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Abstract

Predicting when a person might be frustrated can provide an intelligent system with important information about when to initiate

interaction. For example, an automated Learning Companion or Intelligent Tutoring System might use this information to intervene,

providing support to the learner who is likely to otherwise quit, while leaving engaged learners free to discover things without

interruption. This paper presents the first automated method that assesses, using multiple channels of affect-related information, whether

a learner is about to click on a button saying ‘‘I’m frustrated.’’ The new method was tested on data gathered from 24 participants using

an automated Learning Companion. Their indication of frustration was automatically predicted from the collected data with 79%

accuracy ðchance ¼ 58%Þ. The new assessment method is based on Gaussian process classification and Bayesian inference. Its

performance suggests that non-verbal channels carrying affective cues can help provide important information to a system for

formulating a more intelligent response.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Expert human teachers are adept at recognizing and
addressing the emotional state of learners and, based upon
that observation, taking some action that positively
impacts learning. For example, a savvy human tutor can
discriminate whether a learner is making mistakes and does
not need intervention (perhaps the learner is content to fail
till he or she succeeds without aid) or whether the learner is
growing increasingly frustrated with making mistakes, and
is likely to quit. We would like to equip automated tutors
and Learning Companions with similar perceptual abilities,
so that they can be smart about when to intervene and
when to leave learners to explore (and make mistakes)
without being interrupted. Our hypothesis is that affective
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state plays a key role in discriminating these situations, and
that looking at just the learner’s performance on the task,
e.g., characterizing mistakes, is inadequate. Thus, we
examine if channels of information that carry affective
cues can provide useful information to the system for
identifying frustration, so that the system might ultimately
formulate a more respectful response.
An Intelligent Tutoring System that responds appro-

priately to the negative affective states that a learner goes
through while stuck on a problem can likely reengage the
learner in challenging learning experiences. However, it is
very hard to be sure if a learner is in a negative state or not.
Learners often try to appear like they are fine when they
are not (Schneider and Josephs, 1991). Self-reported
feelings at the end of a task are notoriously unreliable,
and getting outside observers to rate feelings is an
enormous task, requiring multiple coders per section of
data, agreement on meaning of labels and appearance of
behavior associated with the labels, validation of the
coder’s ability to perceive emotion, and more. Less is
known about the reliability of labeling by a person in the
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‘‘heat of the moment,’’ while they are frustrated and they
have the opportunity to clearly say so. We focus this work
on this case, where a learner has before her or him two
different buttons labeled ‘‘I’m frustrated’’ or ‘‘I need some
help’’. The learner can ignore these buttons, or click one of
them. When a person clicks the ‘‘I’m frustrated button’’ we
label the segment leading up to the click as ‘‘frustration.’’

Note that learners might be frustrated and might still not
click the button. For example, they may feel uncomfortable
confessing they feel frustrated. While we cannot know for
sure how much true frustration data we miss with this
button-clicking method, there are prior studies from
human–computer interaction that suggest that the proce-
dure of collecting self-perceived negative information by
computer may at least be more accurate than collecting the
same information from a trained expert person. For
example, there is classic work whereby people are more
willing to share negative information about themselves
(embarrassing medical conditions, excessive drinking, etc.)
with a computer than with a trained physician (Card et al.,
1974; Lucas et al., 1977; Robinson and West, 1992).

Since our research agenda is particularly focused on
helping learners persevere through frustration and a state
of Stuck (Burleson and Picard, 2004) we use the user’s self-
labeling as an indication of them being frustrated and
aware of it, and go back and collect their behavioral data
leading up to that button click. These data are pooled
against comparable data from the learners that did not
indicate frustration, (i.e. those that either did not click on a
button or those that clicked on ‘‘I need some help’’, since
even though they had the opportunity to, they chose not to
express frustration.) These two pools of data are used to
construct an automated system that can discriminate these
two classes (frustrated vs. other). The system is then tested
on a set of data that was not used to train the system.

In this paper, we address the problem of recognizing the
state in which a child who begins a problem-solving activity
on the computer is frustrated. The scenario we focus on has
a child involved in an activity (solving the Towers of Hanoi
puzzle) in an environment with sensors that can measure
video from the face, postural movement from the chair,
skin conductance (wireless sensor on non-dominant hand),
and pressure applied to the mouse. The machine combines
this information in a novel way to try to infer if the child is
behaving in a way that, based on prior experience of the
system, has been shown to precede clicking on the
frustration button.

2. Affective Learning Companions: prior art

Several researchers, including Tak-Wai Chan who coined
the term ‘‘Learning Companion’’ with respect to Intelligent
Tutoring Systems, promote the idea of presenting agents as
peer companions (Chan and Baskin, 1988). One rationale for
this is that peer tutors can be effective role models because
they are less likely to invoke anxiety in learners; learners may
believe they can attain the same level of expertise as their
tutors, while they may not believe that they can attain an
adult teacher’s level of expertise. Regulation of anxiety and
other negative feelings is increasingly recognized as impor-
tant in successful learning experiences. Researchers Schank
and Neaman (2001) acknowledge that fear of failure is a
significant barrier to learning and believe this can be
addressed in several ways: minimizing discouragement by
lessening humiliation; developing the understanding that
consequences of failure will be minimal; and providing
motivation that outweighs or distracts the unpleasant aspects
of failure. Because failure is important to learning and
instrumental to the development of multiple points of view
required for deep understanding, we think it is critical that
learning systems not only let learners fail, but encourage
them to persevere in the face of failure. However, it is also
critical that they help learners manage the negative feelings
associated with failure. Perseverance through failure can be
turned into learning; it does not have to lead to the intense
frustration that often results in quitting or in a future desire
to avoid similar experiences.
Through the integration of advanced graphics and

sensing environments with rich content and increasingly
sophisticated behavior repertoires, research efforts are
increasing participants’ sense of presence and social
engagement with agents in immersive environments and
in learning environments (Lester et al., 1999; Johnson
et al., 2003). In his work on the development of animated
agents for learning, Lester demonstrated a phenomena he
has termed the persona effect, which is that ‘‘the presence
of a lifelike character in an interactive learning environ-
ment—even one that is not expressive—can have a strong
positive effect on student’s perception of their learning
experience’’ (Lester et al., 1997). Through the use of verbal
and non-verbal affective communication, Intelligent Tutor-
ing System and Learning Companion technologies are
moving beyond the capabilities that gave rise to the
persona effect, toward realizing real-time multi-modal
affective interactions between agents and learners. How-
ever, to date, there are no examples of agents that can fully
sense natural (both verbal and non-verbal) human com-
munication of emotion and respond in a way that rivals
that of another person.
Existing agent systems typically infer human affect by

sensing and reasoning about the state of a game or an
outcome related to an action taken by the user within the
computing environment. Use of such an approach is
illustrated by the pedagogical agent COSMO, who
applauds enthusiastically and exclaims ‘‘Fabulous!’’ if the
student takes an action that the agent infers as deserving of
congratulations (Lester et al., 1999). There are learning
situations in which this reaction would be warmly received
and perhaps reciprocated with a smile by the user, and
situations such as when a student is bored, frustrated and
ready to quit where it most certainly would not. While
reasoning based on a user’s direct input behaviors is
important and useful, it is also limited. For example,
COSMO has no ability to see how the user responds
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non-verbally to its enthusiasm. COSMO is unable to tell,
for example, if the user beamed with pride or frowned and
rolled her eyes, as if to say that COSMO’s response was
excessive or otherwise inappropriate. If the latter, it might
be valuable for COSMO to acknowledge its gaffe, thus
making it less likely the user will hate it or ignore it in the
future. In addition to providing better social interactions,
understanding the learner’s affect might enable the
Intelligent Tutoring System to help learners address and
better understand the role of their own feelings in the
learning process. This is discussed more in Section 2.1.
Thus, there is a need and a desire to advance agent
capabilities to include perceptual sensing of non-verbal
affective expressions together with the channels that are
traditionally sensed in interactive agent systems.

Affect can be expressed in many ways—not just through
voice, facial expressions and gestures, but also through the
adverbs of many aspects of the interaction. Affect
modulates how a learner types and clicks, what words are
chosen and how often they are spoken. It also impacts how
a learner fidgets in the chair and moves head and facial
muscles. In the development of an affective Intelligent
Tutoring System, a promising approach is to integrate
many channels of information in order to better under-
stand how affect is communicated. Physiological and
affective sensors (including sensors that measure heart
rate, skin conductance, elements of respiration, blood
oxygen levels, pressure exerted on a mouse, posture in a
chair, gait analysis, brain oxygen levels, etc.) are emerging
as new technologies for human agent interactions (Picard,
1997, 2000; Allanson and Fairclough, 2004). There are
many challenges to the design and use of multi-modal
affective sensors. For ease of use and natural interactions,
it is desirable to have systems that are not intrusive and do
not require any training. Individual sensors also have
signal-to-noise issues and robustness issues. Then there are
the reactions of the users to the sensors, in terms of ethical
issues, privacy, and comfort (Reynolds, 2005). Some
researchers have found that children do not find a skin
conductance sensor to be intrusive; in fact if kids are
‘‘deprived’’ of the opportunity to use the sensor, they
reportedly felt they had missed out on part of the
experience of the interaction (Conati, 2004).

An emerging approach to Intelligent Tutoring System
development is to assess and attend to learners’ affective
states with the assistance of sensors. Pattern recognition
with multi-modal sensors has been shown to be an effective
strategy in the development of affective sensing. Research
incorporating the posture analysis seat (Mota and Picard,
2003) and the Blue-Eyes camera (Haro et al., 2000) has
classified engagement, boredom and break-taking behavior
with 86% accuracy (Kapoor and Picard, 2005). Another
project that takes this approach is the AutoTutor project at
the University of Memphis (D’Mello et al., 2005). This
project incorporates a posture chair, facial expression
camera, and conversational cue analysis to inform agent
interactions with college students. Once a correlation is
made between learners’ affective states and the sensor
values, this correlation can inform agent’s interactions
enabling them to become responsive to learners’ affect
in real time. The work in this paper advances these
prior works by employing additional sensors for greater
reliability, using a new technique for combining the
information, and by using a strategy that obtains users’
self-labeling of their state of frustration.
Finally, we would also like to point out that there has

been some work on detection of frustration in scenarios
other than Learning Companions. Fernandez and Picard
(1998) demonstrated signal processing techniques for
recognizing frustration in users from galvanic skin
response (GSR) and blood volume pressure (BVP). Qi
et al. (2001) focused on detecting frustration in users filling
out web forms by using only a pressure sensitive mouse.
Similarly, Mentis and Gay (2002) and McLaughlin et al.
(2004) have used haptic sensors to detect frustration.

2.1. The affective intervention

Results from studies of human–human interaction can
usefully inform the design of human–computer interaction,
e.g. Reeves and Nass (1996) and Moon (2000). We thus
turn to the literature on human interaction in order to
develop hypotheses about what is likely to succeed or fail in
human–computer interaction. For example, the research of
Robinson and Smith-Lovin (1999) illustrates the impor-
tance of an appropriate affective response: their work
describes how if a person responds positively to something
bad happening, then that person will be less liked.
Alternatively, if a person responds in a way that is
affectively congruent, then that person will be more liked.
These findings seem to support the current approach in
pedagogical agent research where the character smiles
when you succeed and looks disappointed if you make a
mistake or fail. However, without additional information
from sensor channels that classify elements of affect, these
systems run the risk of making mistakes that may
negatively impact the learner and their feelings about the
system. Human tutors do not reliably smile every time you
do something right, or frown every time you make a
mistake, but they do often display an expression that is
empathetic with yours.
Lepper et al. (1993) have found that approximately 50%

of expert tutors’ interactions with their students are
affective in nature. For example, at times of frustration,
or perhaps when a learner appears ready to quit, expert
tutors might be empathetic and encourage a student using a
strategy such as Dweck’s (the mind is like a muscle—it can
get stronger as you work it). At other times, when the
likelihood of quitting is low, the tutor or system’s
interactions might choose not to interrupt the learner’s
experience, letting the learner self-regulate.
In the field of Intelligent Tutoring Systems there is a

distinction between, on the one hand, adjusting the
environment or task to facilitate uninterrupted flow
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(Malone, 1984; Hill et al., 2001), and on the other,
empowering the user through self-awareness to participate
in self-regulated motivational strategies. Many Intelligent
Tutoring Systems choose to adjust the challenge level to
keep the learner engaged. If a learner is frustrated, these
systems attempt to make the activity easier. This approach
does not address a learner’s emotional state. In contrast,
through social interactions, we choose to help individuals
tailor self-perceptions of their ability with respect to a
challenge. If learners are able to alter their perception of
failure and negative affect, then they may be able to
mitigate the detriments of negative asymmetry. This may
enable them to persevere and succeed at greater challenges.
With an increased awareness of and ability to manage their
negative affect, students are likely to reengage in challen-
ging learning experiences in the future.

Carol Dweck’s work on self-theories of intelligence
presents promising findings for understanding why learners
fail and how to help them succeed. She has found that
individuals’ beliefs of their own intelligence profoundly
affect their motivation, learning, and behavioral strategies,
especially in response to their perception of failure (Dweck,
1999). This research has identified two predominant groups
of individuals: ‘‘incrementalists,’’ who believe their own
intelligence can be enhanced, and ‘‘trait learners,’’ who
believe their intelligence is largely fixed. She has found that
when incrementalists fail at a task, they tend to increase
their intrinsic motivation for the task, believing that if they
try harder, they will get better and smarter. When trait-
based individuals fail, they exhibit avoidance and decreased
intrinsic motivation for the task, believing instead that
their previous performance defines their ability. They act
on their desires to avoid further confirmation of what they
perceive to be their ‘‘trait-based’’ inability; they tend to
quit at the first signs of difficulty. She has developed a
simple strategy of metacognitive knowledge, a strategy for
thinking about thinking: the strategy is to recall that ‘‘the
mind is like a muscle and through exercise and effort you
can grow your intelligence.’’ By adopting this simple
strategy people can shift their self-theories of intelligence.

Dweck’s work on self-theories of intelligence uses
interventions at a group level. Our research opens new
possibilities by setting the stage for sensing and responding
to learners on a personal level, identifying where each
learner is getting frustrated, and then trying and evaluating
various interventions timed specifically for that individual’s
needs.

2.2. Interaction strategies once frustration is detected

This paper is focused on predicting when a learner is
frustrated, by examining data leading up to the time when
he or she clicks on the ‘‘I’m frustrated’’ button. In work
that follows this, we intend to develop individually tailored
interventions based on Dweck’s strategy. We seek to help
learners understand and use their frustration as an
indication of a learning opportunity. It is important to
note that one of the advantages of incorporating affective
interactions into Intelligent Tutoring Systems is that
tailoring the agent’s responses to individual learner’s
interactions can be done in a reliable and controllable
manner. By reliable we mean these interactions can be
coordinated by detection algorithms that yield consistent
results that are not subject to the typical forms of
experimenter bias in human–human interactions. By
controllable we mean that all the elements of an agent’s
expression type, intensity, duration, etc. can be computa-
tionally adjusted, repeated, recorded, and analyzed across
all experimental participants. For example, if we want to
test if mirroring a particular behavior influences some
outcome, we can test it more easily with an automated
mirroring system than by asking a human tutor to mirror
(since people do not usually have reliable control over their
non-verbal communication).

3. The ALC architecture

We developed a novel platform, shown in Fig. 1, for
affective agent research. It integrates an array of affective
sensors in a modular architecture that drives a system
server and data logger, inference engine, behavior engine,
and character engine. The character engine includes
dynamically scripted character attributes at multiple levels.
This approach is particularly suited to communication of
affective expression. The user sits in front of a wide screen
plasma display. On the display appears an agent and 3D
environment. The user can interact with the agent and can
attend to and manipulate objects and tasks in the
environment. The chair that the user sits in is instrumented
with a high-density pressure sensor array. The mouse
detects applied pressure throughout its usage. The user also
wears a wireless skin conductance sensor on a wristband
with two adhesive electrode patches on the hand. Two
cameras are in the system, a video camera for offline coding
and the Blue-Eyes camera to record elements of facial
expressions. This multi-modal approach to recognizing
affect uses more than one channel to sense a broad
spectrum of information. This approach applies techniques
from psychophysiology, emotion communication, signal
processing, pattern recognition and machine learning, to
make an inference from this data. Since any given sensor
will have various problems with noise and reliability, and
will contain only limited information about affect, the use
of multiple sensors should also improve robustness and
accuracy of inference.
In addition to non-verbal interactions, the character

interacts with the user through an asynchronous voice
dialogue (Burleson et al., 2004). The character speaks using
Microsoft’s ‘‘Eddie’’ voice scripted with Text-Aloud, a
text-to-speech application. When there are questions the
words are presented in a text bubble, as well, for the user to
read. Users may respond by clicking on the available text
responses. Finally, the video camera records the user and
the onscreen activity. It is positioned to acquire both an



ARTICLE IN PRESS

Fig. 1. System architecture with (from right to left): video camera, Blue-Eyes camera, pressure-sensitive mouse, skin conductance sensor, and pressure-

sensitive chair.

A. Kapoor et al. / Int. J. Human-Computer Studies 65 (2007) 724–736728
image of the user and an image of the screen that is
reflected in a mirror positioned behind the user’s head. This
arrangement was chosen so as not to miss any of the
features of the user/character interaction while providing
true (same image) synchronization. When the system is
initialized, a datagram signal is sent to start the DirectX
video capture and the time is noted in the log. The rest of
this section describes the sensing, the pattern recognition to
detect the affective markers of the ‘‘frustration’’ state and
the challenges in designing appropriate affective responses
for the character.
3.1. The sensing

The non-verbal behaviors are sensed through a camera, a
pressure sensing chair, a pressure mouse and a device that
measure the skin conductance. Here we describe them
briefly.

The Blue-Eyes camera: We use an in-house built version
of the IBM Blue-Eyes Camera that tracks pupils unobtru-
sively using structured lighting (Haro et al., 2000). The
system exploits the red-eye effect to track pupils. Once
tracked, the pupil positions are passed to a method to
detect head nods and shakes based on hidden Markov
models (HMMs) (Kapoor and Picard, 2001). This method
provides the likelihoods of nods and shakes. Similarly, we
have also trained an HMM that uses the radii of the visible
pupil as inputs to produce the likelihoods of blinks.
Further, we use another system we developed earlier to
recover shape information of eyes and eyebrows (Kapoor
and Picard, 2002).
Given pupil positions we can also localize the image

around the mouth. Rather than extracting the shape of the
mouth explicitly we extract two real numbers that
correspond to two kinds of mouth activities: smiles and
fidgets. We look at the sum of the absolute difference of
pixels of the extracted mouth image in the current frame
with the mouth images in the last 10 frames. A large
difference in images is treated as mouth fidgets. Besides a
numerical score that corresponds to fidgets, the system also
uses a support vector machine (SVM) to compute the
probability of smiles. Specifically, an SVM was trained
using natural examples of mouth images, to classify mouth
images as smiling or not smiling. The localized mouth
image in the current frame is used as an input to this SVM
classifier and the resulting output is passed through a
sigmoid to compute the probability of smile in the current
frame. The system can extract features in real time at 27–29
frames per second on a 1.8GHz Pentium 4 machine. The
system tracks well as long as the subject is in the reasonable
range of the camera. The system can detect whenever it is
unable to find eyes in its field of view, which might
occasionally happen due to large head and body move-
ments. We found that many children do move a lot, so it is
important to have a system that is robust to natural
movement.

The posture sensing chair: Postures are recognized using
two matrices of pressure sensors made by Tekscan. One
matrix is positioned on the seat-pan of a chair; the other is
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placed on the backrest. Each matrix is 0.10mm thick and
consists of a 42-by-48 array of sensing pressure units
distributed over an area of 41� 47 cm. A pressure unit is a
variable resistor, and the normal force applied to its
superficial area determines its resistance. This resistance is
transformed to an 8-bit pressure reading, which can be
interpreted as an 8-bit grayscale value and visualized as a
grayscale image. Fig. 2(b) shows the feature extraction
strategy used for postures in Mota and Picard (2003). First,
the pressure maps sensed by the chair are pre-processed to
remove noise and the structure of the map is modeled with
a mixture of Gaussians. The parameters of the Gaussian
mixture (means and variances) are used to feed a three-
layer feed-forward neural network that classifies the static
set of postures (for example, sitting upright, leaning back,
etc.) and activity level (low, medium and high) in real time
at 8 frames per second, which are then used as posture
features by the multi-modal affect classification module.

Pressure mouse: The pressure mouse has eight force-
sensitive-resistors that capture the amount of pressure that
is put on the mouse throughout the activity (Reynolds,
2001). Users who found an online task frustrating have
been shown to apply significantly more pressure to a mouse
than those who did not find the same task frustrating
(Dennerlein et al., 2003).

Wireless BlueTooth skin conductance: A group at Media
Lab Europe and at the MIT Media Lab, Strauss et al.
(2005) developed a wireless version of an earlier ‘‘glove’’
that senses skin conductance. While the skin conductance
signal does not explain anything about valence—how
positive or negative the affective state is—it does tend to
be correlated with arousal, or how activated the person is.
High levels of arousal tend to accompany significant, new,
or attention-getting events.

Game state: While game state is not a traditional sensor,
and is not used in this paper, it is gathered by our system as
a source of data and is treated as a sensor channel in a
manner similar to each of the other sensors. Thus, if
Fig. 2. Modules to extract (a) facial
desired, it can be included in any decision-making about
learner state and appropriate interventions. The system
records the disk state after each move, checks if it is legal or
illegal, increments the move count, calculates the optimal
number of moves to the end of the game (Rueda, 1997),
and evaluates progress in terms of number and significance
of regressions. This data can also potentially be used to
explore users’ engagement and intent: understanding of the
game, proceeding in a focused way, or becoming disen-
gaged.

3.2. Decision making: detecting frustration

The data observed through the sensors are classified into
‘‘pre-frustration’’ or ‘‘not pre-frustration’’ behavior based
on probabilistic machine learning techniques described in
the rest of this section.

Gaussian process classification: Gaussian process (GP)
classification (Williams and Barber, 1998) is a technique for
pattern recognition and machine learning that has been
shown to outperform popular techniques such as SVMs in
many cases. Let X ¼ fXL;XU g consist of the data that have
been labeled, XL ¼ fx1; . . . ;xng and the data that are still
unlabeled XU ¼ fxnþ1 . . . xnþmg. The given (known) labels
are denoted by tL ¼ ft1; . . . ; tng and the random variables
for the class labels still to be determined by the algorithm
are denoted by tU ¼ ftnþ1; . . . ; tnþmg. We are thus interested
in obtaining the distribution of the labels we do not know,
given everything else that we have observed: pðtU jX; tLÞ. In
this paper we limit ourselves to two-way classification,
where the labels correspond to either pre-frustration (data
leading up to clicking on ‘‘I’m frustrated’’) or not pre-
frustration (a similar window of data but for those people
who clicked on ‘‘I need some help’’ or who never clicked on
a button).
Intuitively, the idea behind GP classification is that the

hard labels t ¼ ftL; tU g depend upon hidden soft-labels
y ¼ fy1; . . . ; ynþmg. These hidden soft-labels arise from a
features and (b) posture features.
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GP which in turn imposes a smoothness constraint on the
possible labelings. Given the labeled and unlabeled data
points, our task is then to infer pðtU jDÞ, where D ¼ fX; tLg.
Specifically:

pðtU jDÞ ¼ pðtU jX; tLÞ /

Z
y

pðtU jyÞpðyjX; tLÞ. (1)

The full Bayesian treatment of GP classification requires
computing the integral given in Eq. (1). The key quantity to
compute is the posterior pðyjX; tLÞ, which if obtained in a
simple approximation (such as Gaussian) can be used to
perform the Bayesian averaging as in Eq. (1). Alternatively,
we can use the mean (Bayes point) of the posterior to
classify any unseen point. The details on the Bayes point
classification can be found in Herbrich et al. (2001) and
in Minka (2001b). Note, the required posterior can be
written as

pðyjX; tLÞ ¼ pðyjDÞ / pðyjXÞpðtLjyÞ. (2)

The term pðyjXÞ in Eq. (2) imposes a smoothness constraint
such that the solutions that have the same labelings for
similar data points are preferred. The similarity between
the data points is defined using a function called a kernel.
Examples of kernels include Gaussian functions, polyno-
mial functions, etc. In this work we define the similarity
using a weighted Gaussian kernel:

kðxi; xjÞ ¼ exp �
1

2
�
XK

k¼1

ðxk
i � xk

j Þ
2

s2k

" #
. (3)

Here, xk
i corresponds to the kth feature in the ith sample.

Note that we are weighing each dimension individually
before exponentiating. By adjusting the value of the
parameter sk, we can control the contribution of the kth
feature in the classification scheme. A priori we do not have
any information regarding which features are most
discriminatory. The classification performance highly
depends upon finding the right set of feature weight-
ing parameters, and this issue is addressed in the next
section.

A smoothness constraint is imposed by assuming a GP
prior over the soft labels y ¼ fy1; . . . ; ynþmg. Consequently,
the soft labels y are assumed to be jointly Gaussian and the
covariance between two outputs yi and yj is specified by the
kernel function applied to xi and xj. Formally, y�Nð0;KÞ
where K is a ðnþmÞ-by-ðnþmÞ kernel matrix with
Kij ¼ kðxi;xjÞ. The entries in the matrix K capture the
notion of similarity between two points. Note that the
formulation of this prior can be extended to any finite
collection of data points.

The second term pðtLjyÞ in Eq. (2) is called the
likelihood, and it incorporates information provided in
the labels. Let Fð�Þ be a step function. The observed labels
tL are assumed to be conditionally independent given the
soft labels y and each ti depends upon yi through the
conditional distribution:

pðtijyiÞ ¼ Fðyi � tiÞ ¼
1 if yi � tiX0

0 if yt � tio0

" #
.

Due to the form of this likelihood, computing the posterior
pðyjX; tLÞ is non-trivial. In this work we use expectation
propagation (EP), a technique developed by Minka (2001a)
for Bayesian inference, to approximate the posterior
PðyjDÞ as a Gaussian distribution. Conceptually, we can
think of EP starting with the Gaussian prior Nð0;KÞ over
the hidden soft labels ðyÞ and then approximating the non-
Gaussian likelihood terms as a Gaussian distribution using
a message passing scheme. For details readers are
encouraged to look at Minka (2001a).

Learning the similarity function: The performance of the
algorithm depends highly upon the kernel widths,
½s1; . . . ;sK �, because they define the similarity measure
between two data points. Finding the right set of all these
parameters can be a challenge. Many discriminative
models, including SVMs often use cross-validation, which
is a robust measure but can be prohibitively expensive for
real-world problems and problematic when we have few
labeled data points.
In our work, we choose parameters that maximize the

marginal likelihood or the evidence, which is the same as
the constant pðtLjXÞ that normalizes the posterior. This
methodology of tuning the parameters is often called
evidence maximization and has been one of the favorite
tools for learning the parameters of the kernel function.
Evidence is a numerical quantity and signifies how well a
model fits the given data. By comparing the evidence
corresponding to the different models, we can choose the
model with the parameters suitable for the task. (Note: in
machine learning, these parameters that are learned for
different models are often called hyperparameters.)
Let us denote the set of kernel parameters as

Y ¼ fs1; . . . ;sKg. Formally, the idea behind evidence
maximization is to choose a set of parameters that
maximize the evidence. That is, Ŷ ¼ arg maxY log
½pðtLjX;YÞ�. When the parameter space is small then a
simple line search or the Matlab function fminbnd, based
on golden section search and parabolic interpolation, can
be used. However, in the case of a large parameter space
exhaustive search is not feasible. In those cases, non-linear
optimization techniques, such as gradient descent or
expectation maximization (EM) can be used to optimize
the evidence. In this work, we use the EM–EP algorithm
(Kim and Ghahramani, 2004) to maximize evidence. Each
round of EM–EP take Oðn3Þ steps, where n is the number
of data points in the data set. For the classification
problem on 24 subjects, we have 24 points in the data set
and the whole algorithm takes around 2–3min to converge
during training. Once we have finished training the
algorithm, i.e., we have the kernel parameters and the
Bayes point, then classifying a new sample of data takes
only a few milliseconds.
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4. Experimental evaluation

We performed experiments on a set of natural data from
24 middle school students aged 12–13 to evaluate how
well the proposed system worked. The task was a six-
disk version of the Towers of Hanoi puzzle. The details of
data collection and rest of the experiment are discussed
below.

4.1. Data collection

The methodology followed the timeline presented in
Table 1.

First, a pre-test was administered to determine the
learner’s self-theory of intelligence and their goal mastery
orientation (Dweck, 1999). Next, the participants were
shown a 7min slide show based on a script that Dweck has
used to beneficially shift children’s beliefs about their own
intelligence. Next, the agent appeared and presented the
Towers of Hanoi activity. Throughout the time of the
activity, there were two buttons prominent at the top of the
screen that users could click on: ‘‘I’m frustrated’’ and ‘‘I
need some help’’ (see Fig. 3). The user was free to ignore
these buttons or to click one at any time.

If a learner clicked on one of the buttons, or after 16min,
whichever occurred first, the learner was presented with a
supportive dialogue by the character during which he or
she is encouraged to continue. After 16min (from the start
of the activity) or when he or she finished the activity a
post-activity survey was administered with questions about
the experience followed by the modified working alliance
inventory used to gauge learners’ impressions of the
character (earlier work has used this instrument to assess
bonding between a person and an agent Bickmore, 2003).
A second activity was then administered followed by the
post-test self-theory of intelligence and goal mastery
orientation surveys, and a debriefing.
Table 1

Experiment protocol with durations in minutes; the approximate values ind

variation in duration

Protocol events for all subjects

Assent and consent forms

Initial survey questions and pre-test (including self-theories of intelligence

and goal mastery orientation)

Slide presentation (based on Dweck’s message)

Agent appears and introduces activity and the two buttons

Participant engages in Towers of Hanoi activity with option to press either

button

If participant presses either button character provides supportive dialogue

Participant continues to engage in Towers of Hanoi task

Post-activity survey of experience

Modified working alliance inventory

Participants are presented with second activity (Rush Hour Puzzle)

Post-test (including self-theories of intelligence and goal mastery

orientation)

Debrief
From the participant’s perspective they are asked to fill
out several pages of the pretest survey, then to watch a
7min slide show that discusses strategies for learning and
becoming more intelligent. The slide show was a full screen
Power Point presentation narrated by a recorded human
voice. These slides were presented to participants on the
same monitor as they would subsequently see the agent.
Then the agent appears standing behind three poles with
six disks on the left-most pole. The agent introduces itself,
the activity, and asks if they have seen this before. It also
presents the two buttons and encourages them to start the
activity, saying, ‘‘While you are doing this activity there are
two buttons in the upper right hand corner, that you can
click on if you need help, or if you are frustrated. Click on
a disk to start, whenever you want. I’ll just watch and help
if I can.’’ At first the activity may seem to be simple and
perhaps even fun. Quickly it becomes apparent that it is
much more challenging than it looks and it can feel quite
difficult to make progress. The task involves recursion,
which can make you feel like you are going backwards
when in fact you are going forwards. After several minutes
of repeated attempts to make progress, many participants
lose their motivation and are ready to end this experience.
As they get to this stage they may click on one of the
buttons. When they click on one of the two buttons the
character reminds them of a message from the slide show
saying, ‘‘I’m sorry I don’t know more about this activity so
I could help you through it, but remember the mind is like
a muscle, and just like when you exercise your muscles and
they get stronger, you can exercise your mind and increase
your intelligence. If you stick with it you can get better and
stronger by learning’’. After one of the two buttons has
been clicked, the buttons are no longer displayed, and
participants are given up to 16min from the time they
started the activity, to finish the activity. They are
presented with the post-activity survey and modified
working alliance inventory. If they do not click on one of
icate that these events have participant interactions and therefore some

Duration in minutes

�3

�10

�7

�2

�16

�1 during the 16min

Until completing the activity or until 16min from the start of the activity

�1

�3

Until completing the activity or until 10min from the start of the second

activity

�10

�2
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Table 2

Fourteen features used for classification of learner state

Face tracker Posture sensor Skin conductance Pressure mouse

Presence of nods Activity Conductance Activity

Presence of shakes Ratio of postures Skew

Probability of fidget Mean

Probability of smile Variance

Presence of blink

Head velocity

Head tilt

Fig. 3. Learner views this screen after the character explains it is time to start the Towers of Hanoi task. Either of the two buttons at upper right can be

pushed at any time.
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the buttons and instead persevere in the activity for 16min
they are presented with the post-activity survey and
modified working alliance inventory at that time. After a
second activity and the post-test self-theories of intelligence
and goal mastery orientation surveys, they are given a
debriefing with the opportunity to ask questions.

4.2. Data preprocessing

We collected sensory data for each subject during the
course of interaction with the character. The raw data from
the camera, the posture sensor, the skin conductance
sensor and the pressure mouse is first analyzed to extract 14
features that are summarized in Table 2. The pressure
mouse data were processed to obtain the following
features: activity, skew, mean, and variance (Reynolds,
2001). This set of data did not contain any unusual noise
and so those features were extracted directly. The Wireless
BlueTooth skin conductance data exhibited occasional
spikes and sudden drops in values and these were filtered to
eliminate any values that exceeded 5 standard deviations
from the average. The posture analysis seat data did not
exhibit any significant noise in obtaining the following
features: ratio of forward to backward posture, activity
level. The Blue-Eyes camera system data were filtered so
that only data that detected both pupils were included. The
following features were obtained: presence of head nod,
presence of head shake, probability of fidget, probability of
smile, presence of blink, head velocity, and head tilt.
For the purpose of classification we use the values

averaged over 150 s of activity. We tried various window
sizes and the window size of 150 s gave the best results. All
the features are normalized to lie between the values of zero
and one before we take the mean. For the children that
clicked on the frustration button, we consider samples that
summarize 150 s of activity preceding the exact time when
they clicked. However, for the children that did not
indicate they were frustrated, we needed to come up with
a comparable 150 s window. We examined the timing of the
frustration clicks and observed that most subjects that
clicked on the frustration button did so before 375 s, with
the average time of clicking at around 174 s. Further, to
analyze the non-frustration group we first look at the
clicking time for the cases where the frustration button was
pressed after 100 s, allowing some significant interaction
before ending the session. The median among these longer
clicking times was 225 s. Considering this, and the duration
of the data in the non-frustration group, we decided to use
a 150-s window beginning 225 s after the start of the game
for the non-frustration group. Out of 24 children, 10
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0 0.5 1 1.5 2

Pressure Mouse (Mean)

Pressure Mouse (Skew)

Probability of Smiles

Pressure Mouse (Activity)

Presence of Shakes

Presence of Nods

Head Tilt

Pressure Mouse (Variance)

Presence of Blink

Posture (Activity)

Skin Conductance

Posture (Ratio)

Head Velocity

Probability of Fidgets

Value of σ 

Fig. 4. Finding the most discriminative features. The MATLAB boxplot

of the kernel parameters ðsÞ optimized during the 24 leave-one-out runs.

The lines in the middle of the box represent the median, the bounding box

represents quartile values, the whiskers show the extent of the values and

the ‘þ’ represent the statistical outliers. A low value corresponds to high

discriminative power of the feature.
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clicked the frustration button; thus, we have a data set with
24 samples of dimensionality 14 (because of the 14
features), where 10 samples belong to class þ1 (frustrated)
and 14 to class �1 (not frustrated).

4.3. Classification results

We performed experiments using different classification
techniques, which include the classic techniques of one-
nearest neighbor and SVMs, as well as the newer technique
of GP classification. Table 3 shows the classification
results. The accuracies are reported using the leave-one-
subject out strategy, which is to first choose all but one
subject’s labels as training examples and test the perfor-
mance on the subject who was left out. This process is
repeated for all the available samples and we report all the
correct detections and misses as well as the false alarms
(Table 3).

With GP classification we use Eq. (3) as a kernel, which
weighs all the features individually and we exploit the
evidence maximization framework to tune those weights.
Thus, GP classification allows us to use expressive models
that can capture various relationships between the features
in the data. This is valuable since we do not know up front
which features are going to be most discriminatory. The
dimensionality of the observations is 14 in this example and
it is non-trivial to tune these weights using cross-validation.
For SVMs, we stick with the (commonly used) radial basis
function (RBF) kernel and use leave-one-out cross-valida-
tion to tune the kernel width. Table 3 demonstrates the
advantage of using the Bayesian framework and we can see
that the GP classification outperforms both one-nearest
neighbor strategy and the SVM with an RBF kernel. We
also compare to a control method that represents random
chance. Suppose we had an equal number of subjects who
did and did not click on the frustration button; then, we
could set chance to 50%. However, since we know for this
data that 14

24
¼ 0:583 of the subjects did not click on the

frustration button, we could simply assign everyone to this
category and be right 58.3% of the time. We thus use this
higher number to represent the chance condition.

Further, we also train an SVM that uses the maximum
evidence kernel learnt using EM–EP algorithm for the GP
classification and as we can see it performs the same as GP
Table 3

Classification results

Clicked frustration button

10 Samples

Correct Misses

Random (Control) 0 10

1-Nearest neighbor 6 4

SVM (RBF Kernel) 6 4

Gaussian process 8 2

SVMþ kernel of Gaussian process 8 2
classification. Note that in this case the EM–EP algorithm
has already found the correct kernel for classification and
SVM is greatly benefiting from this computation. Here, the
SVM does not compute the optimal kernel but only uses
the kernel parameters learnt via the EM–EP algorithm that
help the GP to discriminate the data well. Nonetheless, the
results are the same (79.17% for both the methods) once
you have computed this kernel. This experiment illustrates
that GP classification provides not only a good framework
to classify these data, but also an additional benefit of
being able to learn the parameters weighing the features
through evidence maximization.
Finally, we can also look at the optimized parameters
½s1; . . . ; sK � to determine the most discriminative features.
Fig. 4 shows the MATLAB boxplot of the kernel
parameters corresponding to the different features ob-
tained during the 24 leave-one-out runs of the EM–EP
algorithm. A low value of the kernel parameter s
corresponds to high discriminative capability of the feature.
Persevered on task or clicked help button Accuracy (%)

14 Samples

Correct Misses

14 0 58.3

10 4 66.67

11 3 70.83

11 3 79.17

11 3 79.17
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From the boxplot we can see that the fidgets, velocity of the
head and the ratio of the postures are the three most
discriminative features. However, there are a lot of outliers
for the fidgets which implies that the fidgets can be
unreliable possibly due to sensor failure and individual
differences. Note, that all the parameters span a range of
values suggesting that despite some statistical trends the
discriminative power of a feature might depend on each
individual learner. Thus, it might be beneficial for the
Learning Companion to discover the patterns in user
behavior rather than follow some pre-programmed rules.

5. Discussion and conclusions

In this paper we examined whether there was informa-
tion in non-verbal multi-modal data that could predict if a
learner was going to click on a button to say ‘‘I’m
frustrated.’’ A second button that users could press said ‘‘I
need some help’’. We inherently assume in this case that the
participants were not strongly frustrated (see below and
Table 4 for details). These buttons were worded in a non-
threatening way, so that people would be reasonably
comfortable using them; thus we do not expect that the
state of frustration that people were in before clicking on
the frustration button would include strong negative
outbursts (as if they had been offended or angered), but
rather that they would look fairly subtle. Our goal was to
see if it might be possible to classify behaviors leading up to
user’s clicking on the frustration button, so that future
agents might consider adapting their intervention techni-
ques based on detecting such behaviors. The experiment
was the first of its kind, using a variety of custom sensors
and algorithms comprising the first such system that can
sense and respond in real time to a learner’s multi-modal
non-verbal expressions that precede frustration.

Of the 24 subjects from whom we gathered reliable
multi-modal data, nine persevered without clicking a
button, five clicked the help button, and 10 clicked the
frustration button. Of these 24, 11 were boys and 13 were
girls, with four boys and six girls clicking on ‘‘I’m
frustrated’’ and two boys and three girls clicking on ‘‘I
need some help.’’ Neither in the participants that were
frustrated, nor in the other five subjects that clicked on ‘‘I
need some help’’, was there an obvious relationship
between gender and their classification likelihood of being
Table 4

For each subject that clicked on the ‘‘I need some help’’ button, here is the

algorithm’s assessment of the probability he or she was frustrated

Probability that frustrated Gender

0.20 Male

0.77 Female

0.54 Male

0.17 Female

0.22 Female
frustrated. Further, one of the assumptions we made in
this work was that the users that clicked on the ‘‘I need
some help’’ button were probably not strongly frustrated.
Table 4 examines this assumption more carefully. This
table shows the probability that a subject’s 150 s window
was recognized as frustration. We see that one female
received a 0.77, so she would have been classified as
frustrated (even though our labeled data considered her not
frustrated) and one male received a 0.54, which can be
considered as a borderline case.
It should be noted that generalization of this work is

likely to be affected by the age of the users, availability and
robustness of the various sensors (e.g. the camera sensor is
effected by lighting and the skin conductance sensor is
effected by sweat), and even the dialogue and situation the
users are presented with is likely to affect the results of
classification. Thus at this stage of research in the multi-
modal classification of learner’s frustration, training of the
classifier with data from the specific context users are
presented with is likely to be necessary.
One weakness of our method is that some of the subjects

clicked the buttons so soon that there was not enough time
to get multiple samples of data from them. Thus, we got
one window of data before they clicked on a button, and
nothing more. Hence, all of our examples of ‘‘frustrated’’
come from a different group of people than the examples of
‘‘not frustrated’’ behavior. Because of this limitation there
is the possibility that our algorithm is discriminating not
the state that preceded clicking vs. not-clicking, but rather
some other aspect that differs between the two populations.
Further work is needed to be certain that our method
generalizes to more than the 24 subjects here.
We applied a relatively new machine learning technique,

GP classification, to the problem of learning different
models, and found that it outperformed two more classical
popular techniques. We thus demonstrated assessment of
what appears to be a kind of ‘‘pre-frustration’’ state using
only non-verbal cues of postural movements, mouse
pressure, skin conductance, facial movements and head
gestures. While these signals alone did not provide perfect
classification of behavior, they did significantly outperform
a random classifier (79% vs. 58%). We also do not know
how accurately human observers would perform given the
same task, which would be an interesting future investiga-
tion to see if they beat our algorithm or vice versa.
Our result suggests that there is valuable information in
these non-verbal channels that can be useful for agents and
other affective systems to ascertain in deciding when to
intervene.
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