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ABSTRACT Due to a growing number of people who carry out various adrenaline activities or adventure
tourism and stay in the mountains and other inaccessible places, there is an increasing need to organize a
search and rescue operation (SAR) to provide assistance and health care to the injured. The goal of SAR
operation is to search the largest area of the territory in the shortest time possible and find a lost or injured
person. Today, drones (UAVs or drones) are increasingly involved in search operations, as they can capture
a large, controlled area in a short amount of time. However, a detailed examination of a large amount of
recorded material remains a problem. Even for an expert, it is not easy to find searched people who are
relatively small considering the area where they are, often sheltered by vegetation or merged with the ground
and in unusual positions due to falls, injuries, or exhaustion. Therefore, the automatic detection of persons and
objects in images/videos taken by drones in these operations is very significant. In this paper, the reliability
of existing state-of-the-art detectors such as Faster R-CNN, YOLOv4, RetinaNet, and Cascade R-CNN on a
VisDrone benchmark and custom-made dataset SARDbuild to simulate rescue sceneswas investigated. After
training the models on selected datasets, detection results were compared. Because of the high speed and
accuracy and the small number of false detections, the YOLOv4 detector was chosen for further examination.
YOLOv4model results related to different network sizes, different detection accuracies, and transfer learning
settings were analyzed. The model robustness to weather conditions and motion blur were also investigated.
The paper proposes a model that can be used in SAR operations because of the excellent results in detecting
people in search and rescue scenarios.

INDEX TERMS Convolutional neural networks, object detector, person detection, search and rescue
operations, UAV, YOLO.

I. INTRODUCTION

Many people are included in sport tourism to actively spend
leisure time such as skiing, hiking, or nautical, which moti-
vate them to stay in nature. Adrenaline or adventure tourism
such as hiking, free climbing, mountain biking, paragliding,
and rafting is gaining popularity, therefore the need to protect
human life in hard-to-reach areas such as mountains, forests,
canyons, caves, bodies of water and, karst phenomena is
growing.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mostafa Rahimi Azghadi .

Due to a growing number of people living and carrying
out various activities in the mountains and other inaccessible
places, and because of the very nature of these activities
and the physical and mental lack of preparedness for such
activities, there is an increasing number of injuries, fractures
and various accidents such as slipping, burying, etc. Risks
that increase the insecurity of hikers, climbers, and other
adrenaline athletes are, in addition to the occurrence of injury
or illness, their skills and experience in coping with possible
emergencies. Emergencies can arise, for example, due to
incorrect assessment of the distance of the destination, incor-
rect assessment of the difficulty of the road, due to changes
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in weather conditions, inadequate clothing or equipment,
non-compliance with information and warnings, or insuffi-
cient preparation and overestimation of one’s capabilities or
knowledge. Reports of missing persons due to disorientation,
illness, or suicidal intentions are also common.
To aid and health care to the injured in these circumstances,

it is necessary to organize a search and rescue operation.
The search action refers to a situation when the position and
condition of the missing person are unknown, so the goal of
the action is to locate the position of the missing person in
nature. The rescue operation refers to a situation in which it is
known that it is necessary to intervene and organize a person’s
rescue. If the accident’s location is unknown in advance, this
action includes search elements, too [1], [2].
The organization of assistance and health care in inac-

cessible areas is very complex, whatever the reason for the
intervention. It is necessary to conduct demanding searches
of large and complex terrains, especially when searching for
a missing person. Besides, time is also an important factor
in the search. As time goes on, the probability of a missing
person’s survival decreases and the searching area grows
exponentially [3].
Search and rescue operations (SAR) require great human

potential and material resources because they usually involve
a large number of members of the mountain rescue service,
search dogs, police and air forces, andmore recently, crewless
aerial vehicles (drones). Drones are now used for various
purposes [4]–[10] and have become a standard in all SAR
services globally. Except for searches in urban and non-urban
areas, drones are used for searches on water (sea, rivers,
floods [11]) or from avalanches. Their compactness, mobil-
ity, relatively low cost, and high-resolution real-time video
recording are important when making quick decisions during
actions and performing tasks that are potentially dangerous
to humans, e.g., cliff search. The use of drones has increased
the probability of finding a person, and due to ‘‘scanning’’ a
larger area in one flight, the search time is shortened.
During search and rescue operations, the operator must

analyze real-time images on a small screen while operat-
ing the aircraft. As the searching person is relatively small
compared to the environment, they often take up only a few
pixels on the screen. It is challenging to maintain long-term
concentration and attention, even for people trained for it,
to search for people in a large mountainous area or an area
covered with vegetation. Persons searched for are often shel-
tered by vegetation, hidden behind a stone, or fused to the
ground, further complicating the search even during favorable
weather conditions. During rain, fog, and snow, the challenge
of searching for a person is even more significant. Also,
the searching person is very often in unusual places, most
often due to loss of orientation, fall or dementia, in atypical
postures and body positions due to injury, such as lying with
unnaturally placed limbs or kneeling and sitting on the ground
due to exhaustion or sudden disease or covered with stones
due to slipping or landslides and the like and are very difficult
to spot even in these selected parts of the image (Figure 1).

In SAR operations, operators could be greatly assisted
by automatic person detection methods that would mark the
persons in the images in real-time, i.e., their position and
movement direction.

In recent years, deep convolutional neural networks such
as Faster-RCNN [12], Cascade R-CNN [13], RetinaNet [14],
SSD [15], YOLOv3 [16] have become successful in detect-
ing people in images of mainly urban scenes and achieve
even greater accuracy than humans. To achieve such good
performances, deep network models had to be trained on
large data sets such as MS COCO [17], Pascal VOC [18],
ImageNet [19]. Then, to achieve good detection results or
significant improvements in specific domains such as thermal
images of the monitored area, some sports scenes, etc., not
included in large data sets, it is necessary to additionally
train deep networks on the image set from the selected
domain [20]–[23].

In SAR operations, the key object is the person, however,
recorded from a bird’s eye view, and such recordings are
not contained in the large data sets on which these state-of-
the-art detectors are trained. To achieve the highest possible
accuracy of the detection model, the data set on which the
model is trained must have similar conditions to those that
appear when testing the model, so it is necessary to train
the model with a bird’s eye view data. Recently, datasets
that include images taken by a drone such as Visdrone [24],
Okutama-action [25], UAVDT [26] have emerged. Those
images are collected for various purposes [24]– [30], such
as detecting objects in images and videos, tracking one
or more persons, detecting an action, predicting a person’s
movement, or recognizing events in images. On the other
hand, each dataset is tailored to a specific purpose and gen-
erally does not include scenes and rescue operations cases.
The most similar scenarios shot by a drone to those in
search and rescue are those involving people in a park while
walking or running, standing in a square, walking down a
street, or lying on a beach. Nevertheless, in these cases, per-
sons’ poses differ significantly from those who are injured,
exhausted, or lost. For this reason, our dataset called SARD
was created.

In this work, the SARD dataset was used for transfer
learning of the selected state of the art person detectors:
Faster R-CNN, YOLOv4, RetinaNet, and Cascade R-CNN
and for fine-tuning for person detection in search and res-
cue scenes. We compared the model results on the SARD
dataset. TheYOLOv4model was selected for further research
because of achieving the highest accuracy and detection
speed. To improve the detection results of the YOLOv4
model, we have analyzed the influence of different net-
work resolutions, detection accuracy, and transfer learning
settings on detection performance. The robustness of the
YOLOv4 model to weather conditions and motion blur was
also tested. Finally, after comprehensive testing and analysis
of the results, we propose a model for person detection in
search and rescue scenarios that can be of great help in SAR
operations.
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FIGURE 1. Some of the unusual places and atypical positions of the people being searched for, cut from images taken by a drone.

The main contributions of the paper are:
a) a novel dataset (SARD) of drone imagery in search

and rescue operation, with statistics of the occurrence of a
small, medium, and large object, annotated and prepared for
supervised machine learning,
b) comparison of the performance of selected CNN detec-

tors (Cascade R-CNN, Faster R-CNN, RetinaNet, YOLOv4)
for use in SAR operations,
c) analyses of the influence of different network res-

olutions, detection accuracies, and confidence values on
YOLOv4 person detection performance, and analysis of dif-
ferent transfer learning strategies considering the impact on
detection results,

e) proposal of ROpti metrics for evaluating detector per-
formances for SAR operations taking into account that there
are as many positive detections as possible and as few false
detections as possible,

f) proposal of YOLOv4 model to be used for person
detection in SAR actions taking care to achieve the highest
possible accuracy, with a few false detections as possible,
with a network configuration that allows a person’s online
location and a configuration for off-line analysis, robust to
various weather conditions.

The rest of the paper is organized as follows: Section 2 pro-
vides an overview of the research related to the commonly
used methods for person detection in search and rescue
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operations assisted by drones and drone datasets. In Section 3,
the SARD dataset was described, which was built and pre-
pared for training models for person detection in SAR opera-
tions, as well as CNN architectures used for person detection.
Section 4 describes in detail the experiments and analyzes
the obtained results. The paper ends with the conclusion and
direction for future research.

II. RELATED WORK

Today most object detectors consist of two parts, the back-
bone of the detector as a CNN network trained to extract
features and a head that predicts the class and boundary
box of the detected objects. Networks such as VGG [31],
ResNet [32], ResNeXt [33] or MobileNet [34]–[36]
pre-trained on the ImageNet [19] or OpenImages [37] dataset,
aremost commonly used as backbones. The head of a detector
can be divided into two types: one-stage and two-stage detec-
tors. YOLO [16], [38]–[40], SSD [15] and RetinaNet [14] are
examples of the one-stage detector. The most representative
two-stage detectors are R-CNN detectors [41], including
Fast R-CNN [42], Faster R-CNN [12] and, R-FCN [43].
Two-stage detectors are usually more accurate in terms of
localization and classification accuracy. On the other hand,
they are slower in processing than one-stage detectors. Many
detectors add extra layers between the backbone and head
(neck), e.g., Feature Pyramid Network (FPN) [44] typically
used to collect multiple feature maps, each with a different
resolution, which is useful for recognizing objects at different
scales.

A. DEEP CNN DETECTORS IN SEARCH AND RESCUE

OPERATIONS AND DRONE IMAGERY

According to [45], search and rescue operations can be
divided into four areas: search in military operations, search
on water, in urban and non-urban areas. The use of drones in
search and rescue operations has been discussed in [46]–[49].
The domain of our interest is the non-urban area and water.
In [49], image segmentation and contrast enhancement

were applied, followed by an SSD detector to detect persons
in drone images. They also used a 3D game editor to generate
synthetic datasets depicting search and rescue actions.
The Inception model with the Support Vector Machine

(SVM) classifier was used in [50] to detect people trapped in
an avalanche by searching with drones. In [51], the focus is
on detecting people at sea recorded by crewless aerial vehi-
cles equipped with a multispectral camera, and a modified
MobileNet architecture is used for detection.
The authors in [52] developed a system for detect-

ing people and recognizing actions on the Okutama-action
dataset with GPS location calculation. A model upgraded to
MobileNetv2 and named POINet was used to detect objects.
Another example of a GPS signal using in search and rescue
operations is given in [53]. It is assumed that the injured
person has a mobile device switched on, so the injured per-
son’s position is determined by combining the GSM signal’s
strength and the drone’s GPS position.

A platform for detecting a person in the water with the Tiny
YOLO V3 architecture was presented in [54]. The model is
trained on the MS COCO dataset and dataset recorded by
a drone equipped with a GoPro camera in HD resolution.
A real-time algorithm for detecting and tracking ocean sur-
face objects has been proposed in [55].

A strategy for using semi-supervised and supervised
machine learning approaches to classify drone imagery and
object detection, along with a proposed hardware and soft-
ware architecture for the UAV platform, is given in [56].

An algorithm for planning a search path for crewless aerial
vehicles (UAVs) and using crewless ground vehicles (UVGs)
to verify the identity of the object detected by the UAV is
given in [57]. In [58], the authors compare several CNN
architectures for the binary classification task to classify
drone images as with or without persons. According to [59],
it was the first work to apply multiple visual tracking of
objects on drone photographs for search and rescue purposes.
Person detection is based on color and depth data and a human
shape filter that uses human joint locations derived from the
Convolutional Pose Machine [60]. The purpose of using the
filter is to investigate the human body’s shape on the proposed
detections to avoid false detections.

B. DRONE IMAGE DATASETS FOR CNN TRAINING

Recently, an increasing number of datasets have been made
using a drone and prepared to train deep neural networks.
These datasets include footage containing scenes of urban
areas such as squares, streets, playgrounds, parking lots, etc.
(Figure 2).

VisDrone [24] data set contains 263 video clips and addi-
tional 10,209 images related to detection tasks and tracking
one or more objects. Videos/images were taken on different
drone platforms (DJI Mavic, DJI Phantom Series 3, 3A, 3SE,
3P, 4, 4A, 4P) in 14 different cities in China. The set covers
different weather and light conditions of maximum video
(3840 x 2160 px) and image (2000 × 1500 px) resolution.
Okutama-action [25] contains videos that tag people and

those people’s actions such as walking, running, sitting,
or lying down. Also, interaction with other objects is anno-
tated, such as reading, drinking, carrying, pushing, and
interactions between people such as hugging and handling.
A CARPK dataset [27] is appropriate for counting the objects
since it contains 89,777 marked cars recorded by a drone.
Campus [28] is the largest set of data recorded from a bird’s
eye view, including pedestrians, cyclists, cars, buses, etc.
The UAV123 [29] dataset, in addition to drone images,

also contains synthetic video recordings made by a drone
simulator on the Unreal 4 Game Engine. UAVDT [26] con-
tains drone-recorded videos of an urban area such as streets,
squares, intersections taken in various weather conditions
(day, night, fog). ERA [30] dataset has 24 event classes that
can occur on aerial video footage such as fire, flood, traffic
jam, concert, etc.
None of the above datasets contain recordings specific to

search and rescue operations, so although there are object
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FIGURE 2. Examples of images from existing datasets. Top-left Campus [28], top-middle CARPK [17], top-right UAV123 [29], bottom-left VisDrone [24],
bottom-middle Okutama-action [25], bottom-right ERA [30].

detectors who achieve excellent results in detecting people
on urban scenes, the question is how successful they would
be in SAR operations in rural/ mountainous areas? How to
test the performance of detectors in the SAR domain if there
is no appropriate test set? What performance can be achieved
after training the model on examples of SAR scenes and with
which model and learning parameters?

III. EXPERIMENT WORKFLOW

A. PROBLEM FORMULATION

The experiment automatically detects persons using object
detectors in images taken by a drone in non-urban areas
during search and rescue operations.
Guided by the experience from previous work [61], [62],

we have analyzed state-of-the-art object detectors such as
Faster-RCNN [12], YOLOv4 [40], RetinaNet [14], and Cas-
cade R-CNN [13]. The aimwas to select the one that achieves
the best results in terms of accuracy and inference speed and
best fits our task.
All considered detectors were pretrained on theMS COCO

dataset, and the feature maps learned on that dataset are
expected to be useful for detecting persons for our task, too.
However, to improve the detection results in SAR appli-
cations, the models should be re-trained on an appropriate
dataset that contains scenes typical for search and rescue
operations.
We searched the available databases of drone images

and found out that appropriate publicly available datasets
for this purpose did not exist. The existing [24]–[30] do
not fully coincide with the intended goal of detecting
(injured/exhausted) persons in the non-urban area. However,
we decided to use the VisDrone dataset for transfer learning
since it contains images of people in the urban scenes that
are the closest scenario to our task. Also, we decided to
build a dataset of images with scenes that simulate the poses
of injured/exhausted people in the non-urban area taken by

drones. Also, to simulate different weather conditions and
increase the generality of the model, we will use the available
algorithms and generate new images to increase the data set.

We re-train the models on the built dataset, and the model
that achieves the best results was selected for further testing
and adjustments to improve the detection result further.

B. DATASET CREATION

SARD database was built to detect casualties and persons
in search and rescue scenarios in drone images and videos.
The actors in the footage have simulate exhausted and injured
persons and ‘‘classic’’ types of movement of people in nature,
such as running, walking, standing, sitting, or lying down.
Since diverse terrain and backgrounds determine possible
events and scenarios in captured images and videos, the shots
include persons on macadam roads, quarries, low and high
grass, forest shade, and similar.

1) COLLECTION AND PREPROCESSING OF SARD DATASET

During the daylight, the shooting was carried out in the fall,
with a high-performance camera of the DJI Phantom 4A
drone with a 3-axis solo gimbal stand. Videos were recorded
at an FHD resolution of 1920 × 1080 pixels at a frequency
of 50 frames per second. The drone flew at different altitudes
from 5 m to 50 m and different camera angles (ranging from
45◦ to 90◦). All videos were shot in the area of Moslavacka
gora, in Croatia, outside the urban area. Positions of persons
in the images range from standard (standing position, sitting,
lying, walking, running) to positions typical of exhausted or
injured persons reconstructed by actors at their discretion,
Figure 3. The actors were nine people of different ages
and genders, aged 7 to 55 years, to include differences in
movement and postures associated with age and different
body constitutions. Also, actors are in various locations, from
clearly visible (to the eye) to locations in the woods, tall grass,
shade, and similar, which further complicates detection.
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FIGURE 3. Actors, different ages and genders who participated in the
recording of the SARD dataset.

From the recordings with a total length of about 35 min-
utes, 1,981 single frames with people on them were singled
out. In the selected images, the persons were manually tagged
by a horizontal bounding box typically used for object anno-
tation in remote sensing images and natural scene images [63]
so that annotated images could be used to train a supervised
model. Tags are stored as XMLfiles in PASCALVOC format
and the YOLO format.

2) GENERATION OF CORR DATASET

An extension of the SARD set called Corr was created
to increase the robustness of the SARD data. Corr dataset
includes images that further simulate various weather con-
ditions that may occur in actual search and rescue situations
such as fog, snow, and ice. Also, blur images are included in
the Corr set to simulate camera movement and aerial shooting
in motion.
The Corr train set was generated from images of the SARD

train set, and likewise, the Corr test set was generated from
the images of the SARD test set using the same methods [64].
To achieve an even distribution of data with different weather
conditions in the set, we generated the images sequentially by
adding the effect of snow, fog, frost, and blur in turn. Each
of the effects was added at four levels of concentration to
simulate the range of possible weather conditions and motion
effects that may occur in actual SAR missions, e.g., light
snow and heavy snow, snowstorms, rain, and showers, and
the like. For the maximum level of concentration of an effect,
we chose the level at which objects, which are relatively small
in most images, could still be visually recognized. To test
the detection results for specific weather conditions, we cre-
ated four subsets for testing Corr-snow, Corr-fog, Corr-frost,
Corr-fogging, each containing 714 images. The image tags
remained the same as in the SARD dataset, so no additional
tagging was required. An example of generated images of the
Corr dataset is given in Figure 7.

FIGURE 4. Marked persons according to the size of the bounding box
area for the SARD dataset.

3) STATISTICS OF DATASETS USED FOR TRANSFER

LEARNING

The SARD set images were divided 60:40 into a train set and
a test set so that they were evenly distributed according to
the scenes (background, lighting, person pose, camera angle).
The training set contains 1189 images, on which 3921 per-
sons are marked, while the test set contains 792 images,
on which 2611 persons are marked. The bounding boxes’
dimensions in the SARD set range from 7px for the smallest
width and 8px for the smallest height, while the maximum
width is 353px and the maximum height is 337px. The
area of the smallest object bounding box is 7 × 12px while
the largest is 322 × 231px, and the average bounding box
size is 47px x 58 px. The SARD set contains 1883 small
person objects (objects whose boundary box area is less
than 322), 4180 medium person objects (322 < boundary box
area<962), and 469 large objects (boundary box area> 962).
The frequency of occurrence of persons in the SARD dataset
concerning the size of the object bounding box is graphically
shown in Figure 4.
The Corr train set’s size corresponds to the SARD train set

in terms of the number of images and the number and size
of objects. There are 1,903 images in the set, which show
6,265 persons, of which 1,775 are small objects, 4,026 are
medium-sized objects, and 464 are large objects. The Corr
test set is slightly smaller than the SARD test set because the
images on which the persons were not visible after adding
blur, rain, snow were deleted. These are mostly images in
which people were in the shadows, took up very few pixels,
or were occluded. The number of persons in the Corr dataset
is shown in Figure 5.
Another 2,129 images from the VisDrone image set, which

includes a person or pedestrian tag, were selected for model
training to generalize the learning data set. For selected
images, person or pedestrian tags are merged into one class:
person. This set is referred to as VisDrone2000. The Vis-
Drone2000 drone image dataset was divided into a training
set consisting of 1,598 images with 29,797 tagged persons
and a test set containing 531 images with 13 969 persons.
The set contains 36,951 small person objects, 6,719

medium-sized objects, and only 96 large person objects. A
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FIGURE 5. Marked persons according to the size of the bounding box
area for the Corr dataset.

FIGURE 6. Marked persons according to the size of the bounding box
area for the VisDrone2000 dataset.

VisDrone2000 data statistic shows that the VisDrone dataset
recordings were made at higher altitudes than the SARD
dataset (Figure 6.).
Combinations of used sets and learning methods are

described in Section 4.

C. SELECTED OBJECT DETECTORS

We have tested the state-of-the-art object detectors on a
custom-made SARD dataset and selected drone images from
the VisDrone benchmark dataset to select the best-suited
detector for our task of detecting persons in search and rescue
scenes.
In the experiment, we have compared the performance of

the CNN-based detectors: Faster R-CNN, YOLOv4, Reti-
naNet, and Cascade R-CNN. All selected detectors were
previously trained on theMSCOCO [17] dataset. All detector
models are further trained on bird’s eye view images from a
part of the VisDrone and a SARD custom dataset to improve
their performances.
Below is a brief description of the architecture of examined

detectors.

1) FASTER R-CNN

The Faster R-CNNdetector from theR-CNN series [12], [41],
[42], detectors is a two-phase region-based detector. These
detectors’ basic idea is to select the regions of interest from

the image in the first phase. In the second phase, the classifi-
cation and correction of the coordinates of the object will be
performed.

In our case, ResNet50 [32], a pre-trained deep neural net-
work, is used as a backbone, which receives an image at the
input and provides feature maps at the output that predicts
regions of interest using the Region Proposal Network (RPN).
RPN for feature maps of any dimensions, as an output gives a
list of RoI’s with a certain probability that the object is in the
default RoI. The tested Faster R-CNN detector uses FPN to
collect multiple feature maps of different resolutions. In this
experiment, the implementation of a faster_rcnn_r50_fpn_1x
detector from a MMDetection codebase [65] was used.

2) YOLOV4

The YOLO architecture seeks to merge localization and
classification problems into one deep convolutional neural
network. It divides the image into a grid of dimensions
S x S in which each cell provides frames for the object. The
probability, which is calculated for each frame, tells us how
sure the model is when there is an object inside the frame and
how sure it is of the boundaries’ accuracy.

For the latest version of the YOLO detector, the authors
explored typical algorithms used in deep learning models and
further designed and improved some modules.

This model uses CSPDarkNet53 as the backbone [66].
DarkNet53 is a deep residual network with 53 layers, while in
the case of YOLOv4, CSPNet (Cross Stage Partial Network)
is added to the basic DarkNet53. The authors added Spatial
Pyramid Pooling (SPP) [67] as a neck to increase the receiv-
ing (receptive) field without causing a decrease in velocity.
Instead of the Feature Pyramid Network (FPN) used in the
YOLOv3 version, the authors chose the Path Aggregation
Network (PAN) [68] while using the original YOLOv3 [16]
network for the head.

In addition to the new architecture, the authors also use
training optimization to achieve greater accuracy without
additional hardware costs, which the authors call ‘‘Bag of
Freebies.’’ Bag of Freebies includes CutMix, Mosaic, CIoU-
loss, DropBlock regularization, etc. On the other hand,
the authors propose a ‘‘Bag of Specials,’’ a set of modules
such as Mish activation, SAM-block, Cross-stage partial con-
nections (CSP), etc., that only slightly increase the hardware
cost with a significant increase in detection accuracy.

We used the Darknet framework to train and evaluate the
YOLOv4 model.

3) RETINANET

RetinaNet is a single-phase detector composed of a backbone
and two sub-networks specific to the task. The ResNet-FPN
network, as the RetinaNet detector’s backbone, is responsi-
ble for calculating the input image’s feature map. The first
sub-network performs the classification while the second
regresses the boundary frames.

A sub-classification network predicts the probability of
an object’s presence in each spatial position for each class.
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FIGURE 7. SARD Corr set with the added effect of bad weather and camera shift on the
image, examples of generated images: A) original image, B) snow, C) fog, D) ice, E) motion
blur.

This subnetwork is a small FCN associated with each FPN
level; this sub-grid parameter is shared at all pyramids levels.
Unlike RPN [12], the RetinaNet sub-network for object clas-
sification is deeper, uses only 3 × 3 convolutions, and does
not share parameters with the frame regression network.
In parallel with the sub-network of object classification,

they attach another small FCN to each level of the pyra-
mid for regression of the boundary frame. In experiments,
the implementation of the retinanet_r50_fpn_1x detector in
the MMDetection codebase [69] was used.

4) CASCADE R-CNN

Cascade R-CNN is a multi-phase extension of the Faster
R-CNN architecture that aims to increase detection quality
by constantly increasing IoU values. The focus is on the
detection subnet, adopting an RPN to detect suggestions.
However, Cascade R-CNN is not limited to this proposed
mechanism since other choices are possible. The goal is
to simultaneously increase the quality of hypotheses and
improve detection results by combining cascade boundary
frame regression and cascade detection. The implementation
of a cascade_rcnn_r50_fpn_1x detector in a MMDetection
codebase [70] was used.

D. EVALUATION METRICS

Detector performance (bounding box of detected objects,
the class assignment, and a reliability value) was assessed on
unseen images using standard evaluation measures such as

precision, recall, and mean average precision (mAP). In our
case, only the class person is considered, so the mAP is equal
to the average precision (AP).

In the case of SAR operations finding a person as soon as
possible is key to a successful SAR operation, so it is essential
to detect missing people if they exist on the scene. Equally
important is to have a few false detections as possible so
that human resources are not wasted. Precision measures how
accurate the detection results are, i.e., the percentage of true
positive detections to the total number of detections. In con-
trast, recall measures how many true positive detections there
are concerning the number of all possible detections [62].

Precision =
TP

(TP+ FP)
(1)

Recall =
TP

(TP+ FN )
(2)

TP = True Positive, TN = True Negative, FP = False
Positive, FN = False Negative.

The detection is considered positive if the intersectional
ratio of the detected bounding box and the corresponding
ground truth bounding box and their union is 50% or higher.
This measure is referred to as intersection-over-union (IoU).
An example of positive and negative person detection consid-
ering IoU>= 0.5 is shown in Figure 8.

To precisely evaluate and characterize the performance of
the detector, taking into account not only the accuracy of
detection but also the size of objects in the image, six average
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FIGURE 8. Visual representation of positive (left) and negative (center
and right) representation of intersection over union (IoU) criteria equal to
or greater than 50% [71].

TABLE 1. Comparative preliminary detection results on SARD and
VisDrone datasets (%).

precision measures in MS COCO format were considered
using the original script1:
- AP overall 10 IoU thresholds (0.5: 0.05: 0.95),
- AP50 at IoU = 0.50,
- AP75 at IoU = 0.75.
Average precision across different object scales is evalu-

ated as:
- APS for small objects with an area of less than 322 px,
- APM for medium objects with an area between 322 and
962px,

- APL for large objects with an area of more than 962px.

IV. EXPERIMENTS

A. PRELIMINARY DETECTION RESULTS

Preliminary detection results of models of selected state-
of-the-art CNN-based object detectors pre-trained on MS
COCO dataset on our custom-made SARD test set andVis-
Drone2000 are given in Table 1. The best results are marked
in bold. YOLOv4 achieved significantly better overall results
on both test sets considering precision accuracy and object
scales.

B. DETECTION PERFORMANCE AFTER TRAINING ON

DOMAIN IMAGES

To achieve better person detection in the search and rescue
scenes, we have also trained the original detectors on the
Visdrone data set and on the SARD data set and compared
the models’ performances.
The MMDetection codebase was used to train the Cascade

R-CNN, Faster R-CNN, and RetinaNet models, and the dark-
net framework model was used to train the YOLOv4 model.
The learning rate (lr) was set to 0.005 as the training was

1 https://github.com/cocodataset/cocoapi

TABLE 2. Comparative results of models trained and tested on
VisDrone2000 dataset (%).

performed on a single GPU computer. All other settings
are the same as the original model settings. YOLOv4 mod-
els are trained on Google Colab with batch = 64 and
subdivision = 32, with the network resolution set to
512 × 512. All models are tested on a laptop with one
1660Ti GPU.
After training the model on the selected dataset, each

model is referred to in the text as a model(dataset) to make
it easier to compare the models’ performances. For example,
Cascade R-CNN (VisDrone2000) means a Cascade R-CNN
detector trained on the VisDrone2000 dataset.

1) TRANSFER LEARNING WITH THE VISDRONE DATASET

The Cascade R-CNN(VisDrone2000), Faster R-CNN
(VisDrone2000) and RetinaNet(VisDrone2000) models were
trained in 6 epochs with batch_size set to 1, while
the YOLOv4(VisDrone2000) model was trained with
max_batches = 6000 and batch = 64.

The detection results on the VisDrone2000 test set for AP
are shown in Table 2. The Imp column shows the progress of
the model relative to the pre-trained model tested on the same
data set.

YOLOv4 (VisDrone2000) achieves an average score
of 23% AP which is the best result compared to other
tested detectors. Yolo proved to be equally the best in all
AP measures related to object size and detection accuracy.
By far, the best results of 55.1% AP YOLOv4 achieved on
IoU = 0.50.
Cascade R-CNN(VisDrone2000) achieves the second-

best results but still significantly worse results than
YOLOv4(VisDrone2000). Similar conclusions were reached
in [72], [73].

2) TRANSFER LEARNING WITH THE SARD DATASET

When training the models on the SARD set, the same model
learning parameters were used as at the Visdrone2000 set.
The detection results on the SARD test set are given
in Table 3. The best results were obtained with YOLOv4
(SARD), while the results of Cascade R-CNN (SARD) and
Faster R-CNN (SARD) detectors are very similar but signif-
icantly worse than YOLOv4. All detectors achieve the best
results for the case of AP50, with the best results of over 96%
achieved by YOLOv4 (SARD). If higher detector precision
is required, AP75, all detectors perform significantly worse,
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TABLE 3. comparative results of models trained and tested on the SARD
dataset (%).

FIGURE 9. The precision vs. recall ratio for models YOLOv4 (SARD),
Cascade R-CNN (SARD), Faster R-CNN (SARD), and RetinaNet (SARD).

with the highest mean accuracy of 71% being achieved again
by YOLOv4 (SARD). All detectors’ results are significantly
higher on the SARD set than on the VisDrone set and sig-
nificantly better than the original model when no additional
training on domain images was performed.
When comparing the detection results concerning the

objects’ size, it is clear from Table 3 that all detectors achieve
significantly better results for large objects than for medium
and small objects. The best average accuracy of 73% is
achieved by YOLOv4 (SARD) large objects, followed by
66% for medium objects. Faster R-CNN (SARD) and Cas-
cade R-CNN (SARD) perform similarly but score 10% lower
in the case of large and medium objects. For small object
detection (APS), YOLOv4 (SARD) proved to be the best
with an accuracy of 45%, while Faster R-CNN (SARD) and
YOLOv4 (SARD) achieved comparative results, for about
15% lower.
Figure 9. shows the precision and recall ratio for all tested

models. The best ratio of precision and recall, with 96%
of precision for recall greater than 91% was achieved by
YOLOv4 (SARD), which means that it was the most precise
in the detection and has detected the most significant number
of objects that exist in the image (ground truth). The best
recall was achieved by Faster R-CNN (SARD) but with a
precision of 67% and much more false positive detections
than YOLOv4 (SARD). RetinaNet (SARD) had the lowest
precision and the lowest recall.
In search and rescue operations, the goal is to detect all

persons present on the scene. Still, on the other hand, the
detector’s precision is also important so that resources are

not wasted on false detections. For this reason, based on
the achieved results of average precision and the ratio of
precision and recall, the YOLOv4 detector was selected for
further research.

Examples of person detection results with models trained
on the SARD dataset are shown in Figure 10. The columns
in Figure 10 represent the detection results, respectively,
in column A) Cascade R-CNN (SARD) model, in column
B) Faster R-CNN (SARD) model, C) RetinaNet (SARD),
D) YOLOv4 (SARD), and in E) ground truth. All possible
detection outcomes appeared in Figure 10.: a positive detec-
tion where a person is detected, and IoU of bounding box
and person’s ground truth is more or equal than 50%, then a
negative detection where a person is not detected, or IoU of
the bounding box and person’s ground truth is less than 50%
and a false-positive detection where a part of the image that
does not contain a person was marked as a person.

The first row in Figure 10 shows a quarry case with one
person on a pile of rocks while two people are on a dusty
road. All detectors successfully detect a person on the road,
while only Cascade R-CNN (SARD) and YOLOv4 (SARD)
also detect a person sitting on rocks. Faster R-CNN (SARD)
has one false detection and multiple detections of a person on
the road.

The second row shows an example of three people with
an overlap (occlusion) on low grass. All detectors success-
fully detected the standing person on the top right. Faster
R-CNN (SARD) gives multiple detections of overlapping
persons. At the same time, Cascade R-CNN (SARD) and
RetinaNet (SARD) have occlusion problems and did not
detect a person kneeling behind a moving person. YOLOv4
(SARD) successfully detects all persons.

The third scene with eight people was shot from a greater
height than the first two examples. Cascade R-CNN (SARD)
detects seven individuals with one false detection, Faster
R-CNN (SARD) has five accurate detections as well as
RetinaNet (SARD), which also has three false detections.
YOLOv4 (SARD) precisely detects all persons in the image.

In the last case, taken from an even greater height and
distance from the object, nine people are in the tall grass
and macadam road. The Cascade R-CNN (SARD and the
Faster R-CNN (SARD) accurately detect seven persons while
the RetinaNet (SARD) detects only five of them. YOLOv4
(SARD) successfully detects all subjects in the image.

From the qualitative analysis of the selected examples, it is
clearly shown that YOLOv4 (SARD) was the most successful
in detecting persons in SAR scenarios. However, there are
also examples where the YOLOv4 (SARD) model was not
successful, Figure 12. The most common examples of false
detection are the cases when two people are standing very
close to each other or overlap (Figure 12, first row) and when
the detector detects darker parts of vegetation (Figure 12, sec-
ond row) or shadows (Figure 12, third row) as a person. It is
almost typical for a person to merge with the background in
search and rescue operations practically. In that case, it is
challenging to detect a person even for a trained person, so it
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FIGURE 10. Examples of person detection results of different models retrained on the SARD dataset: A column: Cascade R-CNN (SARD), B column:
Faster R-CNN (SARD), C column: RetinaNet (SARD), D column: YOLOv4 (SARD), E column: ground truth.

FIGURE 11. Comparison of different images resolution.

is not unexpected that the detectors have the most missed
detections in that case (Figure 11, third row).
We try to adjust the model parameters and learning con-

ditions to achieve even better detection results with the
YOLOv4 detector in the experiment’s continuation.

C. DETECTION RESULTS REGARDING THE NETWORK

RESOLUTION

The YOLO architecture resizes the input image, preserving
the aspect ratio to the resolution defined in the.cfg weights
file, defined by the width and height parameters. These
parameters are called network resolution. Transformation of
input image resolution in Yolo architecture is given by:

Imgtrain_width = Netwidth,

Imgtrain_height =
Netwidth

Imgwidth
Imgheigth (3)

For example, if the input resolution of an image is
1920 × 1080 and the network resolution is defined as width,
Netwidth = 512 height, Netheight = 512, YOLO will change
the resolution of the input image to the set width, Netwidth,
preserving the original ratio between image width, Imgwidth
and height, Imgheight e.g. 1920 × 1080 will be transformed
to 512 × 288. Comparison of different images resolution is
shown in Figure 11.

When done in both train and test sets of the model, this
subsampling of image resolution does not violate the general
rule of model training since the model was trained on similar
object sizes as those that appear in the test set.

To improve the detection performance, especially the
detection of small objects, one alternative was to use the
higher resolution of input images and train the network at
higher resolutions, e.g.:

Netwidt = Netwidth + k, k = 32n, n ∈ N (4)

Values Netwidth and Netheight that are multiples of 32 can
be used, such as 608× 608 or 832× 832, because the YOLO
network down-samples the input image by 32.

In our case, the input images size is (Imgtrain_width) 1920×

1080, and the YOLOv4 (SARD) model was trained on
(Nettrain_width) 512 × 512 network resolution. Our computer
was too weak to train the network at higher resolutions than
that, so the alternative was to increase the network resolution
during testing (Nettest_width) [74]. The idea was always to use
input images of the same resolution of 1920 × 1080 when
training and to test the model on higher resolution images
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FIGURE 12. Miss detections of the YOLOv4 (SARD) model (cropped images to make it easier to notice the persons in
the image): two people are standing very close to each other or overlapping (first row); darker parts of vegetation
detected as a person (second row); shadows detected as persons (third row).

without compromising the sizes and ratio among the objects
learned during training:

Nettest_width

Imgtest_width
=

Nettrain_width

Imgtrain_width
;

Imgtest_width

Imgtrain_width
=

Nettest_width

Nettrain_width
(5)

To preserve the ratio (5) for higher image resolution during
testing, it was necessary to increase the network resolution.
To examine the effect of changing the network resolution
during testing (Nettest_width) on object detection performance,
we have tested different network resolutions below and above
the resolution at which the model was trained: 320 × 320,
416×416, 512×512, 608×608, 832×832, 1024×1024. The
network resolutions 320 × 320 and 416 × 416 are below the
resolution at which the YOLOv4 (SARD) model was trained,
while the resolutions 608× 608, 832× 832, 1024× 1024 are
above. The detection results are given in Table 4.
The best accuracy results are achieved for a network reso-

lution of 832×832, Table 4, except in the case of large objects
(APL). A comparison of the results shows that better detection
results can be obtained by increasing the network resolu-
tion when testing. Better results are achieved at resolutions
608× 608 and 1024× 1024 than at a resolution of 512× 512
at which the model was trained. However, results also show
that there is a limit after which the results no longer improve,

TABLE 4. YOLOv4 (SARD) detection performance depending on the
network resolution (%).

such as in the case of network resolution of 1024 × 1024,
when the results started to decrease.

In the case of testing at the lower resolutions than the net-
work resolution on which the model was trained, in general,
worse results are obtained except in the case of the large
object where just slightly worse results are achieved. It can be
noted that the inference speed is about 10 fps for the lowest
network resolution, which is 2.5x faster than at a resolution
of 832×832, at which the most accurate results are obtained.
The best average precision of 77% is obtained with

512 × 512 pixels and 608 × 608 pixels for large objects.
For medium objects, the best average precision is 66% with
a network resolution of 832 × 832, and for small objects,
the best average precision of 46% is got with a network
resolution of 1024 × 1024 pixels.
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When approving the resolution of the most suitable model
for SAR operations, we were guided by the fact that detection
can be performed on-site during flight operations and off-line
on the recorded materials since the drone’s flight time is
limited to the battery life.
In real-time detection on a video received while the drone

was flying over the area being searched, the detection speed
is important, as well as the model’s accuracy. There is also
a need to transfer as little data as possible from the drone
to the tablet control console. For this mode of use, the most
suitable would be a network resolution of 416×416 at which
the model has 10 fps with an accuracy of only 2% less than
the samemodel at a network resolution of 832×832 for larger
objects that are likely to be directly detectable in the field, and
about 10% less for other cases.

Off-line detection is performed on the recorded materials
using a computer with a higher power CPU + GPU. The
required detection speed is not crucial in that case, especially
if we compare it with about 25 seconds needed for a human
video analyst to detect a victim on drone images [50]. In that
case, the best model is the one that achieves greater accuracy,
and that would be with a resolution of 832×832 or 608×608
since the differences in performance are negligible.

D. DETECTION RESULTS AS A FUNCTION OF TP-FP

We mentioned earlier that in search and rescue operations,
the crucial is the accuracy of detection and the speed of
finding the missing person. Therefore, it is important to build
a model with a few false detections (FP) as possible because
they consume human resources and take valuable time.

For this reason, we introduced additional metrics that we
called ROpti, computed as the ratio of the difference between
true (TP) and false positive (FP) detections and possible
detections (TP+FN) in the dataset:

ROpti =
(TP− FP)

(TP+ FN )
(6)

For perfect precision (no false positive), ROpti is equal to
recall, and with perfect recall (no false negative), ROpti is
equal to 1, and this is a perfect score. As the number of FPs
grows, ROpti decreases. In case TP is equal to FP, then ROpti
is equal to zero, ROpti becomes negative, while TP is less
than FP.

The detection results considering ROpti measure, e.g., true
and false-positive detections out of a total of 2611 objects for
different network resolutions with default thresh of 0.25, are
given in Table 5.

Considering the ROpti measure, the resolution 832 × 832
surpass all other tested network resolutions as it has only
88 FP and the highest ROpti value of 0.928.

Therefore, we propose a model for detection of persons in
SAR actions shown in Figure 13, with 416 × 416 network
resolution for on-board detections on videos received from
the drone to the control console-tablet (or using RTMP server
to live stream from a drone to laptop) and 832×832 for further
off-line analyses.

TABLE 5. YOLOv4 (SARD) detection results in terms of a true positive,
false negative, and ROpti for different network resolutions.

FIGURE 13. Proposed model for person detection in SAR mission.

E. DETECTION RESULTS AS A FUNCTION OF

CONFIDENCE (THRESH) VALUE

In the case of searching for a particular object, any detection
that recognizes the object and its location can be taken as a
positive detection, regardless of the percentage of the IoU
between the ground truth bounding box and the detected
bounding box, i.e., precision in terms of the bounding box
which is the smallest closure of the object is not so important,
so in our case, an IoU of 10% is also acceptable. Decreasing
the IOU value and confidence value of the model affects the
accuracy of the detection, and this, in turn, affects the model
usability for automatic detection of persons in SARmissions.
On the other hand, the goal is to achieve as few false-positive
detections as possible, i.e., achieve the highest possible ROpti
value, so the limit to which it is still effective to decrease the
confidence or threshold value needs to be determined.

By default, YOLO detects objects with a confi-
dence (threshold) of 0.25 or more. This value directly affects
the number of marked objects in the set, so we examined how
the thresh value changes affect the ROpti value.

Figure 14. shows detection results for thresh in the range
from 0.10 to 0.90 with a step of 0.10 in two network resolu-
tions 832×832 and 416×416. The best results were achieved
when the network resolution was 832 × 832, and the thresh
was 40%, so this is the configuration we would recommend
for the model for person detection in SAR scenes.

With a network resolution of 416 × 416, results are 1 to
8% worse than with 832 × 832, but with 2.5 times shorten
detection times, so this network settingwith thresh= 0.10 can
be recommended as a reasonable solution in on-board online
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FIGURE 14. The ROpti value for the YOLOv4(SARD) model with network
resolutions 832 × 832 and 416 × 416 considering different confidence
values (thresh).

detection when speed and a small amount of data are impor-
tant. To improve the ROpti results and reduce the number
of FP detections in real-time, the drone pilot can ‘‘remove’’
false-positive detections by lowering the drone to a lower
altitude when necessary to capture larger objects.

F. DETECTION DEPENDENCE OF RECORDING HEIGHT

The altitude at which the drone is located plays a major role
in detecting people in aerial photographs. The higher the
altitudes at which the drone flies, the smaller the captured
material and fewer pixels are used to represent them. How-
ever, at higher altitudes, the drone can capture a larger terrain
area. In the case of SAR operations, it makes no sense to
increase the flight altitude above the level at which persons
can be detected. Obviously, it is easier to detect a person
represented in the image with a larger number of pixels,
so it will be more suitable for detecting people when the
drone is flying at a lower altitude. But this extends the time
required to cover the target search area. Therefore, the goal is
to determine the highest possible altitude at which the drone
should fly so that people on the scene can still be detected
automatically by a detector.

Flight altitude recommendations depend on the number of
pixels in the camera and the lenses used, and the area being
monitored. With DJI Phantom 4 Advance, we record images
at a resolution of 5472× 3078 px with a camera angle of 90◦,
Field of View (FOV) by specification is 84◦.
In the experiment, we took images of two persons (women

and a boy) at different heights (15 m, 30 m, 45 m, 60 m,
and 75 m). Figure 15. shows detection results, and it can be
seen that all detections are accurate at the height of 30 m.
Therefore, considering that there are different specifications
of drone cameras, we suggest that the drone flies at a height
from which it can capture images in which people occupy an
area of 100 × 100 px.

TABLE 6. Comparative results of YOLOv4(sard) and YOLOv4(sard+corr)
on corr dataset and its parts concerning different weather conditions (%).

G. ROBUSTNESS TO WEATHER CONDITIONS AND

MOTION BLUR

To test the YOLOv4 (SARD) model’s performance with a
network resolution of 832× 832 in conditions that can occur
in search and rescue operations, we have tested the model’s
performance on the Corr test set. The Corr test set includes
images with various weather conditions such as snow, fog,
frost (Corr-Snow, Corr-Fog, Corr-Frost), and motion blur that
may occur during recording, e.g., due to moving and camera
shake (Corr-M. Blur).

The examination results are given in Table 6 in terms of
average precision (AP), respecting IoU precision and the
object size. The results show several important facts.

A significant decrease in detection performance occurred
in the case of testing on images with bad weather conditions
and blur images that did not exist in the training set. e.g.,
the decrease in AP50 was from 96% on SARD set to 66% on
the Corr dataset that contains the same images but with bad
weather conditions. The drop in performance is not the same
for all bad weather conditions, e.g., AP50 is 59% for snow,
55% for fog, 63% for frost, and 68% for motion blur.

To improve the YOLOv4 (SARD) model results in bad
weather, we additionally trained the model on the Corr train
set, referred to as the YOLOv4 (SARD+Corr) model. The
YOLOv4 (SARD+Corr) model achieves similar or slightly
worse results than the YOLOv4 (SARD) model on the SARD
test set and significantly better results on the Corr test set.
Detection results are presented in Table 6.

Examples of detection results of the YOLOv4
(SARD+Corr) model for all different weather categories and
motion blur are shown in Figure 16.

H. TRANSFER LEARNING STRATEGY

To improve model training, we wanted to investigate further
how different transfer learning strategies regarding different
combinations of datasets affect the detection result.We exam-
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FIGURE 15. Detection results on different drone heights (15 m, 30 m, 45 m, 60 m, and 75 m) show that below or equal to 30 m of height all
detections are accurate.

TABLE 7. Detection results for YOLOv4 model trained on different sets and tested on sard test set and mixture of sard and visdrone2000 test sets (%).

ined the possibility of learning the models successively,
on one training set and then on the other, taking into account
the order of sets used for training or in one step but using the
images taken from both training sets.
The goal was to get the best possible results of the

YOLOv4 model at the SARD test set. Firstly, to train the
model, SARD, VisDrone, and Corr sets were used separately,
and then combinations of them. The results achieved by
training the models at different training sets using one by
another in a different order, or mixed, are shown in Table 7.

In addition to the accuracy values, the improvement (Imp) of
the model concerning the initial weights (original model) and
ROpti value are also shown.

The S+Vmeans that themodel is first trained on the SARD
train set and then on the VisDrone train set, V+S that it is
first trained on VisDrone, then on the SARD train set, and for
V+C+S, the model is trained on VisDrone2000, and then on
Corr and finally on SARD train set.

The SV refers to a mixture of SARD and Vis-
Drone2000 train sets when images are used randomly from
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FIGURE 16. Example of detection of YOLOv4 (SARD+Corr) model. Up-left snow, up-right fog, down left ice, down right motion blur.

both of them for training, while for testing purposes, the SV
test refers to a combination of SARD and VisDrone test
images. Similarly, the SC is a mixture of SARD and Corr
set, and SVC is a mixture of SARD, VisDrone2000, and Corr
test set.
It can be observed that the improvement of the results is

achieved in the case when the last trained set is the closest
to the tested set (S+V vs. V+S). Also, training models with
more data from multiple sets ultimately contribute to a bet-
ter result, especially if the sets are compatible, i.e., contain
similar images. In this experiment, the best results (AP 62%,
APS 46.9%) were achieved when learning the model on sets
in the order V+C+S, but this is an improvement of only
1% than in the case when the model was trained only on
the SARD set of images, which is certainly not a significant
improvement.
The V+S model achieves the same results on the SARD

test set as the model trained only on the SARD set for all
cases except for smaller objects. The V+S model gets better
results since a larger number of smaller objects fromVis-
Drone2000 train set were included in the V+S training set.

Training the model on data from a mixture of sets (SV,
SC, SVC) had given worse results than when the model was
trained only on the SARD set or on a series of sets ending
with SARD so that the weights of the model are last adjusted
to the set being tested.
The same conclusion applies when the model is tested

on images from multiple sets, e.g., the SV set. The best
results are achieved when the model is trained on a particular
combination of these sets.

V. CONCLUSION

The ability to detect people on drone images using computer
vision methods automatically is a significant help in SAR
operations. In this paper, we explored the state-of-the-art
person detectors in drone images and proposed a model for
detecting persons in SAR actions.

We have re-trained and tested CNN-based object detec-
tors, Cascade R-CNN, Faster R-CNN, RetinaNet, and
YOLOv4 on selected drone images in the VisDrone set and
our custom-made set of SAR-s scenes.

YOLOv4 has achieved the best detection performances on
the SARD dataset in terms of average precision (AP) consid-
ering IoU precision and the object size as well as the least
false detection (FP), so it was further used in the experiment,
referred to as YOLOv4 (SARD).When the model was trained
on 512 × 512 image resolution, the best AP of 60% was
achieved for a network resolution of 832 × 832.

In SAR operations, the model must have a few false detec-
tions (FPs) as possible that resources are not wasted unnec-
essarily, so we introduced an additional metric called ROpti,
calculated as the ratio of the difference between true and false
positive detections and possible detections in a dataset.

In searching for a missing person, the most important thing
is that the detector locates that person, and it is less important
how accurate the detection is. We experimentally selected
parameters as a trade-off between accuracy and recall so that
the model can be helpful in SAR actions. The results showed
that the YOLOv4 (SARD) model in a network resolution of
832 × 832, IoU = 0.1, achieved the best results for thresh
of 0.4, namely AP of 97.15% (TP: 2538, FP: 46).
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The model’s robustness was tested on images with artifi-
cially generated bad weather conditions and image blur, and
the results show a severe decrease in AP in more than 30%.
After themodel was also trained on the part of the imageswith
bad weather effects, the model achieves significantly better
results (AP 50.3% for snow, 54.7% fog, 53.1% ice, 43.8%
motion blur).
In future work, the plan is to use a thermal camera to

increase detection performance and develop a model for rec-
ognizing human activity (running, walking, standing, sitting,
lying down) and tracking people in SAR scenes.
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