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Abstract— Recent works highlighted the significant
potential of lung ultrasound (LUS) imaging in the man-
agement of subjects affected by COVID-19. In general,
the development of objective, fast, and accurate automatic
methods for LUS data evaluation is still at an early stage.
This is particularly true for COVID-19 diagnostic. In this
article, we propose an automatic and unsupervised method
for the detection and localization of the pleural line in
LUS data based on the hidden Markov model and Viterbi
Algorithm. The pleural line localization step is followed by
a supervised classification procedure based on the sup-
port vector machine (SVM). The classifier evaluates the
healthiness level of a patient and, if present, the severity
of the pathology, i.e., the score value for each image of
a given LUS acquisition. The experiments performed on
a variety of LUS data acquired in Italian hospitals with
both linear and convex probes highlight the effectiveness
of the proposed method. The average overall accuracy in
detecting the pleura is 84% and 94% for convex and linear
probes, respectively. The accuracy of the SVM classification
in correctly evaluating the severity of COVID-19 related
pleural line alterations is about 88% and 94% for convex
and linear probes, respectively. The results as well as the
visualization of the detected pleural line and the predicted
score chart, provide a significant support to medical staff
for further evaluating the patient condition.
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I. INTRODUCTION

G
IVEN its cost-effectiveness, portability, noninvasiveness,

and safety, ultrasonography represents an extremely use-

ful instrument to anatomically investigate the human body.

Soft tissues are indeed characterized by very similar speeds

of propagation of sound, hence allowing the exploitation of

imaging protocols that assume quasi-homogeneous velocity

(equal to 1540 m/s [1]) in the volume of interest. Furthermore,

since the acoustic impedance of human tissues are also very

similar [2], the different acoustic interfaces normally have a

high transmission coefficient, thereby allowing the propagation

of ultrasound waves.

Nevertheless, these assertions do not hold for the lung,

where the presence of air complicates ultrasound propaga-

tion. In particular, the high mismatch between the acoustic

impedance of intercostal tissues and the air contained in lungs

creates an acoustic interface (pleural line) whose reflection

coefficient tends to 1 [3], thus making the lung normally

impenetrable to ultrasound. Therefore, alternative diagnostic

strategies should be considered to examine this organ.

Nowadays, lung ultrasound (LUS) is based on the interpreta-

tion of imaging artifacts that appear in the reconstructed image

below the pleural line. When a lung is healthy, it behaves as

an almost perfect reflector and generates horizontal artifacts

(known as A-lines), which are reverberations that appear at

multiples of the distance between the probe and the pleural

line [4]. In contrast, the vertical artifacts called B-lines cor-

relate with various pathological conditions of the lung [5]–

[9] and are likely associated with the formation of acoustic

channels along the pleural surface [4]. Nonetheless, since

the B-line genesis remains unclear [4], LUS is generally

based on qualitative and subjective observations. However,

some quantitative approaches have been recently proposed

[10], [11], even if their use by clinicians is still limited [10],

[11]. In contrast, semiquantitative approaches, mainly based

on counting vertical artifacts in the image [12]–[14], are the

most largely used. Furthermore, the automatic detection of

characteristic LUS patterns, such as B-lines, is of growing

interest because it provides clinicians with real-time important

visual information [15]–[21].
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Specific LUS patterns have been recently proposed for grad-

ing the condition of patients affected by COVID-19 pneumonia

[22]–[24], which at present time affects more than 5 mil-

lion people with about 345 thousand deaths worldwide [25].

Patterns of interest are: 1) thickening of the pleural line

with pleural line irregularity; 2) various patterns, including

focal and multifocal vertical artifacts; and 3) white lung

consolidations. Other findings such as pleural effusions are

uncommon, while A-lines could be helpful in signaling a

recovery phase. In this work, we focus on the analysis of

the pleural line characteristics, which are all affected by the

significant patterns described above. Thickening of the pleural

line with pleural line irregularity clearly affects directly the

pleural line characteristics. The presence of vertical artifacts

also influences the pleural line characteristic, as these pat-

terns do originate from the pleural line itself. Ultimately,

consolidations de facto break the pleural line, and strongly

impact its intensity and continuity. Moreover, the presence

of A lines implies a well reflecting pleural line, and thus

correlate with a higher intensity of the pleural line. Of all the

described alterations, pleural effusions are probably the least

impactful on the pleural-line characteristics. In this context,

the automatic analysis of the pleural line is thus particularly

interesting. In fact, the pleural line appears completely contin-

uous in a healthy lung, and becomes gradually more disrupted

when the pathological condition worsen, as reported by the

four-level scoring system defined in [24]. The scores range

from 0 to 3, where score 0 means absence of pathological

signs, and score 3 represents a severe condition. While score 0

represents a continuous and regular pleural line with the

associated presence of A-lines, score 1 is associated with a

slightly disrupted pleural line with the presence of vertical

artifacts below the disruptions [24]. score 2 is associated with

a broken pleural line that presents small or large consolidated

areas (darker areas) below the breaking point, whereas score 3

denotes a completely permeable and discontinuous pleural line

with large white areas underneath it (with or without large

consolidations) [24].

Taking advantage of the abovementioned COVID-19 med-

ical scoring procedure, this article addresses the problem of

automatically and quickly performing the scoring task on LUS

data. Although artificial intelligence diagnostic systems based

on deep-learning [16], [18] might represent a straightforward

choice for the development of very high accuracy automatic

detection algorithms, their main drawback is that they require

a very large set of annotated data samples that are currently

not available for LUS data of COVID-19 patients.

Thus, it is required to define either unsupervised or

supervised techniques based on “shallow” machine learning

approaches that can properly operate with a limited number

of labeled samples. In this article, we propose a novel system

for the automatic estimation of COVID-19 severity (i.e.,

scoring) in LUS data by adapting and exploiting previous

work developed for detecting and characterizing subsurface

geological features in radar tomographic data [26], [27]. In

detail, the proposed system is composed of two main parts.

The first part is an unsupervised method for the automatic

detection and characterization of the pleural line. The method

is able to extract the pleural line geometric and intensity char-

acteristics for each pixel of a given LUS image by exploiting

a combination of a local scale hidden Markov model (HMM)

and the Viterbi algorithm (VA). The second part leveraging

on the information provided by the pleural line detection

method is a supervised classification technique that provides

the score for each image of the LUS video. It is based on

ad hoc quantitative metrics based on COVID-19 pulmonary

manifestations affecting the pleural line and the area below

it and then on a support vector machine (SVM) classifier

that performs the automatic scoring (i.e., COVID-19 severity

assessment) of each LUS image.

The overall strategy is tested on in vivo LUS data recently

acquired in several Italian hospitals. The data set is very het-

erogeneous and highlights different severity of the pathology.

Moreover, the data are acquired with different probes, namely

linear and convex, thus providing an excellent statistical vari-

ation of COVID-19 manifestations in LUS data.

This article is organized as follows. Section II illustrates the

proposed method. Section III reports the experimental results

on both automatic pleural line detection and scoring of LUS

data. Finally, Section IV addresses the conclusions of this

article.

II. PROPOSED METHOD

The proposed method analyzes, in an automatic way, LUS

videos to detect and characterize the pleural line, on the

basis of a scoring system specifically defined for LUS data

obtained on COVID-19 patients. This is done by processing

the video following an image-by-image approach. Note that in

this article we refer to individual frames as images. Let I =

{I1, . . . , Iv , . . . , IV } be the LUS video where Iv represents the

vth image (i.e., one video frame). Fig. 1 reports the block

scheme of the proposed system for the automatic analysis of

a generic image Iv . This system is composed of two main

parts: 1) automatic pleural line detection and 2) COVID-19

score classification. The first part aims at detecting on each

image Iv ∈ I the pleural line by first discriminating it from

the background and then reconstructing it by means of a

combination of HMM and the VA. In this way, we obtain

a set P = {p1, . . . , pv , . . . , pV } representing the geometric

location of the pleural line at each image. The second part uses

the pleural line pv to compute relevant features that describe

both geometric and radiometric properties of the pleura and

the area underneath it. A supervised SVM classifier is used

to assign a COVID-19 score to each image Iv ∈ I. The

result is a set of scores S = {s1, . . . , sv , . . . , sV }, where sv

is the score of image Iv . Set S is used to make a binary

decision on the positivity or negativity of the patient to

COVID-19 LUS patterns. Moreover, it can be represented

as a score histogram of the results for all the images in I

to provide a comprehensive patient overview of the score

severity. In Sections II-A and II-B, the details of the method

are presented.

A. Automatic Pleural Line Detection

To efficiently detect and characterize the pleural line in

LUS data, an automatic detection method should possess the
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Fig. 1. Block scheme of the proposed method applied to one image Iv of an LUS video.

Fig. 2. Visualization of a portion of the LUS image I (j, k) as a trellis. The
geometrical position and intensity of the pleural line p is retrieved by a
combination of an HMM and the VA.

following requirements: 1) it should discriminate between the

pleural line and other LUS data features such as the ribs;

2) it should efficiently detect the pleural line under noisy

conditions; and 3) it should be able to perform inference and

identify the pleural line position also when gaps occur in the

LUS image (e.g., rupture of the pleura).

To this extent, we exploit and readapt a method previously

developed for the characterization of radar tomographic data of

the subsurface stratigraphy of Mars [26]. The method identifies

all the linear or quasi-linear structures providing their intensity

and geometrical characteristics by combining a local scale

HMM and the VA.

In this framework, the LUS image of intensity Iv( j, k) with

size J × K can be seen as a trellis (see the example of Fig. 2

where an image portion is shown), where j = 1, 2, . . . , J and

k = 1, 2, . . . , K are the image indexes of rows and columns,

respectively. Note that to simplify the notation in the following

the image index v is omitted (i.e., Iv( j, k) = I ( j, k)). The

trellis properties are modeled by the HMM on which the

VA performs the inference step. Starting from seeding points

and based on the observed pixel intensities, the VA finds the

most probable path, across the image that corresponds to any

given linear structure present in the image (e.g., pleural line

and ribs).

The pleural line detection is preceded by a two preliminary

processing steps for image preparation and enhancement. The

image preparation step is also required for the SVM classifier

described in Section II-B, whereas the image enhancement

is only relevant for the pleural line detection. The main

purpose of the image enhancement processing is to reinforce

the relevant features present in an LUS image and reduce the

background noise thus easing unsupervised the pleural line

detection procedure.

1) Image Preparation: LUS data acquired by a convex probe

are mapped into a linear grid moving from a polar to a

Cartesian coordinate system. This is required for satisfying

the assumption that the structures to be detected are linear or

quasilinear. LUS data acquired by linear probes do not require

this step.

2) Image Enhancement: First, background noise in the

image I ( j, k) is smoothed out using a circular averaging filter

of radius W1. The radius value is chosen considering the size

of the relevant layering structures and the intensity of the

background noise. This is to reduce the noise while preserving

the shape and intensity values of the structures.

Second, relevant layering structures are separated from the

background of the image by means of a statistical method.

To this aim, we employ a Rician-based statistical model

that is often applied to multiplicative-noise distributed data,

especially in medical applications [28]–[30]. We model the

statistical distribution of an LUS image as a mixture of back-

ground and foreground components, where the background

is Rayleigh distributed (magnitude of 0-mean, diagonally

covariated Gaussian) and the foreground (layered structures)

is Rician distributed (magnitude of nonnull mean diagonally

covariated Gaussian). Unsupervised parameter estimation of

this model from data can be done as described in [31],

where an automatic iterative implementation of the expectation

maximization (EM) algorithm is devised specifically for the

Rayleigh–Rice mixture. After parameter estimation, the opti-

mal threshold T is obtained by means of maximum-a poste-

riori approach, as described in [31]. This is done following

the Bayes decision rule for minimum error that assigns each

pixel to the class (i.e., background or layering structure) that

maximizes the posterior conditional probability. Threshold T
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represents the value of intensity that separates the relevant

layering structure from the background noise. A pseudo-image

Î ( j, k) is composed by setting to zero background values (i.e.,

values below T ) and retaining foreground values (i.e., values

above T ), as shown in the example of Fig. 3.

Finally, a skeleton representation Ĩ ( j, k) of Î ( j, k) is

obtained by convolution with a rectangular function as fol-

lows [26]:

Ĩ ( j, k) = Î ( j, k) ∗ rect2δ( j) (1)

where (∗) is the convolution operator and δ the half-width of

the rectangular function rect2δ( j). The convolution described

in (1) is performed to avoid nonphysical irregularities in the

interface continuity along the k-direction. These irregularities

could arise from potential imprecisions due to noise in the

peak detected values of Î ( j, k). An example of the skeleton

image Ĩ ( j, k) in Fig. 5(c).

3) Pleural Line Detection With the VA: In the LUS data

context, we interpret the HMM parameters [26], [32] in the

following way. The time step corresponds to the column

variable k. The hidden states correspond to the candidate linear

structure in a particular row j of the LUS image for each

time step (see Fig. 2). The state transition matrix models the

probability that the structure is located in a certain row at a

given time step, given it was located at another particular row

at the previous time step. For each time step, the observation

vector is equal to the LUS image pixel intensities. Given

these assumptions, the method described in [26] is applied

to the LUS data in an image-by-image fashion of the standard

VA approach to reduce the computational complexity by

performing the inference on small image subblocks which are

then chained together to produce the final result for any given

tracked feature. Accordingly, multiple features identification

can be obtained in near real-time.

Given the enhanced LUS image Ĩ ( j, k), the linear structures

are sequentially tracked by the VA starting from intensity

values denoted as seeding points taken from Ĩ ( j, k) (i.e.,

values above threshold). For each time step, a number of states

equal to β around the seeding point is evaluated. Accordingly,

β also defines the maximum allowable variation, in terms of

index j , of the identified linear structure from one time step

to another. The method identifies a set of N linear structures

L = {l1, . . . , ln, . . . , lN } [see the example of Fig. 2 based on

a portion of I ( j, k)]. These objects in L could correspond

to any given actual linear structure present in the image.

Each structure ln is characterized by its: 1) geometric position

expressed as a set of couples ( j, k) (i.e., pixel wise detection)

within the LUS image and 2) corresponding intensity extracted

from I ( j, k).

With respect to [26], where all the identified structures are

equally important, here, we aim to identify only the pleural

line (see Fig. 2). To this purpose, ad hoc automatic detection

conditions are specified as following. Let us define as follows:

1) ηn the average deepness (in terms of row coordinates j ) of

the nth structure; 2) λn and 3 the average intensity of the

nth structure and the average intensity of all the structures

in L (i.e., 3 =
∑N

n=1 λn/N), respectively; and3) ζn and Z

the length of the nth structure and the average length of

all the structures, (i.e., Z =
∑N

n=1 ζn/N), respectively. First,

we identify a subset of linear structures L0 such that

L
0 = {ln | λn > 3andζn > Z} (2)

to select only those having length and intensity above the

average. Then, the pleural line p is automatically identified

within set L0 as the deepest one, that is

p = ln : ηn > ηx ∀lx ∈ L
0, ln 6= lx . (3)

In order to refine the estimate of geometric and intensity

characteristics of p, a second and finer iteration of the VA is

applied only to the surroundings of p. This is done directly on

the image I ( j, k) pleural portion, without enhancement, and

by applying a circular filter with radius W2 (instead of W1).

The detected pleural line p [see an example of detected

pleural line in Fig. 5(d)] is described with the graph of a

function ρ defined over the domain of the columns of each

image I . The function ρ(.) is defined as ρ : {ks, ke} →

{1, J }, where 1 ≤ ks < ke ≤ K and the general notation

{a, b} indicates the set of all integer numbers from a to b,

inclusive. The function ρ(.) associates a given column index

k to a certain row ρ(k). Therefore, the pair (ρ(k), k) therefore

identifies the pleural line in image coordinates. The condition

on the column index bounds ks and ke is as such because the

pleural line may not span the entire horizontal dimension of

the LUS image I ( j, k) for each given image.

By applying the proposed approach to all the images in I

the set of pleural lines P is obtained. The automatic deter-

mination of the position and intensity characteristics of the

pleural line described by p allows us to quantitatively analyze

its properties and to define a scoring procedure based on the

classification approach that will be described in Section III.

B. Classification-Based COVID-19 Scoring Procedure

The geometric and intensity properties of the detected

pleural line p and the underneath region (i.e., the area below

the pleural line) are further modeled by a set of features

(i.e., metrics) to be analyzed by the means of a supervised

classification approach. The classification goal is to provide

a prediction on the score (i.e., the diagnosis) for each image.

Indeed, the score value is directly connected to the presence

of structures linked to COVID-19 and its severity. In this

method, we consider the scoring system recalled in Section I

and described in [24], which consists of four possible scores s

ranging from 0 to 3. Therefore, each score value can be seen

as a class.

For each image, the feature vector F is defined as F =

[ f1, f2, f3, f4, f5, f6, f7, f8]. Features f1, f2, f3 are related

to the pleural line intensity, while features f4, f5, f6, f7, f8

extract relevant statistical information on the intensity of

I ( j, k) below the pleural line. The features f1, f2 are novel

and ad hoc defined for the COVID-19 scoring, while others

are adapted from previous works in the radar domain. Given

the above, we define each feature in F as follows.
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Fig. 3. Examples of results of different steps of the automatic pleural detection. (a) Original image Iv. (b) Masked image by EM-based thresholding
�Iv. (c) Enhanced LUS image�Iv. (d) Detected pleural line pv (black dotted line).

Fig. 4. Examples of results obtained by applying the circular filter with
radius W1 to a convex LUS image. (a) Unfiltered image. (b) W1 = 3.
(c) W1 = 5. (d) W1 = 8.

TABLE I

PARAMETERS OF THE PROPOSED METHOD FOR

LINEAR AND CONVEX PROBES

1) f1—Discontinuities in the Pleural Line: Let us define a

metric M1 representing the intensity of the pleural line for

each column normalized by the pleural line average intensity

TABLE II

PARAMETERS OF THE CLASSIFICATION: TOTAL NUMBER OF SAMPLES,

NUMBERS OF THE TRAINING AND TEST SAMPLES, AND BEST

PARAMETERS τ AND γ FOR THE RBF KERNEL

OF THE SVM MODELS

(across image columns)

M1(k) =
I (ρ(k), k)

∑ke

i=ks
I (ρ(i), i)/(ke − ks + 1)

. (4)

Large variations of M1(k) are potential indicators of pleural

line discontinuities. A steady value of the metric across k is

representative of healthy patients. Accordingly, the feature f1

is defined as the average value of M1, that is

f1 =

ke∑

k=ks

M1(k)

(ke − ks + 1)
. (5)

2) f2—Presence of Consolidations: The second feature quan-

tifies the average intensity of the portion of the image I ( j, k)

below the pleural line with respect to the intensity value of

the pleural line I (ρ(k), k) for each k. Let M2(k) be defined

as follows:

M2(k) =
1

I (ρ(k), k)

ρ(k)+1+K0∑

j=ρ(k)+1

I ( j, k)

K0

(6)

where the number of pixels under the pleural line considered

for integration is given by the constant K0. f2 is defined as
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Fig. 5. Example of the EM algorithm applied to an LUS image.

the average of the metric M2, that is

f2 =

ke∑

k=ks

M2(k)

(ke − ks + 1)
. (7)

The feature f2 quantifies phenomena such as white lungs

and consolidations. Hence, steep peaks of this metric indicate

consolidations in the lungs, while stable values are associated

with lower scores.

3) f3—Total Variation: This feature models strong variations

in the pleural line intensity I (ρ(k), k). It is defined as follows:

f3 =

ke−1∑

k=ks

|I (ρ(k + 1), k + 1) − I (ρ(k), k)|. (8)

High values of f3 correspond to strong variations in the pleural

line possibly indicating large pleural disruptions.

4) f4, f5, f6, f7, f8—Statistical Characterization of the Image

Area Below the Pleural Line: Let us denote as Ib =

I ( jb, k), jb ∈ [ρ(k), ρ(k) + 1 + K0], k ∈ [ks, ke] the matrix

containing the intensity values of I ( j, k) below the pleural

line. The area below the pleural line is of particular importance

as it contains several indicators of the pathological conditions

(e.g., A and B lines). Feature f4 describes the distribution

parameters that best model the intensity values in Ib. As a

preliminary step, Ib is fit to several distributions [27] to

identify the best-fitting distribution according to the value of

the root mean square error (RMSE) and the Kullback–Leibler

(KL) divergence between the original and the fit data. The

fitting is performed by applying a sliding window ψ to Ib in

both the horizontal and vertical directions. For each position of

ψ , the fitting is done by computing the statistical parameters of

the previously estimated best fitting distribution of the pixels

in the window. Accordingly, feature f4 includes the average

best-fit distribution parameters computed for each position

of ψ . The number of parameters depends on the best-fitting

distribution: the Rayleigh distribution has one parameter, while

the Gamma distribution has two parameters that defines the

shape and the rate (i.e., the inverse of the scale) of the function.

Features f5, f6, f7, and f8 are defined as the first four statisti-

cal moments (i.e., average, standard deviation, skewness, and

kurtosis) evaluated on the intensity values in Ib for each image.

High values of f6, f7, and f8 are related to pleural ruptures and

consolidations as they provide a quantification of the amount

TABLE III

ACCURACY IN THE UNSUPERVISED DETECTION OF THE PLEURAL LINE

(OVERALL AND SEPARATED BY SCORE) EVALUATED AT A SINGLE

IMAGE LEVEL

of scattered ultrasound energy that originated from below the

pleura as per definition of Ib. For each available LUS image

I ( j, k), the feature vector F is computed and then normalized.

Then, it is given as input to an SVM classifier. The choice

of an SVM over a deep learning approach is mainly related

to the size of the training set required by the two types of

classifiers. Indeed, a deep neural network requires a very

large number of annotated samples in the training data set

to estimate all the network parameters. This is not the case

for LUS data of COVID-19 patients which, due to the recent

nature of the virus, are to this date very scarce. A deep

network trained on such few data is likely to show poor

performance in terms of generalization capabilities, and thus,

accuracy. In contrast, SVM classifiers show good general-

ization properties even when trained with a limited number

of samples [33]. Furthermore, SVMs: 1) can solve strongly

nonlinear problems in the feature space; 2) provide a sparse

and unique solution to the learning problem; and 3) are fast in

the training and testing phases and require low memory usage.

To improve the discrimination performance and transform a

nonlinear problem in a linear one, nonlinear kernel functions

are applied to the input data. Here, we apply the Gaussian

radial basis function (RBF) kernel as it is the most widely

used one in general problems and has a better convergence

time than the polynomial one [34].

By applying the scoring procedure to all the images of a

video, a set of score S = {s1, . . . , sv , . . . , sV } is obtained.

III. EXPERIMENTAL RESULTS

A. Data Set Description

The proposed method has been tested on a subset of the

Italian COVID-19 LUS Database (ICLUS-DB) [35]. The data

have been acquired in multiple clinical structures (BresciaMed,

Brescia, Italy, Valle del Serchio General Hospital, Lucca,

Italy, Fondazione Policlinico Universitario A. Gemelli IRCCS,

Rome, Italy, Fondazione Policlinico Universitario San Matteo

IRCCS, Pavia, Italy, Tione General Hospital, Tione (TN),

Italy). Data have been acquired with different types of ultra-

sound scanners (Mindray DC-70 Exp, Esaote MyLabAlpha,

Toshiba Aplio XV, WiFi Ultrasound Probes - ATL) using

both linear and convex probes depending on the needs. Every

image in an LUS video has been assigned a score ranging

from 0 to 3 according to the severity of the illness, where 0

is a negative patient and 3 identifies a severe form of lung

surface alteration connected to COVID-19 [24]. To guarantee

objective annotation, the labeling process was stratified into

four independent levels: 1) score assigned image-by-image by
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Fig. 6. Examples of experimental results on pleural line automatic detection (the pleural line detected by the method is shown in red) and intensity
retrieval for linear and convex data. (a) Linear, score 0 (i.e., healthy patient). (b) Linear, score 1. (c) Linear, score 2. (d) Linear, score 3. (e) Convex,
score 0. (f) Convex, score 1. (g) Convex, score 2. (h) Convex, score 3.

TABLE IV

F ITTING PERFORMANCE OF THE RAYLEIGH, GAMMA, NAKAGAMI, AND

WEIBULL DISTRIBUTIONS TO THE LUS DATA

four master students with ultrasound background knowledge;

2) validation of the assigned scores performed by a PhD

student with expertise in LUS; 3) second level of validation

performed by a biomedical engineer with more than ten year

of experience in LUS; and 4) third level of validation and

agreement between clinicians with more than ten years of

experience in LUS. The exploited data set is composed by

29 cases (10 negative, 15 confirmed positive to COVID-19 by

swab technique, and four suspected positive to COVID-19), for

a total of 58 videos. 20 videos have been acquired by a linear

probe and 38 by a convex one. The data, for each acquisition,

are provided as a sequence of images with intensity coded in

the range [0–255]. The average number of processed images

per video is about 60.

Table I shows the experimental setup of the parameters

for the proposed method. Data acquired by either linear and

convex probes have different characteristics. Here, we defined

five groups as the data set that contains videos from linear and

convex probes from the hospitals in Brescia and Rome and

the data from the convex probe from the hospital in Lucca.

We analyzed these five groups of video and generated five

SVM models, called model BL , BC , RL , RC , and LC , where

the letters B , R, and L indicate the different hospitals (Brescia,

Rome, and Lucca) and the subscript L and C designates the

acquisition with the linear and convex probes, respectively.

For each model, the number of samples (i.e., feature vectors

F) denoted as �Le is uniformly extracted from the overall

available reference samples � and exploited for the learning

stage. The remaining samples �test = � − �Le are used

for predicting the score of unseen patients and testing the

generalization capability of the model. Here, we train the

classifier with 50% of the reference samples (see Table II).

To determine the parameters of the RBF kernel, we apply

a tenfold cross-validation considering the range of the para-

meters τ ∈ [10−2, 1010] and γ ∈ [10−2, 1010]. τ is the

regularization parameter that controls the tradeoff between

having a low training accuracy and a low testing accuracy,

hence, τ is related to the generalization capability of the

model. γ is the inverse of the standard deviation of the

Gaussian function, hence it indicates how much influence a

training sample has in the classification phase. Table II shows

the optimal kernel parameters τ and γ for the SVM models.

B. Automatic Pleural Line Detection

In this section, we discuss the results of the method

described in Section II-A for pleural line detection.

First, the preprocessing step is applied to the LUS image for

feature highlighting and background noise suppression. Fig. 4
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shows some examples of the results obtained by applying

the circular filter with different values of the radius W1.

Fig. 5 reports an example of probability density estimation

by the EM algorithm. The algorithm models the LUS image

intensity histogram as a mixture of two distributions, namely

Rayleigh for the background and Rice for the putative features.

An example of the results of the application of the threshold T

automatically derived by using the Bayes rule for minimum

error is shown in Fig. 5(b), where a comparison of the obtained

Îv with the original image Iv is provided [see Fig. 5(a)].

Fig. 5(c) reports the enhanced LUS image Ĩv obtained by

processing Îv in Fig. 5(b). The thresholding procedure clearly

highlights the image features. This reduces the background

noise and is beneficial for the automatic pleural line detection

performed with the VA.

The parameter settings for the actual pleural line detection

method are summarized in Table I. The state transition matrix

(see Section II-A) is assumed to be a triangular function

with size equal to β for each given hidden state [26]. Fig. 6

reports some examples of results of pleural line detection

for both convex (after projection) and linear probes and for

different scores. The figures display the detected pleural line,

superimposed on the LUS image, and its associated intensity.

The results highlight the method capability in accurately

detecting the pleural line geometric position also in the

presence of pleural fragmentation, which is typical of score 2

and 3. Indeed, the quantitative characterization of the pleural

line allows the determination of its subtle variations in both

intensity and size of the pleural gaps. score 0 patients (i.e.,

healthy patients) always show a stable value of the pleural

line intensity in both the linear and convex case [see Fig. 6(a)

and (e)].

Table III reports the method accuracy for different types of

probes and scores. The accuracy is computed as the number

of images where the pleura is correctly detected over the total

number of images for each analyzed acquisition (i.e., one

video). The number of test cases is reported in Section III-A.

The global accuracy (i.e., computed independently of the score

value) is 0.92 for the linear case and 0.84 for the convex one.

The method has a high accuracy for LUS images up to Score 2.

The accuracy decreases for Score 3. This is expected as for

some patients the severity of the pleural line anomaly (e.g.,

multiple large ruptures) is such that a meaningful detection

becomes problematic. It is worth mentioning that in a very

small number of experiments the proposed method was not

able to correctly detect the pleural line for any given image

of the video. The extremely poor image contrast resulted in a

wrong estimation of the threshold T by the EM as a result of

the impossibility of modeling the background and the features

intensity distribution as the sum of two separable distributions.

As a lesson learned, a proper setting of the contrast before

acquisition would be desirable for improving the algorithm

detection performance.

C. Classification-Based Scoring Procedure

This section describes the results of the automatic scoring

procedure based on the supervised SVM classification. First,

the results of the statistical analysis on the LUS images for

the determination of the relevant distribution model of the

intensity of the area Ib below the pleural line (see Section II-B)

as a function of the score are illustrated. Then, we present the

classification results based on the SVM.

The statistical analysis is performed by fitting the Gamma,

Nakagami, Rayleigh, and Weibull distributions to the distri-

bution of the intensities in Ib (i.e., the portion of I ( j, k)

below the pleural line). The KL distance and the RMSE are

exploited as performance metrics for evaluating the quality

of the fit. Table IV shows the results of this analysis. The

Gamma distribution shows better performance than the other

distributions for all the scores in terms of both the KL distance

and the RMSE. Hence, for the computation of the feature f4,

we assume that Ib is Gamma-distributed.

For each image of each video, we extracted the feature

vector F as per definition in Section II-B. As an example,

Fig. 7 shows the values of the metrics M1 and M2 (exploited

for defining f1 and f2) for the linear and convex probe

data in Fig. 6. When the values of M1 and M2 are stable,

the score associated with the image is 0. On the contrary,

drops and peaks in the features indicate images with a higher

score. While not explicitly exploited in this article, it is also

interesting to note that a given sequence of peaks or drops in

the metrics can be used for evaluating the size of the pleural

line anomaly.

Table V reports the SVM classification performance for

each model in terms of the sensitivity (i.e., true positive),

specificity (i.e., true negative), and overall accuracy (OA)

for each score. The general effectiveness of the classification

method is indicated by the high values of the sensitivity and

the specificity of all the SVM models. Furthermore, the results

show that the accuracies of correctly assigning the different

scores are in the range of 80%–95%.

To better understand the potential of the proposed approach,

we tested the method with the data of three patients, here

called Patient B6, Patient R1, and Patient L2, all screened

three times. Patient B6 is patient 6 in the Brescia data set and

has been screened two times by a convex probe and one time

with the linear probe. Patient R1 is patient number 1 of the

Rome data set and has been screened one time by the convex

probe and two times by the linear probe. Finally, Patient

L2 is patient number 2 of the Lucca data set. Patient L2 was

imaged with a convex probe. Table VI shows the OA for each

video and the OA for each patient. Each video is processed

and classified with the SVM model defined considering the

specific probe and hospital. The overall video accuracy is

defined as the average of the accuracies of each score in the

video. By averaging the accuracies for the videos of the same

patient, we can retrieve the OA for that patient. Fig. 8 shows

the examples of the output of the scoring procedure based on

the SVM classifier. The score is represented by the color of

the square box around the image.

The results for each patient can be further analyzed by

evaluating the distribution of the predicted scores for each

video (i.e., histogram of the set S). The first three columns

of Fig. 9 report the distribution of the scores for the three

patients and for each video separately. The predicted score and
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Fig. 7. Values of M1 and M2 for the LUS data of Fig. 6. (a) Linear, score 0 (i.e., healthy patient). (b) Linear, score 1. (c) Linear, score 2. (d) Linear,
score 3. (e) Convex, score 0. (f) Convex, score 1. (g) Convex, score 2. (h) Convex, score 3. Red dots indicate potential anomalies. M1 relates to
pleural line intensity, while M2 provides information by comparing the pleural line intensity to the intensity of the image area below it.

TABLE V

CLASSIFICATION ACCURACY FOR EACH THE MODEL—SENSITIVITY,

SPECIFICITY, AND OA. B, R, AND L STANDS FOR BRESCIA, ROME,

AND LUCCA DATA, RESPECTIVELY, WHILE THE PEDIX L OR C

INDICATES EITHER LINEAR OR CONVEX DATA

reference score are reported in blue and in red, respectively.

The last column of Fig. 9 reports the histograms of the scoring

as a result of the joint analysis of the three videos for each

patient. The individual distribution of the predicted scores (i.e.,

one video) is a potential indicator of the average health status

of the patient in the anatomical region where the video has

TABLE VI

OA OF THE PREDICTION OF THE SCORE FOR THE ANALYSIS OF THE

VIDEOS OF PATIENTS B6, R1, AND L2

Fig. 8. Examples of the scoring procedure based on the SVM classifier.
(a)–(d) Data are acquired by the linear probe. (e)–(h) Data are acquired
by the convex probe. The columns and the color of the box around the
image indicates the predicted score value. Colors green, yellow, orange,
and red correspond to score 0, 1, 2, and 3, respectively.

been acquired. The sum of the scoring distribution indicates

the overall health status with respect to COVID-19 LUS

manifestations of the patient.
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Fig. 9. Scoring histograms of the frame of each video for patients (a) B6,
(b) R1, and (c) L2. The first three columns show the distribution of the
score values for each video. The last column shows the histogram of the
scoring evaluated over three videos. Red bars represent the reference
data, while the predicted labels are in blue and green.

IV. CONCLUSION

LUS imaging is a very promising technology for identi-

fying and monitoring patients affected by COVID-19. The

development of detection methods and techniques capable to

automatically perform a fast and accurate diagnosis, without

requiring the assistance of a trained expert, is still at an early

stage. In this article, we have proposed a method for: 1) an

unsupervised and automatic detection of the pleural line and

the extraction of its geometric and intensity characteristics

and 2) an automatic and supervised classification of each

LUS image in terms of score (i.e., severity of COVID-19

pulmonary manifestation). For the task of the pleural line

detection, we exploited a method based on an HMM and the

VA. The pleural line and its underneath region information

extracted by the method are then modeled by ad hoc metrics

(i.e., features) that are given as input to the automatic scoring

classification procedure.

The proposed scoring is based on a supervised SVM clas-

sifier that is applied to each image after the extraction of a

proper feature vector.

The proposed method has been tested on the ICLUS-DB.

The data set is very heterogeneous being acquired in different

hospitals (thus different operators) and with different probes

(i.e., linear and convex). The data are accompanied by the

scoring information of each image that we exploit as reference

data set. The experimental results show that the pleural line

detector can accurately retrieve the pleural line characteristics

(i.e., pixel by pixel geometric position and associated intensity)

in an image with an OA of 92% and 84% for linear probes

and convex probes, respectively. The SVM classifier provides

an image-by-image evaluation of COVID-19 related LUS

patterns, accompanied by the predicted score value with an

average accuracy of 94% and 88% for linear and convex

probes, respectively. The scoring results can both be visually

displayed on each image and also provided in a histogram

indicating the distribution of the predicted scores for the entire

set of acquisitions of a patient in a video for further medical

evaluation.

As a final remark, the proposed method has the potential for

real-time implementation given the relatively low complexity

of the proposed algorithms. The method has been implemented

in MATLAB environment without any particular optimization.

For each image, the algorithm identifies the pleural line in less

than 2 s on a Dell XPS 9550 laptop. The algorithm for the

scoring was tested on an ASUS F555UJ-XX006T laptop. The

feature extraction on a frame and the testing phase of a sample

take each less than 2 s, while the learning phase time depends

on the number of samples. In our case, the learning time was

in the range of few hours. However, this is an offline phase

that is required only in the setup of the method. This opens

the possibility of implementing the method directly on the

ultrasound scanners, therefore, providing the user with both

tools that support a postacquisition diagnosis and also a stream

of enhanced information during the acquisition process.

As future work, we plan to extend the validation of the

proposed method and the application to automatically identify

other pulmonary diseases based on their appearance in LUS

data.

REFERENCES

[1] T. L. Szabo, “Introduction,” in Diagnostic Ultrasound Imaging:

Inside Out, T. L. Szabo, Ed. Boston, MA, USA: Academic,
2014, pp. 1–37. [Online]. Available: ht.tp://ww .w.sciencedirect.com/
science/article/pii/B978012396487800001X

[2] T. L. Szabo, “Appendix b,” in Diagnostic Ultrasound Imaging:

Inside Out, T. L. Szabo, Ed. Boston, Ma, USA: Academic, 2014,
pp. 785–786. [Online]. Available: ht.tp://ww .w.sciencedirect.com/science/
article/pii/B9780123964878000306

[3] M. Demi, R. Prediletto, G. Soldati, and L. Demi, “Physical mechanisms
providing clinical information from ultrasound lung images: Hypotheses
and early confirmations,” IEEE Trans. Ultrason., Ferroelectr., Freq.

Control, vol. 67, no. 3, pp. 612–623, Mar. 2020.
[4] G. Soldati, M. Demi, A. Smargiassi, R. Inchingolo, and L. Demi, “The

role of ultrasound lung artifacts in the diagnosis of respiratory diseases,”
Expert Rev. Respiratory Med., vol. 13, no. 2, pp. 163–172, Feb. 2019,
doi: 10.1080/17476348.2019.1565997.

[5] D. Lichtenstein, G. Méziäre, P. Biderman, A. Gepner, and O. Barré, “The
comet-tail artifact,” Amer. J. Respiratory Crit. Care Med., vol. 156, no. 5,
pp. 1640–1646, Nov. 1997, doi: 10.1164/ajrccm.156.5.96-07096.

[6] R. Copetti, G. Soldati, and P. Copetti, “Chest sonography: A useful
tool to differentiate acute cardiogenic pulmonary edema from acute
respiratory distress syndrome,” Cardiovascular Ultrasound, vol. 6, no. 1,
p. 16, Apr. 2008, doi: 10.1186/1476-7120-6-16.

[7] E. Picano and P. A. Pellikka, “Ultrasound of extravascular lung water:
A new standard for pulmonary congestion,” Eur. Heart J., vol. 37, no. 27,
pp. 2097–2104, Jul. 2016, doi: 10.1093/eurheartj/ehw164.

[8] L. Gargani et al., “Ultrasound lung comets in systemic sclerosis: A chest
sonography hallmark of pulmonary interstitial fibrosis,” Rheumatology,
vol. 48, no. 11, pp. 1382–1387, Nov. 2009, doi: 10.1093/rheumatol-
ogy/kep263.

[9] G. Soldati, M. Demi, R. Inchingolo, A. Smargiassi, and L. Demi,
“On the physical basis of pulmonary sonographic interstitial syndrome,”
J. Ultrasound Med., vol. 35, no. 10, pp. 2075–2086, Oct. 2016.

[10] L. Demi, T. Egan, and M. Muller, “Lung ultrasound imaging,
a technical review,” Appl. Sci., vol. 10, no. 2, p. 462, Jan. 2020,
doi: 10.3390/app10020462.

http://dx.doi.org/10.1080/17476348.2019.1565997
http://dx.doi.org/10.1164/ajrccm.156.5.96-07096
http://dx.doi.org/10.1186/1476-7120-6-16
http://dx.doi.org/10.1093/eurheartj/ehw164
http://dx.doi.org/10.3390/app10020462


CARRER et al.: AUTOMATIC PLEURAL LINE EXTRACTION AND COVID-19 SCORING FROM LUNG ULTRASOUND DATA 2217

[11] X. Zhang et al., “Lung ultrasound surface wave elastography: A pilot
clinical study,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control,
vol. 64, no. 9, pp. 1298–1304, Sep. 2017.

[12] F. Corradi et al., “Computer-aided quantitative ultrasonography for
detection of pulmonary edema in mechanically ventilated cardiac
surgery patients,” Chest, vol. 150, no. 3, pp. 640–651, Sep. 2016,
doi: 10.1016/j.chest.2016.04.013.

[13] L. Gargani, “Lung ultrasound: A new tool for the cardiologist,” Cardio-

vascular Ultrasound, vol. 9, no. 1, Dec. 2011, doi: 10.1186/1476-7120-
9-6.

[14] L. Gargani, “Ultrasound of the lungs: More than a room with a view,”
Heart Failure Clinics, vol. 15, no. 2, pp. 297–303, 2019, imaging
the Failing Heart. [Online]. Available: ht.tp://ww .w.sciencedirect.com/
science/article/pii/S1551713618301223

[15] R. Moshavegh, K. L. Hansen, H. Møller-Sørensen, M. B. Nielsen,
and J. A. Jensen, “Automatic detection of b-lines in in vivo lung
ultrasound,” IEEE Trans. Ultrason., Ferroelectr., Freq. control, vol. 66,
no. 2, pp. 309–317, Feb. 2018.

[16] R. J. G. van Sloun and L. Demi, “Localizing B-Lines in lung ultra-
sonography by weakly supervised deep learning, in-vivo results,” IEEE

J. Biomed. Health Informat., vol. 24, no. 4, pp. 957–964, Apr. 2020.
[17] M. Correa et al., “Automatic classification of pediatric pneumonia based

on lung ultrasound pattern recognition,” PLoS ONE, vol. 13, no. 12,
Dec. 2018, Art. no. e0206410.

[18] S. Roy et al., “Deep learning for classification and localization of
COVID-19 markers in point-of-care lung ultrasound,” IEEE Trans. Med.

Imag., early access, May 14, 2020, doi: 10.1109/TMI.2020.2994459.
[19] N. Anantrasirichai, W. Hayes, M. Allinovi, D. Bull, and A. Achim,

“Line detection as an inverse problem: Application to lung ultrasound
imaging,” IEEE Trans. Med. Imag., vol. 36, no. 10, pp. 2045–2056,
Oct. 2017.

[20] S. Kulhare et al., “Ultrasound-based detection of lung abnormalities
using single shot detection convolutional neural networks,” in Proc.

Simul., Image Process., Ultrasound Syst. Assist. Diagnosis Navigat.

Cham, Switzerland: Springer, 2018, pp. 65–73.
[21] F. Mojoli, B. Bouhemad, S. Mongodi, and D. Lichtenstein, “Lung

ultrasound for critically ill patients,” Amer. J. Respiratory Crit. Care

Med., vol. 199, no. 6, pp. 701–714, 2019.
[22] Q.-Y. Peng, X.-T. Wang, and L.-N. Zhang, “Findings of lung ultrasonog-

raphy of novel corona virus pneumonia during the 2019–2020 epidemic,”
Intensive Care Med., vol. 46, no. 5, pp. 849–850, May 2020.

[23] G. Soldati et al., “Is there a role for lung ultrasound during the
COVID-19 pandemic?” J. Ultrasound Med., Off. J. Amer. Inst. Ultra-

sound Med., vol. 39, pp. 1459–1462, Mar. 2020.
[24] G. Soldati et al., “Proposal for international standardization of the

use of lung ultrasound for patients with COVID-19: A simple, quan-
titative, reproducible method,” J. Ultrasound Med., vol. 39, no. 7,
pp. 1413–1419, Jul. 2020.

[25] W. H. Organization. (2020). Coronavirus Disease 2019 (COVID-19):

Situation Report–95. ht.tps://ww .w.who.int/docs/default-source/
coronaviruse/situation-reports/%20200424-sitrep-95-COVID-19.pdf

[26] L. Carrer and L. Bruzzone, “Automatic enhancement and detection of
layering in radar sounder data based on a local scale hidden Markov
model and the viterbi algorithm,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 2, pp. 962–977, Feb. 2017.

[27] A.-M. Ilisei and L. Bruzzone, “A system for the automatic classification
of ice sheet subsurface targets in radar sounder data,” IEEE Trans.

Geosci. Remote Sens., vol. 53, no. 6, pp. 3260–3277, Jun. 2015.
[28] O. T. Karlsen, R. Verhagen, and W. M. M. J. Bovée, “Parameter

estimation from rician-distributed data sets using a maximum likelihood
estimator: Application to t1 and perfusion measurements,” Magn. Reson.

Med., vol. 41, no. 3, pp. 614–623, Mar. 1999.
[29] J. Sijbers, A. J. den Dekker, J. Van Audekerke, M. Verhoye, and

D. Van Dyck, “Estimation of the noise in magnitude MR images,” Magn.

Reson. Imag., vol. 16, no. 1, pp. 87–90, Jan. 1998.
[30] R. Maitra and D. Faden, “Noise estimation in magnitude MR datasets,”

IEEE Trans. Med. Imag., vol. 28, no. 10, pp. 1615–1622, Oct. 2009.
[31] M. Zanetti, F. Bovolo, and L. Bruzzone, “Rayleigh-rice mixture para-

meter estimation via EM algorithm for change detection in multispectral
images,” IEEE Trans. Image Process., vol. 24, no. 12, pp. 5004–5016,
Dec. 2015.

[32] L. R. Rabiner, “A tutorial on hidden Markov models and selected appli-
cations in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257–286,
Dec. 1989.

[33] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote
sensing images with support vector machines,” IEEE Trans. Geosci.
Remote Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

[34] A. Ben-Hur and J. Weston, “A user’s guide to support vector machines,”
in Data Mining Techniques for the Life Sciences. Totowa, NJ, USA:
Springer, 2010, pp. 223–239.

[35] (Mar. 2020). Italian COVID-19 Lung Ultrasound Data Base (ICLUS-

DB). [Online]. Available: ht.tps://covid19.disi.unitn.it/iclusdb/login

http://dx.doi.org/10.1016/j.chest.2016.04.013
http://dx.doi.org/10.1186/1476-7120-9-6
http://dx.doi.org/10.1186/1476-7120-9-6
http://dx.doi.org/10.1109/TMI.2020.2994459

