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Photo retouching enables photographers to invoke dramatic visual impres-

sions by artistically enhancing their photos through stylistic color and tone

adjustments. However, it is also a time-consuming and challenging task that

requires advanced skills beyond the abilities of casual photographers. Using

an automated algorithm is an appealing alternative to manual work but such

an algorithm faces many hurdles. Many photographic styles rely on subtle

adjustments that depend on the image content and even its semantics. Further,

these adjustments are often spatially varying. Because of these characteris-

tics, existing automatic algorithms are still limited and cover only a subset of

these challenges. Recently, deep machine learning has shown unique abilities

to address hard problems that resisted machine algorithms for long. This

motivated us to explore the use of deep learning in the context of photo

editing. In this paper, we explain how to formulate the automatic photo

adjustment problem in a way suitable for this approach. We also introduce

an image descriptor that accounts for the local semantics of an image. Our

experiments demonstrate that our deep learning formulation applied using

these descriptors successfully capture sophisticated photographic styles. In

particular and unlike previous techniques, it can model local adjustments

that depend on the image semantics. We show on several examples that this

yields results that are qualitatively and quantitatively better than previous

work.
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1. INTRODUCTION

With the prevalence of digital imaging devices and social network-
ing, sharing photos through social media has become quite popular.
A common practice in this type of photo sharing is artistic enhance-
ment of photos by various Apps such as Instagram. In general, such
photo enhancement is artistic because it not only tries to correct
photographic defects (under/over exposure, poor contrast, etc.) but
also aims to invoke dramatic visual impressions by stylistic or even
exaggerated color and tone adjustments. Traditionally, high-quality
enhancement is usually hand-crafted by a well-trained artist through
extensive labor.

In this work, we study the problem of learning artistic photo
enhancement styles from image exemplars. Specifically, given a set
of image pairs, each representing a photo before and after pixel-level
tone and color enhancement following a particular style, we wish
to learn a computational model so that for a novel input photo we
can apply the learned model to automatically enhance the photo
following the same style.

Learning a high-quality artistic photo enhancement style is chal-
lenging for several reasons. First, photo adjustment is often a highly
empirical and perceptual process that relates the pixel colors in
an enhanced image to the information embedded in the original
image in a complicated manner. Learning an enhancement style
needs to extract an accurate quantitative relationship underlying
this process. This quantitative relationship is likely to be complex
and highly nonlinear especially when the enhancement style re-
quires spatially varying local adjustments. It is nontrivial to learn
a computational model capable of representing such a complicated
relationship accurately, and large-scale training data is likely to be
necessary. Therefore, we seek a learning model scalable with re-
spect to both the feature dimension and data size and efficiently
computable with high-dimensional, large-scale data.

Second, an artistic enhancement is typically semantics-aware. An
artist does not see individual pixels; instead he/she sees semantically
meaningful objects (humans, cars, animals, etc.) and determines the
type of adjustments to improve the appearance of the objects. For
example, it is likely that an artist pays more attention to improve
the appearance of a human figure than a region of sky in the same
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(a) (b) (c)

Fig. 1. An example of our semantics-aware photo enhancement style, which extends the “cross processing” effect in a local manner. Left: input image; Middle:

enhanced image by our deep learning based automatic approach; Right: groundtruth image manually enhanced by a photographer, who applied different

adjustment parameters in different semantic regions. See more results of such effects in Section 7.1 and the supplemental materials.

photo. We would like to incorporate this semantics-awareness in our
learning problem. One challenge is the representation of semantic
information in learning so that the learned model can perform image
adjustments according to the specific content as human artists do.

We present an automatic photo enhancement method based on
deep machine learning. This approach has recently accumulated
impressive successes in domains such as computer vision and speech
analysis for which the semantics of the data plays a major role, e.g.,
[Vincent et al. 2008; Krizhevsky et al. 2012]. This motivated us to
explore the use of this class of techniques in our context. To address
the challenges mentioned above, we cast exemplar-based photo
adjustment as a regression problem, and use a Deep Neural Network
(DNN) with multiple hidden layers to represent the highly nonlinear
and spatially varying color mapping between input and enhanced
images. A deep neural network (DNN) is a universal approximator
that can represent arbitrarily complex continuous functions [Hornik
et al. 1989]. It is also a compact model which is readily scalable
with respect to high-dimensional, large-scale data.

Feature design is a key issue that can significantly affect the effec-
tiveness of DNN. To make sure the learned color mapping responds
to complex color and semantic information, we design informative
yet discriminative feature descriptors that serve as the input to the
DNN. For each input image pixel, its feature descriptor consists of
three components, which reflect respectively the statistical or seman-
tic information at the pixel, contextual, and global levels. The global
feature descriptor is based on global image statistics, whereas the
context feature descriptor is based on semantic information extracted
from a large neighborhood around the pixel. Understanding image
semantics has been made possible with recent advances in scene
understanding and object detection. We use existing algorithms to
annotate all input image pixels and the semantics information from
the annotated images are incorporated into a novel context feature
descriptor.

Contributions. In summary, our proposed photo enhancement
technique has the following contributions.

—It introduces the first automatic photo adjustment framework
based on deep neural networks. A variety of normal and artistic
photo enhancement styles can be achieved by training a distinct
model for each enhancement style. The quality of our results is
superior to that of existing methods.

—Our framework adopts informative yet discriminative image fea-
ture descriptors at the pixel, contextual and global levels. Our
context descriptor exploits semantic analysis over multiscale spa-

tial pooling regions. It has achieved improved performance over
a single pooling region.

—Our method also includes an effective algorithm for choosing a
representative subset of photos from a large collection so that a
photo enhancement model trained over the chosen subset can still
produce high-quality results on novel testing images.

While a contribution of our work is the application of deep ma-
chine learning in a new context, we use a standard learning proce-
dure and do not claim any contribution in the design of the learning
algorithm itself. Similarly, while we propose a possible design for
semantic context descriptor, and demonstrate its effectiveness, a
comprehensive exploration of the design space for such descriptors
is beyond the scope of this paper.

Complete source codes and datasets used by our system are pub-
licly available on Github 1 .

2. RELATED WORK

Traditional image enhancement rules are primarily determined em-
pirically. There are many software tools to perform fully automatic
color correction and tone adjustment, such as Adobe Photoshop,
Google Auto Awesome, and Microsoft Office Picture Manager. In
addition to these tools, there exists much research on either interac-
tive [Lischinski et al. 2006; An and Pellacini 2008] or automatic
[Bae et al. 2006; Cohen-Or et al. 2006] color and tone adjustment.
Automatic methods typically operate on the entire image in a global
manner without taking image content into consideration. To address
this issue, Kaufman et al. [2012] introduces an automatic method
that first detects semantic content, including faces, sky as well as
shadowed salient regions, and then applies a sequence of empiri-
cally determined steps for saturation, contrast as well as exposure
adjustment. However, the limit of this approach is that output style
is hard-coded in the algorithm and cannot be easily tuned to achieve
a desired style. In comparison and as we shall see, our data-driven
approach can easily be trained to produce a variety of styles. Further,
these techniques rely on a fixed pipeline that is inherently limited
in its ability to achieve user-preferred artistic enhancement effects,
especially the exaggerated and dramatic ones. In practice, a fixed-
pipeline technique works well for a certain class of adjustments and
only produces approximate results for effects outside this class. For
instance, Bae et al. [2006] do well with tonal global transforms but

1https://github.com/stephenyan1984/dl-image-enhance

https://github.com/stephenyan1984/cuda convnet plus
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do not model local edits, and Kaufman et al. [2012] perform well
on a predetermined set of semantic categories but does not handle
elements outside this set. In comparison, deep learning provides a
universal approximator that is trained on a per-style basis, which is
key to the success of our approach.

Another line of research for photo adjustment is primarily data-
driven. Learning based image enhancement [Kang et al. 2010; Joshi
et al. 2010; Caicedo et al. 2011; Bychkovsky et al. 2011] and image
restoration [Dale et al. 2009] have shown promising results and
therefore received much attention. Kang et al. [2010] found that
image quality assessment is actually very much personalized, which
results in an automatic method for learning individual preferences
in global photo adjustment. Bychkovsky et al. [2011] introduces a
method based on Gaussian processes for learning tone mappings
according to global image statistics. Since these methods were de-
signed for global image adjustment, they do not consider local image
contexts and cannot produce spatially varying local enhancements.
Wang et al. [2011] proposes a method based on piecewise approxi-
mation for learning color mapping functions from exemplars. It does
not consider semantic or contextual information either. In addition, it
is not fully automatic, and relies on interactive soft segmentation. It
is infeasible for this technique to automatically enhance a collection
of images. In comparison, this paper proposes a scalable framework
for learning user-defined complex enhancement effects from exem-
plars. It explicitly performs generic image semantic analysis, and
its image enhancement models are trained using feature descriptors
constructed from semantic analysis results.

Hwang et al. [2012] proposes a context-aware local image en-
hancement technique. This technique first searches for the most
similar images and then the most similar pixels within them, and
finally apply a combination of the enhancement parameters at the
most similar pixels to the considered pixel in the new test image.
With a sufficiently large image database, this method works well.
But in practice, nearest-neighbor search requires a fairly large train-
ing set that is challenging to create and slow to search, thereby
limiting the scalability of this approach. Another difference with our
approach is that, to locate the most similar pixels, this method uses
low- and mid-level features (i.e., color and SIFT) whereas we also
consider high-level semantics. We shall see in the result section that
these differences have a significant impact on the adjustment quality
in several cases.

3. A DEEP LEARNING MODEL

Let us now discuss how we cast exemplar-based photo adjustment
as a regression problem, and how we set up a DNN to solve this
regression problem. A photo enhancement style is represented by
a set of exemplar image pairs Λ = {Ik, Jk}mk=1, where Ik and
Jk are respectively the images before and after enhancement. Our
premise is that there exists an intrinsic color mapping function F
that maps each pixel’s color in Ik to its corresponding pixel’s color
in Jk for every k. Our goal is to train an approximate function

F̃ using Λ so that F̃ may be applied to new images to enhance

the same style there. For a pixel pi in image Ik, the value of F̃ is

simply the color of image Jk at pixel pi, whereas the input of F̃ is

more complex because F̃ depends on not only the color of pi in Ik

but also additional local and global information extracted from Ik,

thus we formulate F̃ as a parametric function F̃(Θ, xi), where Θ
represents the parameters and xi represents the feature vector at pi
that encompasses the color of pi in Ik as well as additional local
and global information. With this formulation, training the function
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... Output Layer: Φ(Θ, Xi) 

Hidden Layer

Hidden Layer

Input Layer

          L
2

i           a
2
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...

Cost layer

Quadratic basis: V(ci)

Fig. 2. The architecture of our DNN. The neurons above the dash line

indicate how we compute the cost function in (3). Note that the weights

for the connections between the blue neurons and the yellow neurons are

just the elements of the quadratic color basis, and the activation function

in the yellow and purple neurons is the identity function. During training,

error backpropagation starts from the output layer, as the connection weights

above the dash line have already been fixed.

F̃ using Λ becomes computing the parameters Θ from training data
Λ through nonlinear regression.

High-frequency pixelwise color variations are difficult to model
because they force us to choose a mapping function which is sen-
sitive to high-frequency details. Such a mapping function often
leads to noisy results in relatively smooth regions. To tackle this

problem we use a color basis vector V (ci) at pixel pi to rewrite F̃

as F̃ = Φ(Θ, xi)V (ci), which expresses the mapped color, F̃ , as
the result of applying the color transform matrix Φ(Θ, xi) to the
color basis vector V (ci). V (ci) is a vector function taking different
forms when it works with different types of color transforms. In
this paper we work in the CIE Lab color space, and the color at
pi is ci = [Liaibi]

T and V (ci) = [Li ai bi 1]T if we use 3x4
affine color transforms. If we use 3x10 quadratic color transforms,
then V (ci) = [L2

i a2
i b2i Liai Libi aibi Li ai bi 1]. Since the

per-pixel color basis vector V (ci) varies at similar frequencies as
pixel colors, it can absorb much high-frequency color variation. By
factorizing out the color variation associated with V (ci), we can
let Φ(Θ, xi) focus on modeling the spatially smooth but otherwise

highly nonlinear part of F̃ .
We learn Φ(Θ, xi) by solving the following least squares min-

imization problem defined over all training pixels sampled from
Λ:

argmin
Φ∈H

n
∑

i

‖ Φ(Θ, xi)V (ci)− yi ‖
2, (1)

whereH represents the function space of Φ(Θ, xi) and n is the total
number of training pixels. In this paper, we represent Φ(Θ, xi) as a
DNN with multiple hidden layers.
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Input image

Visualization of 3 x 10 coe�cients of the quadratic color transform

Fig. 3. (Left) Input image, and (Right) visualization of its per-pixel quadratic color transforms, Φ(Θ, xi), each of which is a 3× 10 matrix. Each image on the

right visualizes one coefficient in this matrix at all pixel locations. Coefficients are linearly mapped to [0,1] in each visualization image for better contrast. This

visualization illustrates two properties of the quadratic color transforms: 1) they are spatially varying and 2) they are smooth with much high-frequency content

suppressed.

3.1 Neural Network Architecture and Training

Our neural network follows a standard architecture that we describe
below for the sake of completeness.

Multi-layer deep neural networks have proven to be able to repre-
sent arbitrarily complex continuous functions [Hornik et al. 1989].
Each network is an acyclic graph, each node of which is a neuron.
Neurons are organized in a number of layers, including an input
layer, one or more hidden layers, and an output layer. The input
layer directly maps to the input feature vector, i.e. xi in our prob-
lem. The output layer maps to the elements of the color transform,
Φ(Θ, xν). Each neuron within a hidden layer or the output layer
takes as input the responses from all the neurons in the preceding
layer. Each connection between a pair of neurons is associated with
a weight. Let us denote vlj as the output of the j-th neuron in the

l-th layer. Then vlj is expressed as follows:

vlj = g

(

wl
j0 +

∑

k>0

wl
jkv

l−1
k

)

(2)

where wl
jk is the weight associated with the connection between

the j-th neuron in the l-layer and the k-th neuron in the (l − 1)-th
layer, and g(z) is an activation function which is typically nonlin-
ear. We choose the rectified linear unit (ReLU) [Krizhevsky et al.
2012], g(z) = max(0, z), as the activation function in our net-
works. Compared with other widely used activation functions, such
as the hyperbolic tangent, g(z) = tanh(z) = 2/(1 + e−2z) − 1,
or the sigmoid, h(x) = (1 + e−x)−1, ReLU has a few advantages,
including inducing sparsity in the hidden units and accelerating the
convergence of the training process. Note that there is no nonlinear
activation function for neurons in the output layer. The output of a
neuron in the output layer is only a linear combination of its inputs
from the preceding layer. Figure 2 shows the overall architecture,
which has two extra layers (yellow and purple neurons) above the
output layer for computing the product between the color transform
and the color basis vector. Given a neural network architecture for
color mapping, H in (1) should be the function space spanned by
all neural networks with the same architecture but different weight
parameters Θ.

Once the network architecture has been fixed, given a train-
ing dataset, we use the classic error backpropagation algorithm
to train the weights. In addition, we apply the Dropout training
strategy [Krizhevsky et al. 2012; Hinton et al. 2012], which has
been shown very useful for improving the generalization capability.

                

            

                

            

                

            

                

            

                

            

                

            

Fig. 4. Our multiscale spatial pooling schema. In each pooling region, we

compute a histogram of semantic categories. The shown three-scale scheme

has 9*2+1=19 pooling regions. In our experiments, we use a four-scale

scheme with 28 pooling regions.

We set the output of each neuron in the hidden layers to zero with
probability 0.5. Those neurons that have been “dropped out” in this
way do not contribute to the forward pass and do not participate in
error backpropagation. Our experiments show that adding Dropout
during training typically reduces the relative prediction error on
testing data by 2.1%, which actually makes a significant difference
in the visual quality of the enhanced results.

Figure 3 visualizes the per-pixel quadratic color transforms,
Φ(Θ, xi), generated by a trained DNN for one example image. We
can see that the learned color mappings are smooth in most of the
local regions.

4. FEATURE DESCRIPTORS

Our feature descriptor (xi) at a sample pixel pi serves as the in-
put layer in the neural network. It has three components, xi =
(xp

i , x
c
i , x

g
i ), where xp

i represents pixelwise features, xc
i represents

contextual features computed for a local region surrounding pi, and
xg
i represents global features computed for the entire image where

pi belongs. The details about these three components follow.

4.1 Pixelwise Features

Pixelwise features reflect high-resolution pixel-level image varia-
tions, and are indispensable for learning spatially varying photo
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unknown

building

car

grass

person

road

tree

Input Image Parsing Map Car Detection Person Detection Final Label Map

Fig. 5. Pipeline for constructing our semantic label map. Starting with an input image, we first perform scene parsing to obtain a parsing map, then we run

object detectors to obtain a detection map for each object category (i.e, car, person), finally we superpose the detection maps onto the parsing map to obtain the

final semantic label map (the rightmost image).

enhancement models. They are defined as xp
i = (ci, pi), where ci

represents the average color in the CIELab color space within the
3x3 neighborhood, and pi = (xi, yi) denotes the normalized sample
position within the image.

4.2 Global Features

In photographic practice, global attributes and overall impressions,
such as the average intensity of an image, at least have partial in-
fluence on artists when they decide how to enhance an image. We
therefore incorporate global image features in our feature represen-
tation. Specifically, we adopt six types of global features proposed
in [Bychkovsky et al. 2011], including intensity distribution, scene
brightness, equalization curves, detail-weighted equalization curves,
highlight clipping, and spatial distribution, which altogether give
rise to a 207-dimensional vector.

4.3 Contextual Features

Our contextual features try to characterize the distribution of se-
mantic categories, such as sky, building, car, person, and tree, in
an image. Such features are extracted from semantic analysis re-
sults within a local region surrounding the sample pixel. Typical
image semantic analysis algorithms include scene parsing [Tighe
and Lazebnik 2010; Liu et al. 2011] and object detection [Viola and
Jones 2001; Felzenszwalb et al. 2008; Wang et al. 2013]. Scene pars-
ing tries to label every pixel in an image with its semantic category.
Object detection on the other hand trains one highly specialized
detector for every category of objects (such as dogs). Scene parsing
is good at labeling categories (such as grass, roads, and sky) that
have no characteristic shape but relatively consistent texture. These
categories have a large scale, and typically form the background of
an image. Object detectors are better at locating categories (such
as persons and cars), which are better characterized by their overall
shape than local appearance. These categories have a smaller scale,
and typically occupy the foreground of an image. Because these two
types of techniques are complementary to each other, we perform
semantic analysis using a combination of scene parsing and object
detection algorithms. Figure 5 illustrates one fusion example of the
scene parsing and detection results.

We use existing algorithms to automatically annotate all input
image pixels and the semantics information from the annotated
images are gathered into a novel context feature descriptor. During
pixel annotation, we perform scene parsing using the state-of-the-
art algorithm in [Tighe and Lazebnik 2010]. The set of semantic
categories, Sp, during scene parsing include such object types as
sky, road, river, field and grass. . After the scene parsing step, we
obtain a parsing map, denoted as Ip, each pixel of which receives
one category label from Sp, indicating that with a high probability,
the corresponding pixel in the input image is covered by a semantic
instance in that category. We further apply the state-of-the-art object

detector in [Wang et al. 2013] to detect the pixels covered by a
predefined set of foreground object types,Od, which include person,
train, bus and building. After the detection step, we obtain one
confidence map for each predefined type. We fuse all confidence
maps into one by choosing, at every pixel, the object label that has
the highest confidence value. This fused detection map is denoted
as Id. We further merge Id with Ip so that those pixel labels from
Id with confidence larger than a predefined threshold are used to
overwrite the corresponding labels from Ip. Since scene parsing
and object detection results tend to be noisy, we rely on voting
and automatic image segmentation to perform label cleanup in the
merged label map. Within each image segment, we reset the label at
every pixel to the one that appears most frequently in the segment.
In our experiments, we adopt the image segmentation algorithm in
[Arbelaez et al. 2011]. This cleaned map becomes our final semantic
label map, Ilabel.

Given the final semantic label map for the entire input image, we
construct a contextual feature descriptor for each sample pixel to
represent multiscale object distributions in its surroundings. For a
sample point pi, we first define a series of nested square regions,
{R0, R1, . . . , Rτ}, all centered at pi. The edge length of these re-
gions follows a geometric series, i.e. λk = 3λk−1(k = 1, . . . , τ),
making our feature representation more sensitive to the semantic
contents at nearby locations than those farther away. We further sub-
divide the ring between every two consecutive squares, Rk+1 −Rk,
into eight rectangles, as shown in Figure 4. Thus, we end up with
a total of 9τ + 1 regions, including both the original regions in
the series as well as regions generated by subdivision. For each of
these regions, we compute a semantic label histogram, where the
number of bins is equal to the total number of semantic categories,
N = |Sp

⋃

Od|. Note that the histogram for Rk is the sum of the
histograms for the nine smaller regions within Rk. Such spatial
pooling can make our feature representation more robust and better
tolerate local geometric deformations. The final contextual feature
descriptor at pi is defined to be the concatenation of all these seman-
tic label histograms. Our multiscale context descriptor is partially
inspired by shape contexts [Belongie et al. 2002]. However, unlike
the shape context descriptor, our regions and subregions are either
rectangles or squares, which facilitate fast histogram computation
based on integral images (originally called summed area tables) [Vi-
ola and Jones 2001]. In practice, we pre-compute N integral images,
one for each semantic category. Then the value of each histogram
bin can be calculated within constant time, which is extremely fast
compared with the computation of shape contexts. To the best of our
knowledge, our method is the first one that explicitly constructs se-
mantically meaningful contextual descriptors for learning complex
image enhancement models.

It is important to verify whether the complexity of our contextual
features is necessary in learning complex spatially varying local
adjustment effects. We have compared our results against those
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obtained without contextual features as well as those obtained from
simpler contextual features based on just one pooling region (vs.
our 28 multiscale regions) at the same size as our largest region.
From Figure 11, we can see that our contextual features are able to
produce local adjustment results closest to the ground truth.

Discussion. The addition of this semantic component into our fea-
ture vectors is a major difference with previous work. As shown in
Figure 11 and in the result section, the design that we propose for
this component is effective and produces a significant improvement
in practice. That said, we acknowledge that other options may be
possible and we believe that exploring the design space of semantic
descriptors is an exciting avenue for future work.

5. TRAINING DATA SAMPLING AND SELECTION

5.1 Superpixel Based Sampling

When training a mapping function using a set of images, we prefer
not to make use of all the pixels as such a dense sampling would
result in unbalanced training data. For example, we could have too
many pixels from large “sky” regions while relatively few from
smaller “person” regions, which could eventually result in a serious
bias in the trained mapping function. In addition, an overly dense
sampling unnecessarily increases the training cost, as we need to
handle millions of pixel samples. Therefore, we apply a superpixel
based method to collect training samples. For each training image
I , we first apply the graph-based segmentation [Felzenszwalb and
Huttenlocher 2004] to divide the image into small homogeneous
yet irregularly shaped patches, each of which is called a superpixel.
Note that a superpixel in a smooth region may be larger than one
in a region with more high-frequency details. We require that the
color transform returned by our mapping function at the centroid
of a superpixel be used for predicting with sufficient accuracy the
adjusted color of all pixels within the same superpixel. To avoid bias,
we randomly sample a fixed number of pixels from every superpixel.
Let ν be any superpixel from the original images (before adjustment)
in Λ, and Sν be the set of pixels sampled from ν. We revise the cost
function in (1) as follows to reflect our superpixel-based sampling
and local smoothness requirement.

∑

ν

∑

j∈Sν

‖ Φ(Θ, xν)V (cj)− yj ‖
2, (3)

where Θ represents the set of trained weights in the neural network,
xν is the feature vector constructed at the pixel closest to the centroid
of ν, V (cj) denotes the color basis vector of a sample pixel within
ν, and yj denotes the adjusted color of the same sample within ν.

5.2 Cross-Entropy Based Image Selection

In example-based photo enhancement, example images that demon-
strate a certain enhancement style often need to be manually pre-
pared by human artists. It is a labor intensive task to adjust many
images as each image has multiple attributes and regions that can be
adjusted. Therefore, it is much desired to pre-select a small number
of representative training images to reduce the amount of human
work required. On the other hand, to make a learned model achieve
a strong prediction capability, it is necessary for the selected training
images to have a reasonable coverage of the feature space.

In this section, we introduce a cross-entropy based scheme for
selecting a subset of representative training images from a large
collection. We first learn a codebook of feature descriptors with
K = 400 codewords by running K-means clustering on feature
descriptors collected from all training images. Then every original

Algorithm 1: Small Training Set Selection

Input: A large image collection, ΩI ; The desired number of
representative images, md

Output: A subset Ω with md images selected from ΩI

1 Initialize Ω← ∅
2 for i = 1 to md do

3 I∗ = argmaxI∈ΩI−Ω−
∑

j
HΩ′(j) logHΩ′(j),

4 where Ω′ = Ω ∪ {I};
5 Ω = Ω ∪ {I∗}
6 end

feature descriptor can find its closest codeword in the codebook via
vector quantization, and each image can be viewed as “a bag of”
codewords by quantizing all the feature descriptors in the image.
We further build a histogram for every image using the codewords
in the codebook as histogram bins. The value in a histogram bin is
equal to the number of times the corresponding codeword appears
in the image. Let Hk be the histogram for image Ik. For any sub-
set of images Ω from an initial image collection ΩI , we compute
the accumulated histogram HΩ by simply performing elementwise
summation over the individual histograms of the images in Ω. We
further evaluate the representative power of Ω using the cross en-
tropy of HΩ. That is, Entropy(HΩ) = −

∑

j
HΩ(j) logHΩ(j),

where HΩ(j) denotes the j-th element of HΩ. A large cross en-
tropy implies that the codewords corresponding to the histogram
bins are evenly distributed in the images in Ω and vice versa. Thus,
to encourage an even coverage of the feature space, the set of se-
lected images essentially need to be the solution of the following
expensive combinatorial optimization,

Ω = arg max
Ω∈ΩI

−
∑

j

HΩ(j) logHΩ(j). (4)

In practice, we seek an approximate solution by progressively adding
one image to Ω every time until we have a desired number of images
in the subset. Every time the added image maximizes the cross en-
tropy of the expanded subset. This process is illustrated in Algorithm
1.

6. OVERVIEW OF EXPERIMENTS

Our proposed method is well suited for learning complex and highly
nonlinear photo enhancement styles, especially when the style re-
quires challenging spatially varying local enhancements. Successful
local enhancement may not only rely on the content in a specific
local region, but also contents in its surrounding areas. In that sense,
such operations could easily result in complex effects that require
stylistic or even exaggerated color transforms, making previous
global methods (e.g., [Bychkovsky et al. 2011]) and local empirical
methods (e.g., [Kaufman et al. 2012]) inapplicable. In contrast, our
method was designed to address such challenges with the help of
powerful contextual features and the strong regression capability of
deep neural networks.

To fully evaluate our method, we hired one professional photog-
rapher who carefully retouched three different stylistic local effects
using hundreds of photos. Section 7 reports experiments we have
conducted to evaluate the performance of our method. Although
our technique was designed to learn complex local effects, it can be
readily applied to global image adjustments without any difficulty.
Experiments in Section 8 and the supplemental materials show that
our technique achieves superior performance both visually and nu-
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merically when compared with other state-of-the-art methods on the
MIT-Adobe Fivek dataset. To objectively evaluate the effectiveness
of our method, we have further conducted two user studies (Section
8.3) and obtained very positive results.

6.1 Experimental Setup

Neural Network Setup. Throughout all the experiments in this
paper, we use a fixed DNN with one input layer, two hidden layers,
and one output layer (Figure 2). The number of neurons in the hidden
layers were set empirically to 192, and the number of neurons in
the output layer were set equal to the number of coefficients in the
predicted color transform. Our experiments have confirmed that
quadratic color transforms can more faithfully reproduce the colors
in adjusted images than affine color transforms. Therefore, there
are 30 neurons in the output layer, 10 for each of the three color
channels.

Data Sampling. Since we learn pixel-level color mappings, every
pixel within the image is a potential training sample. In practice, we
segment each image into around 7,000 superpixels, from each of
which we randomly select 10 pixels. Therefore, for example, even
if we only have 70 example image pairs for learning one specific
local effect, the number of training samples can be as large as 4.9
million. Such a large-scale training set can largely eliminate the risk
of overfitting. It typically takes a few hours to finish training the
neural network on a medium size training dataset with hundreds
of images. Nevertheless, a trained neural network only needs 0.4
second to enhance a 512-pixel wide test image.

Image Enhancement with Learned Color Mappings. Once we
have learned the parameters (weights) of the neural network, during
the image enhancement stage, we apply the same feature extraction
pipeline to an input image as in the training stage. That is, we
first perform scene parsing and object detection, and then apply
graph-based segmentation to obtain superpixels. Likewise, we also
extract a feature vector at the centroid of every superpixel, and apply
the color transform returned by the neural network to every pixel
within the superpixel. Specifically, the adjusted color at pixel pi is
computed as yi = Φ(Θ, xνi)V (ci), where νi is the superpixel that
covers pi.

7. LEARNING LOCAL ADJUSTMENTS

7.1 Three Stylistic Local Effects

We manually downloaded 115 images from Flickr and resized them
such that their larger dimension has 512 pixels. 70 images were
chosen for training and the remaining 45 images for testing. A pro-
fessional photographer used Photoshop to retouch these 115 images
and produce the datasets for three different stylistic local effects.
She could perform a wide range of operations to adjust the images,
including selecting local objects/areas with the region selection tool,
creating layers with layer masks, blending different layers using
various modes, just to name a few. To reduce subjective variation
during retouching, she used the “actions” tool, which records a se-
quence of operations, which can be repeatedly applied to selected
image regions.

The first local effect ”Foreground Pop-Out” was created by in-
creasing both the contrast and color saturation of foreground salient
objects/regions, while decreasing the color saturation of the back-
ground. Before performing these operations, foreground salient
regions need to be interactively segmented out using region selec-
tion tools in Photoshop. Such segmented regions were only used
for dataset production, and they are not used in our enhancement

pipeline. This local effect makes foreground objects more visually
vivid while making the background less distractive. Figure 6 (b) and
(c) show three examples of our automatically enhanced results and
groundtruth results from the photographer. Refer to the supplemen-
tal materials for the training data as well as our enhanced testing
photos.

Our second effect ”Local Xpro” was created by generalizing the
popular ”cross processing” effect in a local manner. Within Pho-
toshop, the photographer first predefined multiple ”Profiles”, each
of which is specifically tailored for one of the semantic categories
used in scene parsing and object detection in section 4.3. All the
profiles share a common series of operations, such as the adjustment
of individual color channels, color blending across color channels,
hue/saturation adjustment as well as brightness/contrast manipula-
tion, just to name a few. Nonetheless, each profile defines a distinct
set of adjustment parameters tailored for its corresponding category.
When retouching a photo, the photographer used region selection
tools to isolate image regions and then applied one suitable profile
to each image region according to the specific semantic content
within that region. To avoid artifacts along region boundaries, she
could also slightly adjust the color/tone of local regions after the
application of profiles. Although the profiles roughly follow the
”cross processing” style, the choice of local profiles and additional
minor image editing were heavily influenced by the photographer’s
personal taste which can be naturally learned through exemplars.
Figure 6 (d)&(e) show three examples in this effect, and compare
our enhanced results against groundtruth results. Figure 1 shows
another example of this effect.

To further increase diversity and complexity, we asked the pho-
tographer to create a third local effect ”Watercolor”, which tries to
mimic certain aspects of the ”watercolor” painting style. For exam-
ple, watercolors tend to be brighter with lower saturation. Within
a single brush region, the color variation also tends to be limited.
The photographer first applied similar operations as in the Fore-
ground Pop-Out effect to the input images, including increasing
both contrast and saturation of foreground regions as well as de-
creasing those of background regions. In addition, the brightness of
both foreground and background regions are increased by different
amounts. She further created two layers of brush effects from the
same brightened image, using larger “brushes” on one layer and a
smaller one on the other. On the first layer, the brush size for the
foreground and the background are also different. Finally, these two
layers are composited together using the ’Lighten’ mode in Pho-
toshop. Overall, this effect results in highly complex and spatially
varying color transforms, which force the neural network to heavily
rely on local contextual features during regression.

Figure 6 (f)&(g) show the enhanced results of three testing exam-
ples and their corresponding groundtruth results. To simulate brush
strokes, after applying the same color transform to all pixels in a
superpixel, we calculate the average color within the superpixel and
fill the superpixel with it. See another example of Watercolor effect
as well as visualized superpixels in Fig 7. Our automatic results look
visually similar to the ones produced by the photographer. Refer
to the supplemental materials for more examples enhanced with
this effect. Note that our intention here is not rigorously simulating
watercolors, but experimentally validating that our technique is able
to accurately learn such complex local adjustments.

To successfully learn an enhancement effect, it is important to
make the adjustments on individual training images consistent. In
practice, we have found the following strategies are helpful in in-
creasing such consistency across an image set. First, as artistic
adjustment of an image involves the personal taste of the photogra-
pher, the result could be quite different from different photographers.
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(a)

(b)

(c)

(d)

(e)

(f )

(g)

Fig. 6. Examples of three stylistic local enhancement effects. Row (a): input images. Row (b)&(c): our enhanced results and the groundtruth for the Foreground

Pop-Out effect. Row (d)&(e): our enhanced results and the groundtruth for the Local Xpro effect. Row (f)&(g): our enhanced results and the groundtruth for

the Watercolor effect.
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(a) (b)

(c) (d)

Fig. 7. An example of Watercolor local effect. (a): input image. (b): a visu-

alization of superpixels used for simulating brush strokes. Each superpixel is

filled with a random color. (c): our enhanced result. (d): the ground truth.

Therefore, we always define a retouching style using photos adjusted
by the same photographer. That means, even for the same input con-
tent, retouched results by different photographers are always defined
as different styles. Second, we inform the photographer the semantic
object categories that our scene parsing and object detection algo-
rithms are aware of. Consequently, she can apply similar adjustments
to visual objects in the same semantic category. Third, we use the
”actions” tool in Photoshop to faithfully record the ”Profiles” that
should be applied to different semantic categories. This improves
the consistency of color transforms applied to image regions with
similar content and context.

7.2 Spatially Varying Color Mappings

It is important to point out that the underlying color mappings in
the local effect datasets are truly not global. They spatially vary
within the image domain. To verify this, we collect pixels from
each semantic region of an image. By drawing scatter plots for
different semantic regions using pixel color pairs from the input
and retouched images, we are able to visualize the spatially varying
color transforms. See such an example in Figure 9, which clearly
shows that the color transforms differ in the sky, building, grass and
road regions. Also, we can see that our method can successfully
learn such spatially varying complex color transforms. We further
conducted a comparison against [Wang et al. 2011], which adopts
a local piecewise approximation approach. However, due to the
lack of discriminative contextual features, their learned adjustment
parameters tend to be similar across different regions (Figure 8).

7.3 Generalization Capability

Here we verify the generalization capability of the DNN based photo
adjustment models we trained using 70 image pairs. As mentioned
earlier, the actual number of training samples far exceeds the number
of training image pairs because we use thousands of superpixels
within each training image pair. As shown in Fig. 10, we apply
our trained models to novel testing images with significant visual
differences from any images in the training set. The visual objects
in these images have either unique appearances or unique spatial
configurations. To illustrate this, we show the most similar training

Fig. 8. Comparison with [Wang et al. 2011] on the Local Xpro effect.

Top Left: Input image; Top Right: enhanced image by [Wang et al. 2011];

Bottom Left: enhanced image by our approach; Bottom Right: enhanced

image by photographer. The enhanced image by our approach is closer to

the ground truth generated by the photographer.

images, which not only share the largest number of object and region
categories with the testing image, but also have a content layout
as similar as possible. In Fig 10 top, the mountain in the input
image has an appearance and spatial layout that are different from
the training images. In Fig 10 bottom, the appearances and spatial
configuration of the car and people are also quite different from
those of the training images. In despite of these differences, our
trained DNN models are still able to adjust the input images in a
plausible way.

7.4 Effectiveness of Contextual Features

We demonstrate the importance of contextual features in learning lo-
cal adjustments in this subsection. First, we calculate the L2 distance
in the 3D CIELab color space between input images and ground
truth produced by the photographer for all local effect datasets as
shown in the second column of Table I. They numerically reflect
the magnitude of adjustments the photographer made to the input
images. Second, we numerically compare the testing errors of our
enhanced results with and without the contextual feature in the third
and fourth columns of Table I. Our experiments show that without
contextual features, testing errors of our enhanced results tend to be
relatively high. The mean L2 error in the 3D CIELab color space
reaches 9.27, 9.51 and 9.61 respectively for the Foreground Pop-Out,
Local Xpro and Watercolor effects. On the other hand, by including
our proposed contextual feature, all errors drop significantly to 7.08,
7.43 and 7.20, indicating the necessity of such features.

Table I. Statistics of three local effects and the mean L2 testing

errors. TE=Testing Error.

Effect ground

truth L2

distance

TE w/o

context

TE w/ con-

text

Foreground Pop-Out 13.86 9.27 7.08

Local Xpro 19.71 9.51 7.43

Watercolor 15.30 9.61 7.20

To validate the effectiveness of our multiscale spatial pooling
schema in our contextual feature design, we have experimented with
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baL

building

grass

baL

road

sky

Fig. 9. Scatter plots of color mappings. Middle (from top to bottom): input image, semantic label map and the groundtruth for the Local Xpro effect. Left

and right: color mapping scatter plots for four semantic regions. Each semantic region has three scatter plots corresponding to its L, a, b color channels.

Each scatter plot visualizes two sets of points, which take the original value of a channel as the horizontal coordinate, and respectively the predicted (red) and

groundtruth (blue) adjusted values of that channel as the vertical coordinate.

Input Image Without Context Simple Context Our Context Ground Truth

Fig. 11. Effectiveness of our contextual features. Left: Input; Middle Left: enhanced without context; Middle: enhanced with simple contextual features

(from a single pooling region); Middle Right: enhanced with our contextual features; Right: ground truth. It is obvious that among all enhanced results, the one

enhanced using our contextual features is the closest to the ground truth.

a simpler yet more intuitive contextual feature descriptor with just
one pooling region (vs. our 28 multiscale regions) at the same size
as our largest region, and found that such simple contextual features
are helpful in reducing the errors but not as effective as ours. Taking
the local Watercolor painting effect as an example, we observed
the corresponding mean L2 error is 8.28, which drops from 9.61,
but still obviously higher than our multiscale features 7.20. This is
because, with multiscale pooling regions, our features can achieve a
certain degree of translation and rotation invariance, which is crucial
for the histogram based representation. We have also performed
visual comparisons. Fig. 11 shows one such example. We can see
that without our contextual feature, local regions in the enhanced
photo might exhibit severe color deviation from the ground truth.

7.5 Effectiveness of Learning Color Transforms

As shown in Figure 3, the use of color transforms helps absorb high-
frequency color variations and enables DNN to regress the spatially
smooth but otherwise highly nonlinear part of the color mapping. To
highlight the benefits of using color transforms, we train a different
DNN to regress the retouched colors directly. The DNN architecture
is similar to the one described in section 6.1 except that there are
only 3 neurons in the output layer, which represent the enhanced
CIELab color. We compare the testing L2 errors on the Foregronud
Pop-Out and Local Xpro datasets in Table II. On both datasets, the
testing error increases by more than 20% which indicates the use of
color transforms is beneficial in our task.

7.6 DNN Architecture

The complexity of our DNN based model is primarily determined
by the number of hidden layers and the number of neurons in each
layer. Note that the complexity of the DNN architecture should
meet the inherent complexity of the learning task. If the DNN did
not have the sufficient complexity to handle the given task, the
trained model would not even be able to accurately learn all the
samples in the training set. On the other hand, if the complexity of
the DNN exceeds the inherent complexity of the given task, there
exists the risk of overfitting and the trained model would not be able
to generalize well on novel testing data even though it could make
the training error very small.

The nature of the learning task in this paper is a regression prob-
lem. It has been shown that a feedforward neural network with a
single hidden layer [Hornik et al. 1989] can be used as a universal
regressor and the necessary number of neurons in the hidden layer
varies with the inherent complexity of the given regression problem.
In practice, however, it is easier to achieve a small training error
with a deeper network that has a relatively small number of neurons
in the hidden layers. To assess the impact of the design choices of

Table II. Comparison of L2 testing errors obtained from deep

neural networks using and without using quadratic color

transforms.
Effect w/o transform w/ transform

Foreground Pop-Out 8.90 7.08

Local Xpro 9.01 7.43
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(a)

(b)

(b) (c)

(d)

(a) (c)

(d)

Fig. 10. Two examples of novel image enhancement. Top: an example of

the Watercolor effect. Bottom: an example of the Local Xpro effect. In each

example, (a): input image, (b): our enhanced result, (c): ground truth, (d):

training images most similar to the input image. Note that the input images

in these examples have significant visual differences from any images in the

training set.

the DNN architecture, we evaluate DNNs with a varying number of
hidden layers and neurons. We keep a held-out set of 30 images for
validation and vary the number of training images from 40 to 85 at
a step size of 15 to evaluate the impact of the size of the training set.
We repeat the experiments for five times with random training and
testing partitions and report the averaged results. The Foreground
Pop-Out dataset is used in this study. Fig 12 summarizes our experi-
mental results. Overall, neural networks with a single hidden layer
deliver inferior performance than deeper networks. DNNs with 3
hidden layers do not perform as well as those with 2 hidden layers.
For a DNN with 2 hidden layers, when the number of training im-
ages exceeds 70, the testing error does not significantly improve any
more. In summary, DNNs with 2 hidden layers achieve low testing
errors and execute faster than those with 3 hidden layers in both
training and testing stages. Therefore, we finally use a DNN with 2
hidden layers and 192 neurons each throughout this paper.

7.7 Comparison with Other Regression Methods

Our DNN proves to be effective for regressing spatially varying
complex color transforms on the three local effect datasets. It is also
of great interest to evaluate the performance of other regressors on
our datasets. Specifically, we chose to compare DNN against two
popular regression methods, Lasso [Tibshirani 1996] and random
forest [Breiman 2001]. Both Lasso and random forest are scalable

# of training images
40 55 70 85

T
e

s
ti
n

g
 C

IE
L

a
b

 e
rr

o
r

7

7.5

8

8.5

9

9.5

10 1 layers, 96 neurons
1 layers, 192 neurons
1 layers, 384 neurons
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3 layers, 384 neurons

Fig. 12. Testing error vs number of training images for DNNs of various

architectures. Error bars are omitted for clarity.

Table III. Comparison of L2 testing errors obtained from

different regressors.

Effect Lasso Random

Forest

DNN

Foreground Pop-Out 11.44 9.05 8.90

Local Xpro 12.01 7.51 9.01

Watercolor 9.34 11.41 9.22

to the large number of training samples used in DNN training. We
use Lasso and a random forest to directly regress target CIELab
colors using the same feature set as in DNN training, including
pixelwise features, global features and contextual features. The
hyperparameters of both Lasso and the random forest are tuned
using cross validation. To make a fair comparison, our DNN is also
adapted to directly regress the target CIELab colors. A comparison
of L2 errors is summarized in Table III. The DNN significantly
outperforms Lasso on the Foreground Pop-Out and Local Xpro
datasets, and obtains slightly lower errors on the Watercolor dataset.
Compared with the random forest, the DNN obtains lower testing
errors on both Foreground Pop-Out and Watercolor datasets. On
the Local Xpro dataset, the random forest obtains lower numerical
errors than that of the DNN. However, after visual inspection, we
found that colors generated by the random forest are not spatially
smooth and blocky artifacts are prevalent in the enhanced images, as
shown in Figure 13. This is because regression results from a random
forest are based on values retrieved from various leaf nodes, and
spatial smoothness of these retrieved values cannot be guaranteed.
In contrast, our trained DNN generates spatially smooth colors and
does not give rise to such visual artifacts.

8. LEARNING GLOBAL ADJUSTMENTS

8.1 MIT-Adobe FiveK Dataset

The MIT-Adobe FiveK dataset [Bychkovsky et al. 2011] contains
5000 raw images, each of which was retouched by five well trained
photographers, which results in five groups of global adjustment
styles. As we learn pixel-level color mappings, there would be 175
million of training samples in total if half of the images are used for
training.
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Input Image Ground truth Our result Lasso Random forest

Fig. 13. Visual comparison against Lasso and a random forest. Note an area with blocky artifacts in the result of the random forest is highlighted.

We have compared our method with [Hwang et al. 2012] using
the same experimental settings and testing datasets in that work.
Two testing datasets were used in [Hwang et al. 2012]. (1)“Random
250”: 250 randomly selected testing images from group C of the
MIT-Adobe FiveK dataset (hence 4750 training images) and (2)
“High Variance 50”: 50 images selected for testing from group C
of the MIT-Adobe FiveK dataset (hence 4950 images for training).
Comparison results on numerical errors are shown in the second and
third columns of Table IV, from which we can see our method is
capable of achieving much better prediction performance in terms of
mean L2 errors on both predefined datasets. Figure 14 further shows
the error histograms of our method and [Hwang et al. 2012] on these
two testing datasets. The errors produced by our method are mostly
concentrated at the lower end of the histograms. Figure 15 shows a
visual comparison, from which we can see our enhanced result is
closer to the ground truth produced by the photographer. Such per-
formance differences could be explained as follows. The technique
in [Hwang et al. 2012] is based on nearest-neighbor search, which
requires a fairly large training set that is slow to search. As a result,
this technique divides similarity based search into two levels. It first
searches for the most similar images and then the most similar pixels
within them. While this two-level strategy accelerates the search, a
large percentage of similar pixels does not even have the chance to
be utilized because the search at the image level leaves out dissimi-
lar images that may still contain many similar pixels. On the other
hand, our deep neural network based method is a powerful nonlinear
regression technique that considers all the training data simultane-
ously. Thus our method has a stronger extrapolation capability than
the nearest-neighbor based approach in [Hwang et al. 2012], which
only exploits a limited number of nearest neighbors. For the same
reason, the nearest-neighbor based approach in [Hwang et al. 2012]
is also more sensitive to noisy and inconsistent adjustments in the
training data. In another comparison with [Bychkovsky et al. 2011],
we follow the same setting used in that work, which experimented
on 2500 training images from group C and reported the mean error
on the L channel (CIELAB color space) only. As shown in the first
column of Table IV, we obtained a slightly smaller mean error on
the L channel on the remaining 2500 testing images.

To validate the effectiveness of our cross-entropy based training
set selection method (Algorithm 1), we have monitored the testing
errors by varying the number of training images selected by our

Table IV. Comparison of mean L2 errors obtained with our method

and previous methods on the MIT-Adobe FiveK dataset. The target

style is Expert C.

Method 2500(L) Ran. 250(L,a,b) H.50(L,a,b)

[Bychkovsky

et al. 2011]

5.82 N/A N/A

[Hwang et al.

2012]

N/A 15.01 12.03

Our method 5.68 9.85 8.36
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Fig. 14. L2 error distributions. Note that our method produces smaller

errors on both testing datasets.
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Fig. 16. Comparison of training image selection schemes. When compared

with sensor placement based on mutual information, our cross-entropy based

method achieves better performance especially when the number of selected

images is small. The band shaded in light blue shows the standard deviations

of the L2 errors of our scheme.

method, and compared them with both naive random selection and
the sensor placement method used in [Bychkovsky et al. 2011]
(Figure 16). Interestingly, when the random selection scheme is
used, our neural network based solution achieves significantly better
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Input Image Ground Truth Our Result [Hwang et al. 2012]

Fig. 15. Visual comparison with [Hwang et al. 2012]. Left: Input image; Middle Left: groundtruth enhanced image by expert C; Middle Right: enhanced

image by our approach; Right: enhanced image by [Hwang et al. 2012].

Input Image Our Results Instagram

Fig. 17. Comparison with Instagram. Left: Input images (from MIT-Adobe

FiveK); Middle: our results; Right: results by Instagram. The top row shows

the “EarlyBird” effect, and the bottom row shows the “Nashville” effect. This

comparison indicates enhancement results by our trained color mappings are

close to the ground truth generated by Instagram.

accuracy than the Gaussian Process based method. This is primarily
due to the strong nonlinear regression power exhibited by deep
neural networks and the rich contextual feature representation built
from semantic analysis. When compared with sensor placement,
our cross-entropy based method also achieves better performance
especially when the number of selected images is small, which
further indicates our method is superior for learning enhancement
styles from a small number of training images.

8.2 Instagram Dataset

Instagram has become one of the most popular Apps on mobile
phones. In Instagram, hundreds of filters can be applied to achieve
different artistic color and tone effects. For example, the frequently
used “Lo-Fi” filter boosts contrast and brings out warm tones; the
“Rise” filter adds a golden glow while “Hudson” casts a cool light.
For each specific effect, we randomly chose 50 images from MIT-
Adobe FiveK, and let Instagram enhance each of them. Among the
resulting 50 pairs of images, half of them were used for training,
and the other half were for testing. We have verified whether images
adjusted by the trained color mapping functions are similar to the
ground truth produced by Instagram, which has the flavor of a
reverse engineering task. Our experiments indicate that Instagram
effects are relatively easy to learn using our method. Figure 17
shows the learning results for two popular effects.

8.3 User Studies

To perform a visual comparison between our results and those pro-
duced by [Hwang et al. 2012] in an objective way, we collected all
the images from the two datasets, “Random 250” and “High vari-

ance 50”, and randomly chose 50, including 10 indoor images and
40 outdoor images, to be used in our user study. For each of these
50 testing images, we also collected the groundtruth images and
the enhanced images produced with our method and [Hwang et al.
2012]. Then we invited 33 participants, including 12 females and 21
males, with ages ranging from 21 to 28. These participants had little
experience of using any professional photo adjustment tools but did
have experience with photo enhancement Apps such as “Instagram”.
The experiment was carried out by asking each participant to open
a static website using a prepared computer and a 24-inch monitor
with a 1920x1080 resolution. For each test image, we first show the
input and the groundtruth image pair to let the participants know
how the input image was enhanced by the photographer (retoucher
C). Then we show two enhanced images automatically generated
with our method and Hwang et al. in a random left/right layout
without disclosing which one was enhanced by our method. The
participant was asked to compare them with the ground truth and
vote on one of the following three choices: (a) “The left image was
enhanced better”, (b) “The right image was enhanced better”, and
(c) “Hard to choose”. In this way, we collected 33x50=1650 votes
distributed among the three choices. Figure 18 shows a comparison
of the voting results, from which we can see that enhanced images
produced by our method received most of the votes in both indoor
and outdoor categories. This comparison indicates that, from a vi-
sual perspective, our method can produce much better enhanced
images than [Hwang et al. 2012].

Our second user study tries to verify whether our method has
the capability to enhance a target effect in a statistically significant
manner. To conduct this study, we chose 30 test images from one
of the local effect datasets described in Section 7.1 as our test data.
We asked 20 participants from the first study to join our second
study. The interface was designed as follows. On top of the screen,
we show as the ground truth the enhanced image produced by the
photographer we hired, below which we show a pair of images with
the left being the original image and the right being the enhanced
image produced by our method. Then we asked the participant to
assign a score to both the input and enhanced images by considering
two criteria at the same time: (1) how closely this image conforms to
the impression given by the ground truth, (2) the visual quality of the
image. In other words, if the enhanced image looks visually pleasing
and closer to the ground truth, it should receive a higher score. For
the convenience of the participants, we simply discretized the range
of scores into 10 levels. If an image looks extremely close to the
ground truth, it should be scored 10. At the end, we collected two
sets of scores for the original and enhanced images, respectively. We
then conducted the paired T-test on the two sets of scores and found
that the two-tail p-value is p ≈ 10−10, and t = 1.96, indicating that
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Fig. 18. A comparison of user voting results between our approach and

[Hwang et al. 2012].

our approach has significantly enhanced the desired effect from a
statistical point of view.

9. CONCLUSIONS AND DISCUSSIONS

In this paper, we have demonstrated the effectiveness of deep learn-
ing in automatic photo adjustment. We cast this problem as learning
a highly nonlinear mapping function by taking the bundled features
as the input layer of a deep neural network. The bundled features
include a pixelwise descriptor, a global descriptor, as well as a novel
contextual descriptor which is built on top of scene parsing and
object detection. We have conducted extensive experiments on a
number of effects including both conventional and artistic ones. Our
experiments show that the proposed approach is able to effectively
learn computational models for automatic spatially-varying photo
adjustment.

Limitations. Our approach relies on both scene parsing and object
detection to build contextual features. However, in general, these are
still challenging problems in computer vision and pattern recogni-
tion. Mislabeling in the semantic map can propagate into contextual
features and adversely affect photo adjustment. Fig 19(a) shows one
such example for the Foreground Pop-Out effect. The ‘sea’ on the
right side is mistakenly labeled as ‘mountain’ and its saturation and
contrast are incorrectly increased. As both scene parsing and object
detection are rapidly developing areas, more accurate techniques
are emerging and could be adopted by our system to produce more
reliable semantic label maps.

Another failure case is shown in Fig 19(b), where the adjustments
in group C of the MIT-Adobe FiveK dataset are learnt. Our method
produces insufficient brightness adjustment, which leads to dimmer
result than the ground truth. In fact, the L2 distance between the
input image and the ground truth is 38.63, which is significantly
higher than the mean distance 17.40 of the dataset. As our DNN is
trained using all available training samples, individual adjustments
significantly deviating from the average adjustment for a semantic
object type are likely to be treated as outliers and cannot be correctly
learnt.

Our system employs a deep fully connected neural network to
regress spatially varying color transforms. There exist many design
choices in the DNN architecture, including the number of hidden
layers, the number of neurons in each layer, and the type of neural

Input image Our result Ground truth

(a)

(b)

Input image

Our result

Semantic label map

Ground truth

Fig. 19. Two failure cases. Top row: a failure case on Foreground Pop-Out

effect. In the semantic label map, an area with incorrect semantic labeling is

highlighted. Correspondingly, this area receives incorrect adjustments in our

result. Bottom row: another failure case in ”High Variance 50” test set of

MIT-Adobe FiveK dataset.

activation functions. They together give rise to a time-consuming
trial-and-error process in search of a suitable DNN architecture for
the given task. In addition, DNN behaves as a black box and it is
not completely clear how the network combines features at different
scales and predicts the final color transforms. In fact, interpreting the
internal representations of deep neural networks is still an ongoing
research topic [Zeiler and Fergus 2013; Szegedy et al. 2013].
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