints represent a facial semantic
region and the mean of keypoints will be a good estimate of facial anchor. On
the contrary, dispersive keypoints tend to be subject to some special features of
certain faces and lack of generality and are thus removed before identifying facial
anchors. We use following algorithm to remove dispersive keypoints: a keypoint,
if the number of its neighbors within a small region R is less than certain number
Nn, is considered dispersive and then removed. In our experiments, we set R = 5
and Nn = 100. After checking all keypoints, the remaining are shown in Fig.2(b).
Finally, we identify facial anchors using Kmeans, which are represented by blue
dots in Fig.2(c). Each facial anchor corresponds to a series of descriptors that
are assigned by Kmeans. Comparing with the scheme of one keypoint with one
descriptor, variance of descriptors coming from the same semantic region of
different faces enrich feature representation and are thus less subject to some
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(a) (b) (c)

Fig. 2. The procedure of learning facial anchors by clustering. Red crosses represent
keypoints and blue dots represent anchors.

special face. This property makes unseen face alignment possible. However, noises
and even wrong descriptors brought by Kmeans could increase matching risk.
Principle Component Analysis (PCA) is effective subspace learning technique
and can be used here to represent the intrinsic structure of descriptors. The face
model now consists of facial anchors {Ai, i = 1, 2, ..., T} and their respective
descriptor subspaces {Si, i = 1, 2, ..., T}. We can also represent the facial anchor
by a set of descriptor exemplars. The different methods of descriptions determine
different feature matching criterion, which will be compared in section 4.

3 Partial Face Alignment

3.1 Matching with Shape Constraint

For each frame f of one video, its SIFT feature set consists of M keypoints
{Ki, i = 1, 2, ..., M} and their respective descriptors {Di, i = 1, 2, ..., M}. For
each Ki, we compute the distance from the descriptor Di to each of descriptor
subspaces Sj . The facial anchor related to the minimum distance d1 is the best
match and the one related to the second minimum distance d2 is the second best
match. We use the ratio: ri = d1/d2 as criterion to estimate the correctness of
this match. If ri < 0.85, the match is accepted as a candidate correspondence,
otherwise the match is discarded. When this procedure is finished, we sometimes
will find that multiple keypoints are matched to a common anchor. In order
to guarantee one-to-one correspondence we select the one which has minimum
ratio ri as the candidate correspondence. So we obtain a series of candidate
correspondences: {Ci : Ki ←→ Aj , ri}, i = 1, 2, ..., M ′, M ′ � M .

Even if we adopt the ratio r to threshold matches, there still exist some
mismatches due to some uncertain factors such as facial geometric distortion,
non-facial features (hair, ear and clothing). We now utilize shape constraint to
check candidate correspondences and further kill those outliers.

Given a set of keypoints or anchors, shape constraint is a collection of rel-
ative orientations between any two ones and represented as an index matrix.
Centered in an anchor Ai, a polar coordinate system can be built so that each
of remaining anchors Aj,j �=i gets an angle coordinate. In order to permit some-
what location errors of anchors, angles are quantified into 12 bins by 30o. Thus
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Fig. 3. A diagram for constructing shape constraint in face model. Centered in a given
anchor (green dot), a polar coordinate system is plotted in green and orientation indices
(red numbers) are assigned to other anchors (blue dots).

(a) (b)

Fig. 4. Before(a) and After(b) pruning with shape constraint. For each subfigure, the
top left small 128 × 128 image is the template of face model and the bottom image is
the novel 512 × 512 face to be aligned. Correspondences are represented by green line
segments which connect the facial anchors and keypoints.

each of remaining anchors is labeled a bin index bij,j �=i that ranges from 1 to
12. Fig.3 illustrates the procedure. Arranging all these indices are arranged to
form a matrix B. After computing the shape constraint matrix B of face model
and shape constraint matrix D of novel face, the following algorithm is used to
prune the outliers,

1. Find the Ci which has minimum ri as the first valid correspondence;

2. Set the keypoint Ki of the first valid correspondence as reference point in the

novel face;

3. For the keypoint Kj of each remaining Cj,j �=i;

4. By i as row coordinate and j as column coordinate, find index value bij in

B and index value dij in D;
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5. If dij == bij, then accept the current correspondence as the next valid cor-

respondence, else eliminate it;

6. Go to the next Cj,j �=i.

An example is given in Fig.4 to illustrate the performance of this algorithm.
In this way, the amount of correspondences from one partial face is relatively
small. It probably reduces robustness of similarity transformation solution. In
the following, we propose to explore the temporal constraint within videos to
obtain more inlier correspondences.

3.2 Alignment with Temporal Constraint

The top row of Fig.5 lists some faces of one sequence. It is clear that their
poses varies continuously and lightly. This kind of frame dependence or temporal
constraint can help align the sequence. Consider that each of face has a certain
amount of valid correspondences when matching to the face model. If we can
make all these correspondences contribute to one uniform similarity transform,
inliers will be greatly enriched. To achieve this, the first step is to ensure faces
within a video have the same pose. Given a video sequence, {f1, f2, ..., fN}, we
extract SIFT features of each frame and then select the frame with most SIFT
features as the reference frame fr so that we can save different kinds of facial
features as many as possible. For each of remaining frames fi within sequence, we
establish SIFT feature correspondences between fi and the reference frame fr. If
the number of correspondences is less than two, then fi is discarded; otherwise
a similarity transform Ti can be solved with four parameters: scaling factor si,
rotation angle θi, x translation txi and y translation tyi. As a result, we obtain
a series of new faces,

f ′
i = Ti(fi, Θi), i = 1, 2, ..., N ′, N ′

� N, (1)

where f ′
i denotes new face and Θi denotes four similarity transform parame-

ters: {si, θi, txi, tyi}. This matching procedure, called ’self-alignment’, performs
expectably well because of pose continuity and identity consistency. And shape
constraint can also help improve the performance. The bottom row of Fig.5 are
self-aligned faces with respect to the top row.

Each of self-aligned faces f ′
i , i = 1, 2, ..., N ′ within a video can be matched

to the face model and contributes a set of Mi valid correspondences {Ci
j}, j =

1, 2, ..., Mi by using the method in section 3.1. From all of valid correspondences
{Cj

i}, j = 1, 2, ..., Mi, i = 1, 2, ..., N ′, an uniform similarity transform T0 can be
further solved by RANSAC algorithm. Final aligned faces are

f ′′
i = T0(f

′
i , Θ0) = T0(Ti(fi, Θi), Θ0), i = 1, 2, ..., N ′, (2)

where Θ0 denotes four parameters of uniform similarity transform : scaling factor
s0, rotation angle θ0, x translation tx0 and y translation ty0.
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(a) Some sample images from one video

(b) Aligned images

Fig. 5. Alignment within a video. The top row are some original sample images from
one video with small pose variation and the bottom row are respective aligned images
(in blue box) referred to the last image (in red box) which has most SIFT features in
this video.

4 Experiments

In this section, we conduct experiments on MBGC NIR video sequences to eval-
uate our method’s performance.

MBGC sponsored by multiple U.S. Government Agencies seeks to investigate,
test and improve performance of face and iris recognition technology on both still
and video imagery through a series of challenge problems. One of these problem
is to recognize people from near infrared video sequences. There are together 139
sequences which consist of 2286 images with resolution 2048×2048. Sequences are
acquired as people walk through a portal and consequently faces in sequences are
partial, skewed and even missed. We select 249 holistic frontal faces as training
set to learn face model and the remaining 2037 images are used as test set.

For the sake of computational efficiency, all the images are firstly compressed
to the resolution 512 × 512 and 256 × 256, respectively. An important param-
eter that affects SIFT features is ’edge threshold’. Edges are poorly defined in
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Fig. 6. Edge threshold influence on facial SIFT features
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different-of-Gaussian function and are less stable to be candidate keypoints. The
bigger the ’edge threshold’ value is, the more edge-like SIFT features are ac-
cepted. As a result, more non-facial features are included, such as hair, ears,
collar. In Fig.6(a) and Fig.6(b), we see that when edge threshold increases the
average numbers of facial features accordingly increase but rather the average
percentages of facial features decreases. When edge threshold passes 20 the av-
erage number and percentage tend to be stable. Thus, we set edge threshold to
20 in the following experiments.

In section 2, two kinds of description of facial anchor are introduced. These
two methods result in different matching and further alignment performance. As
four parameters should be solved, an alignment needs at less 2 valid correspon-
dences. Therefore, if an image has more than 2 valid correspondences, the face is
’detected’ and process to be aligned. In order to evaluate alignment performance,
we define average square keypoint displacement di:

di =

√

√

√

√

1

Mi

Mi
∑

j=1

‖K ′
j − Aj‖2, (3)

where K ′
j is aligned keypoint, Aj is its corresponding anchor and Mi is the

number of correspondences. We use R, which has been defined as the smallest
displacement tolerance in section 2, as threshold. If di ≤ R, then the alignment
is ’correct’; or else the alignment is ’incorrect’.

Table 1. Comparisons of different criterion in detection rate, correct rate and the
number of incorrect alignments. Best results are red-marked.

Resolution Detection rate Correct rate Incorrect alignments

NN
512× 512 49.3% 88.6% 129
256× 256 41.5% 95.7% 41

PCA
512× 512 45.8% 98.3% 18
256× 256 38.1% 98.1% 17

Table 1 lists frame-by-frame alignment results under NN and PCA criteria.
The best correct rate 98.3% is achieved under PCA criterion and the best de-
tection rate 49.3% is achieved under NN criterion. Note that many images in
test video database are lack of effective facial parts, like first and last several
images in Fig.7(a). Thus, the detection rate is relatively low. NN seems to be
more sensitive to the spatial resolution as the correct rate increase from 88.6%
to 95.7% by increasing the spatial resolution from 512× 512 to 256× 256. PCA
is less affected by this parameter as the correct rates in 512× 512 and 256× 256
are similar.

We now compare the performance of frame-by-frame alignment and alignment
with temporal constraint in Table 2. The spatial resolution is set to 512×512 in
this experiment. In the first step of alignment with temporal constraint, called
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Table 2. Comparisons of alignment with and without temporal constraint in detection
rate, correct rate and the number of incorrect alignments. Best results are red-marked.

Temporal constraint Detection rate Correct rate Incorrect alignments

NN
No 49.3% 88.6% 129
Yes 49.4% 97.7% 26

PCA
No 45.8% 98.3% 18
Yes 47.9% 99.9% 8

self-alignment, each frame is more easily matched to the reference frame than to
an uniform face model and thus more facial images are correctly self-aligned and
processed to the next step, called joint-alignment. In this step all the detected
faces are matched to the face model and an uniform similarity transform is
solved to align all self-aligned faces. Both of best detection rate and correct
rate are achieved with temporal constraint. Note that the error in alignment
with temporal constraint consists of two part. The one is introduced in the step
of self-alignment and the other is generated in the step of joint alignment. For
example, under PCA criterion and with temporal constraint, there are 8 incorrect
alignments, 6 of which are self-alignment errors and 2 of which are coming from
one video and are introduced in joint alignment. Finally, we show aligned images
in the video plotted in Fig.7(a) by joint alignment in Fig.7(b).

(a) Original video sequence (b) Aligned video sequence

Fig. 7. An example of video sequence alignment. Original video sequence has 21 frames.
After alignment, 12 frontal partial faces are obtained and 9 images have been discarded
which are illustrated by black ones.

5 Conclusions

In this paper, we introduce a novel problem of aligning partial faces in NIR video
sequences and propose an effective solution. Our method has three novelties.
First, an uniform face model is learned from a set of training faces by clustering
analysis, which makes unseen face alignment possible. Second, shape constraint is
used to eliminate outliers while matching the frames to model. Third, guaranteed
by the temporal constraint we develop an scheme of joint alignment. Its results
are shown to perform well. In the future, we will concentrate in decreasing the
time complexity and develop more robust solution of similarity transform than
RANSAC.
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