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Abstract

Particle filters have proven to be an effective tool for vi-
sual tracking in non-gaussian, cluttered environments. Con-
ventional particle filters however do not scale to the problem
of Human Motion Capture (HMC) because of the large num-
ber of degrees of freedom involved.

Annealed Particle Filtering (APF), introduced by
Deutscher et al [3], tackled this by layering the search space
and was shown to be a very effective tool for HMC.

In this paper we improve upon and extend the APF in
two ways. First we develop a hierarchical search strategy
which automatically partitions the search space without any
explicit representation of the partitions. Then we introduce
a crossover operator (similar to that found in Genetic Algo-
rithms) which improves the ability of the tracker to search
different partitions in parallel.

We present results for a simple example to demonstrate
the new algorithm’s implementation and then apply it to the
considerably more complex problem of Human Motion Cap-
ture with 34 degrees of freedom.

1. Introduction

Marker-based human motion capture has been used commer-
cially [14] for a number of years with applications found
in special effects and biometrics. The use of markers how-
ever is intrusive, necessitates the use of expensive specialised
hardware and can only be used on footage taken especially
for that purpose. A markerless system of human motion cap-
ture could be run using conventional cameras and without the
use of special apparel or other equipment. Combined with
today’s powerful off-the-shelf PC’s, cost-effective and real-
time markerless human motion capture has for the first time
become a possibility. Such a system would have a greater
number of applications than its marker-based predecessor
ranging from intelligent surveillance to character animation
and computer interfacing.

Past research into HMC has concentrated on the
articulated-model based approach. The reason this approach
is popular is the high level output it produces in the form of
a model configuration for each frame. This output can easily
be used by higher-order processes to perform tasks such as
character animation and action recognition.

The main challenge in articulated body motion tracking
is the large number of degrees of freedom (at least 30 for a
realistic human model) to be recovered. Search algorithms,
either deterministic or stochastic, that search such a space
without constraint, fall foul of exponential computational
complexity.

One way researchers have tackled this problem is to re-
lax constraints arising from articulation, and track limbs as
if their motions were independent. This assumes that the dif-
ferent parts of the body can in fact be tracked independently,
a feat usually requiring special markers or apparel.

Another popular approach is to introduce constraints —
either labelling using markers or colour coding, prior as-
sumptions about motion trajectories or view restrictions. It
is also possible to restrict the range of movement of the sub-
ject. This approach has been pursued by Hogg [6], Rohr [11]
and Niyogi [9]. All three assume the subject is walking (usu-
ally in a straight line). Rohr even reduces the dimension of
the problem to the phase of the walking cycle. Goncalves
[5] and Deutscher [2] assume a constant angle of view of the
subject as does Bregler [1] and Rehg [10]. Such an approach
greatly restricts the resulting tracker’s generality.

Using a very strong dynamical model is another way
to introduce constraints. Sidenbladh et al [12] have taken
a mathematically rigorous approach to full-body tracking
based on Condensation [7] where they employ learned dy-
namical models and a generative model of image formation.
They tracked short sequences of 3D motion from a single
camera, though the very strong dynamical models used re-
strict the applicability of the system to a narrow range of
movement and the system runs slowly due to the large num-
ber of particles required.

Others have proposed various forms of search space de-
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composition as a solution, most notably Gavrila et al [4].
MacCormick et al’s [8] work on Partitioned Sampling and
Sullivan et al’s [13] Layered Sampling are versions of the
Condensation algorithm that combine search space partition-
ing or layering with a particle filter framework. Although
reducing the size of search space dramatically these ap-
proaches either require restrictive assumptions about pose,
subject and environment, or are still too inefficient to be em-
ployed for general HMC.

Annealed Particle Filtering (APF) [3] has been proposed
as a general and robust solution for search in non-gaussian,
high-dimensional spaces with specific application to Human
Motion Capture (HMC). It uses a continuation principle,
based on annealing, to introduce the influence of narrow
peaks in the fitness function gradually, and has been shown
to track complex human movement without the use of ex-
tra constraints such as labelled markers, pose assumptions,
restricted movement or colour coding.

In this paper we improve upon and extend the APF in
two ways. We develop a hierarchical search strategy which
automatically partitions the search space without any ex-
plicit representation of the partitions. Then we introduce a
crossover operator (similar to that found in Genetic Algo-
rithms) which improves the ability of the tracker to search
different partitions in parallel. Both these measures, brought
together in the Partitioned Annealed Particle Filter (PAPF),
increase the speed of the original APF by a factor of 4.

We present results for the simple example of tracking a
planar articulated arm to demonstrate the new algorithm’s
implementation and then apply it to the considerably more
complex problem of Human Motion Capture with 34 degrees
of freedom.

2. Search Space Decomposition

2.1 Conventional Search Space Decomposition

A very effective method of reducing the computational effort
required to search a high DOF space is Search Space Decom-
position. If one section of a search space can be searched
independently then it can be used as a constraint for reduc-
ing the rest of the search space. In the context of HMC for
example one could try to match just the torso and head to an
image, and once these sections have been localised we could
progress to the arms and legs.

A successful partitioning of the search space in this way
reduces the cost of searching the space to one that increases
linearly with the number of partitions instead of one that in-
creases exponentially with the number of DOF. This would
obviously be of great computational benefit when matching
high DOF models like those used in HMC to model humans.

However, there are a number of problems with using sim-
ple Search Space Decomposition for realistic HMC.

� Each partition requires the formulation of a separate

(a) (b) (c)

Figure 1: Hierarchical matching of model partitions. Matching
just the head and torso of a model to the image results in a poor
fit (a). If this result is used to constrain the search for the limbs
as is Hierarchical Search Space Decomposition we are left with an
unsatisfactory outcome as seen in (b) illustrating the dependence of
the partitions. Searching over the entire unpartitioned space results
in a good match as seen in (c). The weighting function was a sum
of squared difference function of edge and foreground information.
Information from three cameras was used but only one view shown
for clarity.

weighting function 1. It is not always possible to decom-
pose the overall weighting function into separate weight-
ing functions for each partition and even if this can be
done it is difficult to ensure their reliability, as previously
mentioned.

� Even before the separate weighting functions are de-
vised, decisions have to be made about how many par-
titions to have and where to divide the search space into
these separate partitions. This is usually done in an intu-
itive fashion about what will “work best”, ie. separating
the limbs into separate partitions and the torso and head
into another.
The problem with this particular approach is that it is
very difficult to find a good match for just the torso and
head, especially in rotation about the vertical axis, with-
out using information from the arms and legs at the same
time (see figure 1). In fact it is very hard to reliably
match any section of a human model to an image inde-
pendently of the other sections without the help of mark-
ers, color cues or pose assumptions. The best partition
points may even change during tracking. It would be
best not to explicitly make these decisions at all.

2.2 Search Space Decomposition using pre-
dicted values

Gavrila [4] avoids the problem of constructing multiple
weighting functions by predicting configurations for each
partition.

The model is again split into torso-head and limb par-
titions (decisions about where to partition the search space

1Defined here as the function used to determine the degree of fit between
a model (or one of its partition’s) configuration X and a given image Z,
denoted as w (X;Z).
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still have to be made before tracking). Then the goodness of
fit for the first partition is optimised over the first partition
parameters, keeping the other parameters constant at the val-
ues predicted by a dynamical model. Having found the best
configuration for the torso-head partition he is then able to
search for the best configuration for the remaining limb par-
titions — again without using separate weighting functions.

Although Gavrila has presented some excellent results
using this method he acknowledges that using an unoccluded
subject wearing tight color-coded clothing produces “a well
behaved similarity measure derived from multiple views : : :
[which] is likely to lead a search landscape with fairly wide
and pronounced maxima around the correct parameter val-
ues” [4].

When applied in other circumstances in which the topol-
ogy of the matching function is not so well behaved, tracking
often fails catastrophically. Consider the simple articulated
arm, tracked using a sum of squared difference (SSD) mea-
sure between image and model (the exact details are unim-
portant) and split into four partitions.

When tracking this arm using Gavrila’s predictive SSD
(see figure 3) even a small error in the predicted model con-
figuration generates an error in the final model configuration
at each frame. This error in turn produces a larger error in the
predicted configuration for the next frame which produces a
larger error in the calculated value and so on an so forth until
tracking fails.

This shows that the separate partitions of an articulated
object cannot be considered independent (even if they are
nearly so) even near the maximum of the weighting func-
tion — which is where the predicted values should place us.
Our experiments show that this characteristic of articulated
bodies is even more prevalent in the much more complex
scenario of full-body HMC.

2.3 Search Space Decomposition using Particle
Filters

Ideally we require a method in which the near independence
of each partition can be exploited without making the catas-
trophic assumption of complete independence. The use of
particle filters can provide a framework for elegant solutions
and a number have emerged in recent years.

Variations on the Condensation [7] algorithm have been
proposed (or could conceivably be used) for tracking articu-
lated objects, in particular MacCormick et al’s [8] work on
Partitioned Sampling and Sullivan et al’s [13] Layered Sam-
pling.

These approaches do not require each partition to be
completely independent, nor do they require completely re-
liable partition weighting functions. However they still
present a number of other problems:
1. Pre-determined partitions of the search space are still

necessary.
2. Weighting functions are still needed for each partition.

FRAME 3 FRAME 5 FRAME 7 FRAME 9
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ct

ed
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E = 2:1o E = 5:5o E = 15:3o E = 20:7o
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al
X

E = 1:3o E = 3:4o E = 10:5o E = 14:2o

Figure 2: Tracking a simple articulated arm using Predictive
SSD. The configuration of the arm, X = (x1; x2; x3; x4) (seen in
figure 3) is split into 4 partitions, one for each parameter.
The top row shows the predicted configuration — computed using
a constant position model of motion — superimposed on the actual
articulated arm for each frame. The bottom row shows the final
configuration output by the tracker for each frame, found using the
the Predictive SSD framework.
The error values E are the Euclidean distance to the true configura-
tion which was found using exhaustive search over the entire space.

3. Neither method increases efficiency enough (a factor 5-
10 times is quoted by MacCormick [8]) to enable track-
ing though very high DOF spaces.
By contrast the Annealed Particle Filter, also based on a

particle filter framework, is much more efficient than either
of these methods and has already been proven to be effective
for HMC.

3. Annealed Particle Filter

The Annealed Particle Filter (APF) (Deutscher et al [3]) has
proven to be a very robust and simple way to search high-
dimensional search spaces efficiently, and has been demon-
strated on sequences of complex Human Motion. In the re-
mainder of this paper we first briefly summarise the APF al-
gorithm and then show how it can be improved and extended
to produce a tracking framework that does not require the
specification of partitions or multiple weighting functions
and automatically takes advantage of any independence that
may exist between different regions of the search space to
increase tracking efficiency without sacrificing tracking ac-
curacy.

The APF algorithm is briefly outlined below, we recom-
mend that the diligent readers peruse Deutscher et al’s [3]
paper for the full details.

3.1 The APF algorithm

A series of weighting functions w0(Z;X) to wM (Z;X) are
employed which measure the goodness-of-fit of hypotheti-
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cal pose X with respect to image data Z. Each weighting
function wm differs only slightly from wm�1. The function
wM is designed to be very broad, representing the overall
trend of the search space while w0 should be very peaked,
emphasising local features. This is achieved by setting

wm(Z;X) = w(Z;X)�m ; (1)

for �0 > �1 > : : : > �M , where w(Z;X) is the original
weighting function. Because it is not the aim to sample from
w(Z;X), but only to find its maximum it is not required that
�0 = 1.

One annealing run consisting of several iterations of a
single algorithm (or layers) is performed at each time tk us-
ing image observations Zk. The state of the tracker after
each layer m of an annealing run is represented by a set of
N weighted particles

S�k;m = f(s
(0)
k;m; �

(0)
k;m) : : : (s

(N)
k;m; �

(N)
k;m)g: (2)

Each particle (s(i)k;m; �
(i)
k;m) contains an instance s(i)k;m of the

multi-variate model configuration X, and a corresponding
particle weighting �(i)k;m. An unweighted set of particles will
be denoted

Sk;m = f(s
(0)
k;m) : : : (s

(N)
k;m)g: (3)

Each annealing run can be broken down as follows.
1. For every time step tk an annealing run is started at layer

M , with m =M .
2. Each layer of an annealing run is initialised by a set of

un-weighted particles Sk;m.
3. Each of these particles is then assigned a weight

�
(i)
k;m / wm(Zk ; s

(i)
k;m) (4)

which are normalised so that
P

N �
(i)
k;m = 1. The set of

weighted particles S�k;m has now been formed.
4. N particles are drawn randomly from S�k;m with replace-

ment and with a probability equal to their weighting
�
(i)
k;m. As the nth particle s(n)k;m is chosen it is used to

produce the particle s(n)k;m�1 using

s
(n)
k;m�1 = s

(n)
k;m +Bm (5)

where Bm is a multi-variate gaussian random variable
with covariance matrixPm and mean 0.

5. The set Sk;m�1 has now been produced which can be
used to initialise layer m � 1. The process is repeated
until we arrive at the set S�k;0.

6. S�k;0 is used to estimate the optimal model configuration
Xk using

Xk =

NX

i=1

s
(i)
k;0�

(i)
k;0: (6)

7. The set Sk+1;M is then produced from S�k;0 using

s
(n)
k+1;M = s

(n)
k;0 +B0: (7)

This set is then used to initialise layer M of the next
annealing run at tk+1.
If a dynamical model of motion was introduced (the cur-

rent system could be considered to employ a constant posi-
tion model) then P0 would be the process noise covariance.
In practice P0 is restricted to a diagonal matrix where each
element is allocated a value equal to half the maximum ex-
pected movement of the corresponding model configuration
parameter over one time step, plus a component to allow for
gross tracking errors. In this way particles in the set Sk+1;M
should cover all possible movements of the subject between
time tk and tk+1. The amount of diffusion added to each
successive annealing layer should decrease at the same rate
as the resolution of the set Sk;m increases. It is suggested by
Deutscher et al that setting

Pm = P0(�M�M�1 : : : �m) (8)

produces good results.
As it stands Annealed Particle Filtering is (one of) the

most efficient, and general methods available for robust Hu-
man Motion Capture. In this paper a method is proposed
which combines the robust nature of APF with the efficien-
cies gained by partitioning the search space to dramatically
increase the speed and reliability of tracking.

4. Hierarchical partitioning theory

We now incorporate Search Space Decomposition into the
framework of the Annealed Particle Filter, initially demon-
strating the concept on a cut-down example.

Consider the simple task of tracking an articulated arm
as seen in figure 3. The arm consists of four segments, each
joined by a swivelling joint with one end rooted on the spot.
A configuration of the arm is described by an instance of the
state variable X = (x1; x2; x3; x4). The weighting func-
tion w(Z;X) required for the APF is computed by a Sum of
Squared Difference (SSD) measure between a model tem-
plate the image, the exact details are not important.

The set Sk;m is initialised with particles uniformly dis-
tributed over a range ofX that we know to contain the actual
position of the arm. This results in a large and similar vari-
ance for each parameter ofX over all the particles in Sk;m as

can be seen in figure 4a. After calculating a weight �(i)k;m for

each particle using wm(Zk ; s
(i)
k;m) we then proceed to step 4

of the APF and draw N particles from Sk;m with replace-
ment and probability proportional to each particle’s weight.

Consider the set Sk;m so produced before the addition
of any noise. In a typical annealing run the individual pa-
rameters of each particle were found to have variance as de-
tailed in figure 4b. Note here that the variance of x1 has
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(a)

O

3x

2x1x

x

4321X = (x , x , x , x )

4

(b)

Figure 3: A planar articulated arm with 4 DOF is shown (a). It
consits of four links connected by swivelling joints and rooted at O.
The configuration of the arm is described byX = (x1; x2; x3; x4)
as seen in (b).

been greatly reduced while the other parameters x2; x3 and
x4 have been hardly reduced at all. The variance of any
parameter can be considered (with a number of acceptable
caveats) to be directly related to the degree to which the max-
imal value for that parameter has been determined. Figure
4b shows that x1 has been localised down to a very small
area of its range simply because it dominates the topology
of the search space whereas each particle’s values for x2; x3
and x4 had very little influence on whether it was selected
or not. In effect we see here an automatic partitioning of the
state space into soft partitions according each parameter’s
topological dominance. This should always occur as long as
N is not high enough to allow saturation of the range of X.

The problem with classical APF arises with the addition
of noise to each particle upon selection. According to equa-
tions 5 and 8 an equal amount of noise should be added to
each particle. This results in a parameter variance profile
like that seen in figure 4c with the localisation of x1 seen in
figure 4b all but wiped out by the excessive addition of noise.

If instead the amount of noise added to each parameter
x1 : : : x4 of each selected particle is proportional to the vari-
ance of that parameter over the set of particles these gains
will be protected from disruption. Instead we will arrive at
the situation seen in figure 4(f) where enough noise has been
added to keep the APF working, but not enough to wipe out
any localisation gains.

If this method of determiningPi is continued through all
the annealing layers we can see that each parameter is lo-
calised in turn, with some degree of overlap as seen in figure
5. This is exactly the kind of hierarchical soft partitioning
that was desired and no explicit partition boundaries or func-
tions were required.

A good measure of the performance of a particle filter

(a) (d)

(b) (e)

(c) (f)

Figure 4: Graphs of parameter variance illustrate the failure of
conventional APF. On the left graphs a, b and c plot the variance of
each parameter ofX = (x1; x2; x3; x4) through the first annealing
run of the APF when tracking the articulated arm seen in figure 3.
Graphs d, e and f show the same information for the improved APF
as described in section 4.1. Graphs a and d show the variances of
the initial set S�k;m, displaying equal variances for each parameter.
Graphs b and e show the variances of the set S�k;m�1 before the
addition of noise. Note that in both b and e, x1 has a very small
variance indicating advanced localisation, however x2, x3 and x4

have been reduced only a little. up to this point the algorithms are
the same and any differences between b and e are random. After
the addition of noise in the original APF the localisation of x1 has
been greatly degraded as seen in graph c, however when noise is
added in proportion to each parameter’s variance the localisation of
x1 is preserved as seen in graph f.

is the number of particles needed to successfully track an
object, a good indication of the computational resources re-
quired to run the tracker. It was found that this new technique
provided a 2 fold increase in tracking performance according
to this measure.

4.1 The amended APF algorithm

The changes to the APF can be formalised as follows. Step
4 of the APF algorithm described in section 3 is amended so
that at layer m, Pm is set to be proportional to the variance
of the particles in Sk;m as it exists before the addition of
noise, ie.

Pm /
1

N

NX

i=1

(s
(i)
k;m � savk;m):(s

(i)
k;m � savk;m)

T : (9)
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(a) (b)

Figure 5: Variance reduction in improved APF. Here we see the
orderly reduction of each of the four parameter’s variances from
most dominant (x1) to least dominant (x4) over 6 layers of the an-
nealing process. Using the improved APF results in a 2-fold in-
crease in efficiency over the classical APF. Tracker efficiency was
measured by the minimum number of particles needed to success-
fully track the articulated arm over 40 frames.

5. Parallel partitioning theory

5.1 The need for parallel partitions

Consider the articulated object found in figure 6 which con-
sists of two articulated arms joined at a stationary hinge.
This configuration is a much simplified version of that found
in HMC when using a model with arms and legs.

The soft hierarchical partitioning described in section 4
will provide some increase in efficiency over conventional
APF when applied to tracking this assembly, localising x1
and x4 together, then x2 and x5 and finally x3 and x6. How-
ever if we were to decouple the search space and localise
each arm independently the computational effort required for
tracking would be reduced considerably.

One possibility, of course, would be to introduce a hard
partition between the two arms and conduct two separate
searches. However, as in the previous section we seek to
avoid commitment to specific partitions since in more com-
plex examples the optimal partitioning may not be obvious
and it may indeed change over time as the degree of interac-
tion between different parts of a model changes — such as
when the legs cross during walking.

5.2 The crossover operator

Many people comment on the similarity between Particle
Filters and Genetic Algorithms. Both employ a [set — pop-

ulation] of [particles — individuals] coded by a [state vector
— genetic sequence] from which the best [particles — indi-
viduals] are chosen to be propagated to the next [time-step
— generation] in the hope of finding the [maximum of some
function — fittest possible individual].

One glaring difference between GA’s and a typical par-
ticle filter is the lack of a crossover operator in the parti-
cle filter which in conventional GA is meant to simulate the
breeding of individuals and the sharing of genetic informa-
tion.

The reason touted by GA enthusiasts for the crossover
operator is to enable the GA to search different parts of the
parameter space (partitions) in parallel. In fact the use of the
crossover operator encourages the survival of short, highly
fit sections of the parameter space known in some GA liter-
ature as building blocks. This is done in the hope that when
highly fit building blocks are brought together they will have
a good chance of forming a very fit complete individual. It
would be good to note that these building blocks are effec-
tively optimised in parallel without any specification of their
boundaries or appropriate building block (partition) weight-
ing functions, exactly the kind of behaviour we are looking
for.

We now describe how to incorporate the crossover oper-
ator into the framework of the APF and examine the effect
via a simple example.

(a)

O

X = (x , x , x , x , x , x  )

x3

4 5 61 2 3

x5

x6

x
1

x2x4

(b)

Figure 6: Two planar articulated arms consisting of 3 segments
each and both rooted to point O (as seen in b) are used to demon-
strate the effectiveness of the crossover operator. The configuration
of the arms is described byX = (x1; : : : ; x6) as seen in (b).
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5.3 Inclusion of the crossover operator in the
APF

The inclusion of the crossover operator can be formalised
as follows. In step 4 of the APF (as described in section 3)
at annealing layer m, the ith particle of Sk;m�1 is created
by drawing two particles from S�k;m with probability pro-
portional to their respective weights. Two parameter indices
 and � are chosen randomly and the two selected particles
s
(a)
k;m = (xa1 : : : x

a
L) and s(b)k;m =

�
xb1 : : : x

b
L

�
are combined

to form the new particle s(i)k;m�1 where

s
(i)
k;m�1 =

�
xa1 ; : : : ; x

a
 ; x

b
+1; : : : x

b
�; x

a
�+1; : : : ; x

a
L

�
:

(10)

Noise is then added to each particle as detailed in section 4.1.

5.4 Testing the crossover operator

To determine if there is any benefit to the crossover operator
two articulated objects were tracked. The first seen in figure
3, was the experiment from section 4, an un-branched artic-
ulated arm. The second as seen in figure 6 is two articulated
arms rooted to the same position.

(a) (b)

Figure 7: The crossover operator in action. The Sum of Squared
Difference (SSD) match between model and image obtained after a
set number of annealing layers is plotted against the percentage of
particles generated using the crossover operator at each annealing
layer. Graph (a) shows the result for the articulated arm seen in
figure 3 where no benefit to using the crossover operator is seen al-
though importantly no degradation in performance is seen either.
Graph (b) shows the result for the articulated arms seen in fig-
ure 6 where a steady improvement in tracking performance is seen
when increasing the percentage of crossover. This shows that the
crossover operator is able to decouple sections of the search space
and enables the APF to search them in parallel improving tracker
performance.

As we can see in figure 7, the object consisting of
branched arms was more effectively localised by the APF
that employed the crossover operator whereas there was no
difference when it was applied to the non-branched object.
This gives a good graphical illustration of what the crossover
operator is actually doing, ie partitioning sections of the
search space which can be tracked in parallel. A good in-
dication of the increased speed provided by the crossover
operator when tracking branched objects is again the num-
ber of particles needed for successfull tracking. This number

was which was reduced by a factor of 2 with the introduction
of the crossover operator.

Figure 8: Variance reduction for the parallel arms. When the
APF with crossover operator is applied to the articulated arms seen
in figure 6 we get the pattern of variance reduction seen above.
The graphs show the parameters describing each arm (x1; x2; x3
and x4; x5; x6) being localised in order of decreasing topological
dominance in line with what would be intuitively expected.

6. Full body tracking

The new Partitioned Annealed Particle Filter (the PAPF,
which incorporates all the improvements to the APF in-
troduced in this paper) was tested on a number of chal-
lenging sequences of human movement including walking
with turns (figure 9), running around in a random fashion
(figure 10) and handstands (figure 11). Refer to our web-
site “www.robots.ox.ac.uk/˜jdeutsch/HMC/” for video and
more images. The weighting function used was a sum of
squared difference function of edge and foreground informa-
tion. Tests indicated that tracking performance, again mea-
sured by the number of particles needed to successfully track
a sequence, was improved by a factor of 4 when comparing
the new PAPF to the original APF. As a result the PAPF re-
quired on average 15 seconds to process one frame whereas
APF required around 60 seconds when run on a single pro-
cessor 1GHz pIII Linux box. The potential for threaded
computing, obviously applicable to particle filters has not
yet been explored.

7. Conclusion

The main challenge in articulated body motion tracking is
the large number of degrees of freedom (around 30) to be re-
covered. Search algorithms, either deterministic or stochas-
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(0.0 sec) (3.0 sec) (6.0 sec)

Figure 9: Tracking a walking person.

(0.0 sec) (1.25 sec) (2.75 sec)

Figure 10: Tracking a running person.

tic, that search such a space without constraint, fall foul of
exponential computational complexity.

Annealed Particle Filtering (APF) [3] has been proposed
as a general and robust solution to this problem and has been
shown to track complex human movement without the use of
extra constraints such as labelled markers or colour coding.

Others have proposed various forms of search space de-
composition as a solution. Although reducing the size of
search space dramatically these approaches usually require
restrictive assumptions and tailored scenarios that cannot be
tolerated in a general and robust tracker.

This paper proposed an improvement of the APF algo-
rithm which automatically incorporates many of advantages
of hierarchical and parallel partitioning of the search space

(0.0 sec) (0.60 sec) (1.20 sec)

Figure 11: Tracking a person performing a handstand.

while retaining the generality and robustness fo the original
APF algorithm. The new algorithm termed Partitioned An-
nealed Particle Filtering (PAPF) was demonstrated on nu-
merous challenging sequences of Human Motion, providing
a huge gain in efficiency over the already swift APF, bringing
closer the prospect of real-time, robust and generally appli-
cable Human Motion Capture.
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