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Automatic polynomial wavelet regression
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In Oh, Naveau and Lee (2001) a simple method is proposed for reducing the bias at the boundaries
for wavelet thresholding regression. The idea is to model the regression function as a sum of wavelet
basis functions and a low-order polynomial. The latter is expected to account for the boundary
problem. Practical implementation of this method requires the choice of the order of the low-order
polynomial, as well as the wavelet thresholding value. This paper proposes two automatic methods for
making such choices. Finite sample performances of these two methods are evaluated via numerical
experiments.
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1. Introduction

Suppose a set of noisy data satisfying the following is observed:
yi = f (i/n) + εi , i = 1, . . . , n = 2J , where the unknown
regression function f is assumed to be square integrable on the
interval [0, 1], and the errors εi ’s are independent and identical
zero-mean normal random variables. The goal is, given the yi ’s,
to estimate f using wavelet techniques.

When performing wavelet regression, it is customary to im-
pose on f some boundary assumptions, such as periodicity
or symmetry. However, such assumptions may not always be
reasonable. To overcome this problem, it is suggested by Oh,
Naveau and Lee (2001) to decompose f as the sum of a
set of wavelet basis functions, fW , plus a low-order polyno-
mial, fP . That is, f = fW + fP . The hope is that, once fP

is removed from f , the remaining portion fW can be well
estimated using wavelet regression with say periodic bound-
ary assumption. In practice this approach requires the choos-
ing of the polynomial order for fP and the wavelet thresh-
olding value for fW . The main contribution of this article is
the proposals of two automatic methods for selecting such
values.

The rest of this article is organized as follows. Background
material is provided in Section 2. Section 3 presents the two pro-
posed methods and Section 4 reports simulation results. Con-
clusion is offered in Section 5.

2. Background: Polynomial wavelet regression

Let φ and ψ be a father and a mother wavelet respectively. Any
square integrable function f admits the following expansion
(e.g., Daubechies 1992, p. 130):

f (x) =
∞∑

k=−∞
c0,kφk(x) +

∞∑
j=0

∞∑
k=−∞

d j,kψ j,k(x), (1)

where φk(x) = 21/2φ(2x − k) and ψ j,k(x) = 2 j/2ψ(2 j x − k).
Here the scaling and detail coefficients are respectively equal
to c0,k = ∫ ∞

−∞ f (x)φk(x) dx and d j,k = ∫ ∞
−∞ f (x)ψ j,k(x) dx .

Equation (1) suggests the following classical nonlinear wavelet
regression estimator:

ˆf W (x) =
2J −1∑
k=1

ĉ0,kφk(x) +
J−1∑
j=0

2 j −1∑
k=0

d̂ S
j,kψ j,k(x), (2)

where ĉ0,k = ∑
i yiφk(i/n) and d̂ j,k = ∑

i yiψ j,k(i/n) are re-
spectively the empirical scaling and detail coefficients, and
d̂ S

j,k = sgn(d̂ j,k) max(0, |d̂ j,k |−λ) denotes the soft-thresholded
wavelet coefficients with thresholding value λ. Sometimes the
soft-thresholded coefficients d̂ S

j,k are replaced by the hard-
thresholded coefficients d̂ H

j,k = d̂ j,k I{|d̂ j,k |>λ} (see, for examples,
Donoho and Johnstone (1994, 1995).
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To reduce the boundary effects present in ˆf W (x), the fol-
lowing so-called polynomial wavelet regression estimator was
proposed by Oh, Naveau and Lee (2001):

ˆf PW (x) = ˆf P (x) + ˆf W (x) =
d∑

l=0

α̂l x
l

+
2J −1∑
k=1

ĉ0,kφk(x) +
J−1∑
j=0

2 j −1∑
k=0

d̂ S
j,kψ j,k(x), (3)

where ˆf P (x) = ∑d
l=0 α̂l xl is a polynomial estimator of degree

d. Thus, the use of ˆf PW (x) requires the choosing of d as well as
the thresholding value λ. With appropriately chosen d and λ, it
is demonstrated in Oh, Naveau and Lee (2001), both analytically
and empirically, that ˆf PW (x) is superior to ˆf W (x). The goal of
this article is to propose two automatic methods for choosing
both d and λ. Notice that no such automatic methods are pro-
posed by Oh, Naveau and Lee (2001). Also notice that the best
choice of λ for the ˆf W in (3) may be different from the best λ

for the ˆf W in (2).
It is desirable to maintain the orthogonality between the set of

polynomial basis {x, . . . , xd} and the wavelet basis. This means
that the equations

∫
xlψ(x) dx = ∫

xlφ(x) dx = 0 have to be
satisfied for l = 1, . . . , d . Wavelets with such properties were
constructed by Daubechies (1992) and named coiflets. Hence,
the use of a coiflet with at least d + 1 vanishing moments in (3)
implies that the polynomial regression term is orthogonal to the
wavelet regression term. Due to this orthogonality property, Oh,
Naveau and Lee (2001) suggest estimating the parameters in (3)
by first regressing the observations {yi } on the set {x, . . . , xd}
for fixed d and then applying wavelet regression to the residuals
of the polynomial regression.

3. The proposed selection methods

This section describes two automatic methods for selecting d
and λ.

3.1. Stein’s unbiased risk estimation

The first method is a two-step procedure for choosing the values
of d and λ that aim to minimize the risk between f and ˆf PW ,
defined as E‖ f − ˆf PW ‖2. First a criterion similar to Mallows’
C p (Mallows 1973) is used to choose the d that aims to minimize
the risk between f and ˆf P , where ˆf P is the polynomial estima-
tor computed by regressing yi ’s on x, . . . , xd . Then the SURE
wavelet regression procedure of Donoho and Johnstone (1995)
is applied to choose the λ that aims to minimize the risk between
f − ˆf P and ˆf W , where ˆf W is obtained by applying ordinary
wavelet regression to the polynomial residuals yi − ˆf P (i/n).

For the selection of d , we suggest using the maximizer of r (d)

r (d) =
d∑

l=0

α̂2
l − 2σ̂ 2d

n
, d = 0, 1, . . . ,

where σ̂ 2 is any consistent estimator of σ 2. In this article, the
simplest MAD is used. It can be shown that maximizing r (d) is
equivalent to minimizing an approximately unbiased estimator
of the risk between f and ˆf P .

Once d and hence ˆf P is obtained, the SURE procedure
of Donoho and Johnstone (1995) is applied to the residuals
yi − ˆf P (i/n) to obtain ˆf W . Then the final polynomial wavelet
regression estimate is obtained as ˆf PW = ˆf P + ˆf W .

3.2. Bayesian approach

The second method adopts a Bayesian framework for choos-
ing d and λ. Similar to before, it is a two-step procedure. First
the Bayesian Information Criterion (BIC, Schwarz 1978) is
employed to select d. Then the empirical Bayes thresholding
method of Johnstone and Silverman (2003) is applied to the
polynomial residuals.

For the selection of d, we choose the d that minimizes the
following criterion:

BIC(d) = n log

[
1

n

{
n∑

i=1

yi − ˆf P

(
i

n

)}2]
+ d log n.

It can be shown that choosing the model with the minimum
BIC value is approximately equivalent to choosing the model
with the largest posterior probability (e.g., Haste, Tibshirani and
Friedman 2002).

Once d is selected, the empirical Bayes wavelet thresholding
procedure of Johnstone and Silverman (2003) is applied to the
residuals yi − ˆf P (i/n) to obtain ˆf W . The final estimate ˆf PW is
then obtained as ˆf P + ˆf W .

3.3. Other approaches

We have also studied other approaches for choosing d and λ.
These include cross-validation (Nason 1996) and the minimum
description length principle (e.g., see Lee 2002 and references
given therein). However, the practical performances of these
approaches are inferior to the Bayesian approach, and hence we
omit their descriptions.

4. Simulation results

4.1. Setup

This section investigates the relative practical performances of
four wavelet regression methods. The four wavelet regression
methods tested were:

1. psure: the polynomial SURE procedure described in
Section 3.1;

2. osure: the original SURE procedure developed by Donoho
and Johnstone (1995); i.e., no polynomial boundary treat-
ment is present.
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Table 1. Formulae of the test functions. All have the same domain
x ∈ [0, 1]

Test function Formula

1 blocks of Donoho and Johnstone (1994)
2 doppler of Donoho and Johnstone (1994)
3 7x + blocks
4 x + doppler
5 7(x − 0.8)2 + blocks
6 3(x − 0.6)2 + doppler

3. pebayes: the polynomial empirical Bayes procedure de-
scribed in Section 3.2; and

4. oebayes: the original empirical Bayes procedure developed
by Johnstone and Silverman (2003); i.e., no polynomial
boundary treatment is present.

Throughout the whole simulation a maximal value of d = 3 was
used for ˆf P , while a coiflet with 5 vanishing moments and the
periodic boundary assumption were used for ˆf W . Note that the
orthogonality between the polynomial basis {x, . . . , xd} and the
wavelet basis is preserved.

Altogether 6 test functions were used. They are listed in
Table 1 and are displayed in Fig. 1. Test Functions 1 and 2
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Fig. 1. Plots of test functions used in the simulation

are the classical wavelet testing functions Blocks and Doppler
advocated by Donoho and Johnstone (1994). Test Functions 3
to 6 are constructed by adding either a linear or quadratic
trend to these two functions. Notice that for Test Functions 1
and 2, it is reasonable to assume periodic boundary conditions,
while for Test Functions 3 to 6 boundary adjustment is strongly
preferred.

The signal-to-noise ratio (snr) is defined as: snr = ‖ f ‖/σ
(the same as Donoho and Johnstone 1994), and three levels
were used: high snr = 7, medium snr = 5 and low snr = 3.
Also, three different sample sizes were used: n = 512, 1024 and
2048.

For each combination of test function, snr and n, 100 sets
of noisy observations were simulated. For each simulated data
set, the above four wavelet regression methods were applied
to estimate the test function. Figure 2 displays, for those cases
associated with medium snr, boxplots of the values of the mean-
squared-errors (MSE) for all estimated regression functions.
Here MSE of a ˆf is defined as MSE( ˆf ) = n−1

∑n
i=1{ f (i/n) −

ˆf (i/n)}2. Paired Wilcoxon tests were also applied to test if the
difference between the median MSE( ˆf ) values of two wavelet
methods is significant or not. The significance level used was
1.25%, and the relative rankings, with 1 being the best, are
listed in Table 2. Ranking the methods in this manner pro-
vides an indicator of the relative merits of the methods (e.g.,
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Table 2. Pairwise Wilcoxon rankings, for medium snr, for the four wavelet regression procedures tested

n = 512 n = 1024 n = 2048

Test function psure osure pebayes oebayes psure osure pebayes oebayes psure osure pebayes oebayes

1 3 4 1.5 1.5 3 4 1.5 1.5 3 4 1.5 1.5
2 3 4 2 1 3 4 2 1 3 4 2 1
3 3 4 1 2 3 4 1 2 3 4 1 2
4 3 4 1 2 3 4 1 2 3 4 1 2
5 3 4 1 2 3 4 1 2 3 4 1 2
6 3 4 1 2 3 4 1 2 3 4 1 2
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Fig. 2. Boxplots of MSE( ˆf ) values, medium snr

see Wand 2000). Boxplots of MSE( ˆf ) values and Wilcoxon
test rankings for low and high snrs are similar, and hence are
omitted.

4.2. Results

The grand averaged Wilcoxon rankings taken over all combina-
tions of snrs and sample sizes are 3.01, 3.98, 1.25 and 1.76, re-
spectively, for psure, osure, pebayes and oebayes. We have also
computed similar grand averaged rankings for the MSE of those

observations that are in the boundary region [0, 0.05] ∪ [0.95, 1]
of the test functions. These rankings are, in the same order as
before, 2.26, 3.58, 1.76 and 2.40.

From the simulation results, the following empirical obser-
vations can be made: (i) No method performed uniformly the
best, (ii) pebayes seems to be superior to oebayes, while psure
is superior to osure, and, (iii) psure seems to perform better than
oebayes at the boundary. Overall these simulation results seem
to suggest that it is preferable to incorporate the polynomial basis
to the wavelet regression problem.
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5. Conclusion

In this article the problem of automatic polynomial wavelet re-
gression was considered. Two automatic methods were proposed
for choosing the free parameters involved. Results from a simu-
lation study show that automatic polynomial wavelet regression
is a promising alternative to ordinary wavelet regression.
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