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ABSTRACT | Finding ways to monitor and control the per-

ceptual quality of digital visual media has become a pressing

concern as the volume being transported and viewed continues

to increase exponentially. This paper discusses the principles

and methods of modern algorithms for automatically predict-

ing the quality of visual signals. By casting the problem as

analogous to assessing the efficacy of a visual communication

system, it is possible to divide the quality assessment problem

into understandable modeling subproblems. Along the way, we

will visit models of natural images and videos, of visual

perception, and a broad spectrum of applications.
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I . INTRODUCTION

The human appetite for electronic visual content is

apparently insatiable. The capability of digital cameras,

smartphones, and tablet computers to acquire and display

high-resolution images and videos continues to advance

rapidly, and consumer demand is increasing just as fast.

Indeed, it is estimated that Americans took about 80 billion

digital photographs in 2011 [1] and that this number will

increase by more than 30% by 2015, with half of digital

photographs being taken by mobile devices. The prolifer-

ation of captured digital image data presents significant

challenges to the consumer regarding how to store, share,

assess, and cull digital photos.

Beyond photographs or ‘‘still pictures,’’ commercial digital

cameras and smartphones now routinely capture standards-

compliant digital high-definition (HD) videos. Consumers are

finding that choosing and organizing digital videos is an even

more onerous task, since they occupy much larger data

volumes and require considerable time to review. Dedicated

social sites such as Facebook, Youtube, Google+, and Flickr

enable an increasingly video-savvy public to acquire, upload,

and view copious numbers of pictures and videos of diverse

sizes, durations, and levels of quality. A quick visit to any of

these websites reveals that the visual content typically suffers

from a wide variety of annoying distortions.

Streaming video continues to proliferate as well: stored

video-on-demand sites such as Netflix and Hulu already

deliver a very large and growing percentage of Internet

traffic [2], and live online video, such as video telephony

(e.g., Skype) is expanding rapidly as well. As the volume of

video traffic continues to grow exponentially, finding ways

to deliver good quality content is a focal concern of service

providers, carriers, and equipment vendors.

This is particularly true in the wireless realm: fourth-

generation/long-term evolution (4G/LTE) wireless net-

works now enable high-speed mobile web videos, IP

telephony, video gaming, mobile HDTV, video conferenc-

ing and even mobile 3-D TV. Because of the convenience

and freedom afforded by high-performance video-optimized

mobile devices, wireless video traffic is exploding.

Indeed, the wireless telecommunication industry is facing

a watershed ‘‘moment’’ where foreseeable capacity may soon
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fail to meet demand. In 2010, global mobile data traffic in-

creased by nearly 200%Vfor the third year in a row [3]. The

current trend of annual doubling of wireless data traffic is

expected to continue, and it is largely being driven by video.

Indeed, the Cisco Visual Networking Index reports that video

traffic already accounts formore than half of all mobile traffic,

and this fraction may exceed 75% by 2015 [3]. Given accel-

erating sales of tablet computers, which consume more spec-

trum than smartphones, these trends are likely to continue.

Unfortunately, the glut of video-driven data is already

straining capacity as evidenced by sporadic poor mobile

data performance in high population centers, sharper limits

on data usage imposed by wireless carriers, and extreme

measures such as ‘‘throttling,’’ whereby a mobile user’s data

rate is dramatically reduced once a threshold is reached (or

at the carrier’s whim!). Unless something is done (and

soon), the wireless ‘‘spectrum crunch’’ could reduce the

attractiveness of the wireless video medium. Shortfalls in

capacity could lead to sharper limits on use or lower quality

viewing experiences as service providers and carriers cope

with an excess of both video supply and video demand.

Increasing capacity and improving bandwidth efficiency

are difficult goals. Future massively broadband technologies

such as 60-GHz ‘‘WirelessHD’’ may deliver high-volume video

streams, but only over very short distances [4]. Femtocells

could greatly expand local capacity by maximizing spatial

reuse of the wireless spectrum [5]; yet large-scale deploy-

ments may be five to ten years away.

While it may be argued that consumer appetite for visual

content is already peaking, it is likely that we are seeing the

tip of an emerging iceberg. As visual creatures we are drawn

to visual realism, naturalness, and, increasingly, immersion.

Our behavior and conscious awareness are strongly corre-

lated with vision: more than 30% of cortical neurons are

devoted to vision [6]. Multimodal, immersive sensorial

experiences are a focus of industry R&D efforts and include

augmented reality, haptics [7], and bandwidth-dense 3-D [8],

[9]. The rollout of smaller, cheaper, and better mobile digital

cameras continues, and larger, thinner, flexible, rollable, and

foldable displays are on the way. These developments will

magnify the video data ‘‘crunch’’ as users find them attractive

and convenient to use.

Given that increasingly knowledgeable users demand

better quality image and video acquisition and display, it is

highly desirable to be able to automatically and accurately

predict visual signal quality as would be perceived and

reported by these users. Such predictive capability can be

used to monitor image and video traffic, and to improve

the perceptual quality of visual signals via ‘‘quality-aware’’

processing, computing, and networking. ‘‘Quality assess-

ment’’ algorithms can be used to improve picture quality,

e.g., by perceptually optimizing the process of image or

video acquisition, by modifying video transmission rates,

by reallocating resources to geographically balance video

quality across a network, by postprocessing, or by

combining these kinds of ‘‘quality aware’’ ideas.

Being able to accurately and objectively predict visual

quality in agreement with humans requires detailed math-

ematicalmodels of picture signals and their distortions and of

how both are perceived. These topics involvemodeling image

and video statistics, understanding how distortions change

these statistics, and predicting how distortions of images and

videos are perceived using low- and intermediate-level

perceptual models. The goal of the following sections is to

supply the reader with an understanding of the essential

elements of visual quality assessment models, and to inspire

practitioners to apply image quality assessment (IQA) and

video quality assessment (VQA) algorithms to solve a broader

array of practical problems.

II . A VISUAL COMMUNICATION
ANALOGY

A convenient and intuitive approach to conceptualizing the

multifaceted visual quality assessment problem is to make an

analogy with the classical communication problem. We will

make extensive use of Fig. 1, which depicts a number of

important concepts, beginning with the lower part of the

figure, which depicts the elements and flow of a transmitter–

channel–receiver communication system. As the caption

explains, in this analogy, the ‘‘transmitter’’ is the world of

visible radiant energy and of object surfaces that interact in a

physically and statistically lawful manner, projecting through

lenses to images that are incident on a sensor. Because of the

coherent nature of matter and the physical properties of

light, ‘‘natural’’ images that are formed by an optical process

obey laws that can be statistically expressed. Section III

elaborates on this, but for now the term ‘‘natural image’’ or

‘‘natural video’’ may be construed to mean an optical signal

sensed from visible light that has been captured by an

ordinary good quality camera equipped with a low-distortion

lens under reasonably good conditions. This means that the

image is not distorted by noticeable aliasing from poor

resolution, over or under exposure from poor lighting, or

other impairments arising from poor technique. Further,

‘‘naturalness’’ implies that the signal was not synthetically

created by computer graphics techniques, nor had its

appearance altered by them.

In Fig. 1, the ‘‘channel’’ is more than just the commu-

nication medium. Instead, it encapsulates all phases of

image or video capture, processing, and display. The

sensing step might use a camera of known characteristics

or perhaps might be unknown, e.g., an image from a web

search or a video from Youtube. Front–end processing

might include source compression and encoding, artifact

reduction, or format conversion. Digital communication

might be as simple as storage into memory on a camera or

transmission over a cable or wireless channel. This might

include sophisticated error protection or error conceal-

ment protocols. Back–end processing might include

decompression, correction of compression or transmission

artifacts, or preprocessing for display. The monitor could
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be a small form-factor (but nevertheless high-resolution)

smartphone display or a large-format HDTV.

All of the above stages of capture, processing, and display

are potential sources of signal distortion, as indicated by the

red arrows in Fig. 1. It may be argued that distortion also

occurs in the ‘‘transmitter,’’ e.g., from light scattering, and in

the ‘‘receiver,’’ e.g., from imperfect visual optics or neural

noise. However, the ‘‘channel,’’ as depicted in Fig. 1, defines

those points in the flow where the visual signal is ordinarily

digital and accessible by objective visual quality assessment

algorithms. This is relevant since, if a ‘‘reference signal’’ is to

be used for comparison, then the earliest (and most usual)

point at which it can be obtained is immediately post-

digitization, i.e., at the sensor. Conversely, the last point at

which a ‘‘test’’ image or video may be digitally quality

assessed is immediately prior to display. The signal quality

can be measured at any or multiple points along the

‘‘channel,’’ revealing where quality is most affected.

Of course, any of the above channel substages (aside from

capture and display) may be omitted, or others added,

depending on what actually occurs between acquisition and

viewing of the visual signal. Next, we will start by discussing

relevant and commonly used models for the essential trans-

mitter (natural scenes) and receiver [human visual system

(HVS)], followed by an overview of distortion models.

III . THE TRANSMITTER MODEL:
NATURAL SCENE STATISTICS

The statistics of natural images, commonly referred to as

natural scene statistics (NSS), have been studied for more

than 50 years by vision scientists and television engineers.

The thesis behind NSS models is that photographic images

of the world exhibit statistical regularities that reflect the

physical world [10]. These regularities manifest in various

ways. For examples, natural images exhibit statistical self-

similarity or invariance with respect to scale, as exempli-

fied by the ‘‘fractal’’ power law: the magnitude spectra of

the spatial Fourier transforms of natural images follow a

reciprocal power law [10]–[12]. Here is another example:

The principal (and independent) components of natural

images closely resemble edge sensitive filters used in

computer vision algorithms and by vision scientists to

model neuronal responses in visual cortex [13].

One particularly useful NSS model assumes that

natural images that have had their lowest spatial frequen-

cies removed obey a Gaussian scale mixture (GSM)

probability distribution [14], [15]. If IðxÞ is an image

defined on spatial coordinates x ¼ ðx; yÞ, and H�ðxÞ is a
spatial filter that greatly attenuates low frequencies (such

as slowly varying brightness variations from illumination),

then the 2-D convolution response

JðxÞ ¼ H�ðxÞ � IðxÞ (1)

can be reliably modeled as

JðxÞ ¼ SðxÞUðxÞ (2)

where U is a stationary white Gaussian stochastic process

with mean 0 and variance 1. The process S is a scalar variance
field embodying structured variation and correlation. U could

be multivalued or defined over multiple bands or scales;

Fig. 1. Predicting the perceived, subjective quality of a natural image or video that has been artificially acquired, processed, communicated,

and displayed is analogous to the classic problem of analyzing the end-to-end efficacy of a visual communication system. In this analogy,

the ‘‘transmitter’’ is the physical world that reflects and emits radiation, while the ‘‘receiver’’ is the human visual system. The ‘‘channel’’

is all manipulation of the visual signal beginning with sensing and culminating with display.

Bovik: Automatic Prediction of Perceptual Image and Video Quality

2010 Proceedings of the IEEE | Vol. 101, No. 9, September 2013



wavelet-domain GSMmodels have been successfully used in

many image processing applications [16], [17]. In natural

images, GSMs that fit the data well are symmetrically

distributed with heavier tails than Gaussian [18], reflecting

sparse occurrences of large responses to image singularities.

A very simple space-domain GSM model used in [14]

and [15] can be used to explain a number of key concepts:

let JðxÞ ¼ IðxÞ � G�ðxÞ � IðxÞ, where G�ðxÞ is a 2-D unit-

volume low-pass filter (e.g., a spatially truncated or

windowed Gaussian). The image JðxÞ is a weighted local

mean-subtracted ‘‘predictive-coded’’ version of IðxÞ that is
approximately decorrelated. Forming a simple estimate Ŝ
of S, e.g., a weighted sample variance (summed over the

support of the filter window)

ŜðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XX

G�ðxÞ Jðx� yÞ½ �2
q

(3)

then executing a contrast normalization step (C is a small

constant factor that serves to stabilize the quotient.)

ĴðxÞ ¼
JðxÞ

ŜðxÞ þ C
� � (4)

yields a residual image signal that is approximately

Gaussian. This behavior is broadly observed over natural

images. The model (1)–(4) is not perfect and the residual

generally retains small spatial dependencies. However, it is

close enough and is remarkably regular across natural

images [10], [19].

Fig. 2 depicts a natural image I and processed residual

image Ĵ (top left and right, respectively). Also shown are the
luminance histograms of both and scatter plots of

horizontally adjacent pixels. The unprocessed image

exhibits near-linear correlation before normalization (left

column) while the residual is nearly Gaussian with a scatter

plot that resembles that of white noise (right column).

If the image is subsampled iteratively, as in a wavelet

tree, then the GSM model still holds at each scale; the

statistics reflected by the GSM model nicely reflect the

scale invariance of natural images.

Understanding the statistics of natural dynamic videos
is a more elusive problem. Much effort has focused on

trying to model the statistics of optical flow (motions of

image luminance) in videos [19]–[22], but this has not

been accomplished, except under extremely limiting

conditions, e.g., that all flow is assumed due to egomotion

(camera movement), viz., without any arising from the

motions of independent objects [19], [20]. Thus far, the

complexity of object and camera motions has rendered

optical flow statistics difficult to model.

However, statistical regularities do exist in natural

videos. For example, Dong and Atick [23] found that natural

videos reliably obey a (global) space–time spectral model

that does not require accounting for optical flow. Further, a

simple and regular natural video statistic (NVS)model nicely

describes filtered or transformed time-differential (or

practically, frame-differenced) videos, without the need for

computing optical flow. If Iðx; tÞ is a natural video defined on
2-D space x and time t, then the wavelet coefficients or

bandpass response to the difference video

Dðx; tÞ ¼ Iðx; tÞ � Iðx; t� 1Þ (5)

will also reliably follow a GSM model [24].

These spatial and temporal scene models supply an

incomplete picture of the statistics of the visual world, and

much work could be done refining them. Our environment

is populated by solid objects that carve out space and that

follow motion trajectories, and current NSS/NVS models

are far too simple to create realizations of images of these

objects or the scenes they reside in. Yet, the perception of

common distortions is largely an instantaneous, precogni-

tive, and localized process in space and time. As such, low-

order GSM natural scene models for images and videos

supply a powerful basis for creating visual quality

assessment models that accurately predict human visual

responses to distortions.

IV. THE RECEIVER MODEL:
HUMAN VISION

Substantial strides have been made toward understanding

and modeling low-level visual processing in the human eye-

brain system [25]. While high-level cognitive factors (such as

semantic content and attention) can affect the perception of

quality, distortion sensing (of still images at least) is largely

pre-attentive and dominated by low-level processes [26].

Models of neuronal processing that affect quality

perception mirror the discussion of natural scene statistics

in Section III. Indeed, the architecture of neurons involved

in early visual processing is generally regarded as having

evolved to efficiently encode and analyze images that obey

natural statistical laws [27], [28].

Early processing of the visual signal at the retina has

the apparent function of predictive coding. Several types of

sensory neurons near the surface of the retina, such as

horizontal, amacrine, bipolar, and ganglion cells, collec-

tively accept and sum the inputs from the photoreceptor

neurons (cones or rods) to produce a ‘‘center-surround’’

excitatory–inhibitory response to local cone (or rod) cell

signals and their surrounding neighbors, yielding a

reduced-entropy residual signal. This behavior can be

modeled as linear bandpass spatial filtering. Indeed, the

collective local neural ‘‘impulse response’’ closely approx-

imates a local difference-of-Gaussian (DoG) low-pass

filter: H�ðxÞ ¼ Gk�ðxÞ � G�ðxÞ [29].
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Fig. 3 depicts this kind of decorrelating spatial

summation that occurs at the retina. This occurs over

different scales (sizes of the area of summation), orienta-

tions, and polarities. The local processing serves a number

or purposes, but, in particular, the center-surround

differencing accomplishes predictive coding of the retinal

signal [30]. This also closely corresponds to the GSMmodel

(1)–(4), and may be viewed as an evolutionary response to

the statistics of the visual world.

The visual signal is transmitted from the retinas to the

rear of the brain [via the lateral geniculate nucleus (LGN);

more on it later in this section] where it arrives at primary

Fig. 2. Local image debiasing and normalization produces a residual that is a nearly decorrelated and Gaussian distributed. Upper left: A natural

image. Upper right: Debiased and divisively normalized residual. Middle left and right: Luminance histograms of original and residual images,

respectively. Lower left and right: Scatter plot of horizontally adjacent luminances from original and residual images.
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(or striate) visual cortex, termed ‘‘area V1.’’ Returning to

the right-hand side of Fig. 1, area V1 is roughly indicated by

the blue area at the back of the brain. Much can be said

about the function of the many neurons in V1, and much

remains unknown [31]. However, it is clear that the spatial

visual signal is decomposed over multiple orientations and

scales/frequency bands, in a manner that closely resembles

an overcomplete wavelet decomposition of the visual data

into narrowband orientation and frequency channels [32].

A great variety of low-level image processing and computer

vision algorithms are based on this model [33]–[35].

Cortical processing of visual signals may also be viewed as

an evolutionary response to the naturally multiple-scale,

multiple-orientation statistical properties of the visual

world.

Important aspects of perception that are well modeled

and that affect the perception of image quality are masking
principles. Visual masking occurs when a signal reduces or

eliminates the visibility of another signal, typically of

similar frequency, orientation, motion, color, or other

attribute.

A simple type of luminance masking that occurs is

expressed by the Weber–Fechner law, which roughly

states that the detectability of a deviation Iþ DI from a

patch luminance I is proportional to the ratio DI=I. In
other words, a localized image distortion DI is more likely

visible in a dark image region than a brighter one, largely

as a consequence of the logarithmic response of the retinal

photoreceptors [36]. This can be used, for example, for

image compression [37] or for the design of image noise

suppression models [38].

The second and more important type of masking that

occurs is a byproduct of the adaptive gain control (AGC)

mechanism in visual cortex. As discussed above, so-called

‘‘simple’’ V1 neurons conduct a wavelet-like orientation/

scale ‘‘transform’’ of the visuals signals from the two eyes.

Computation of the energies of these neural responses is

facilitated by the fact that they are commonly found in

colocated phase quadrature pairs that feed nonlinear

‘‘complex cells’’ that compute local energy responses to the

visual stimulus [39].

AGC is a process of divisive normalization, whereby
each complex cell’s energy response is divided by a

weighted sum of those of its neighbors [40], [41], as

depicted in Fig. 4. This has the effect of normalizing the

response to patterns in the presence of large contrasts,

which are typically sparsely distributed, thereby reducing

the tail weight of the image distribution, which becomes

nearly Gaussian. Indeed, at a fixed scale, this is nicely

modeled by (4), including the presence of a ‘‘saturation

threshold’’ C. The spatial masking effect plays a central

role in nearly every image quality model, and contrast

masking models [42] have been used for a long time to

perceptually improve such tasks as video compression [43],

[44] and image watermarking [45].

Models also describe temporal decorrelation and

wavelet-like decompositions along the visual pathway.

Temporal decorrelation appears to occur midway between

retina and cortex, in the LGN, which is the visual relay

station of the thalamus [46]. Information projects from

LGN to various brain centers but mostly to primary cortex.

Temporal decorrelation, e.g., by linear temporal filtering

[46] or by frame differencing (5), allows for greatly

reduced data volume, something that was realized early on

by video compression engineers, e.g., in the first patent on

the topic [47].

Temporal cortical processing of the dynamic visual

signal amounts to a space–time multiple-orientation (in

Fig. 4. Illustration of divisive normalization of the response of a V1

‘‘complex’’ cell response by the summed energies of neighboring cells

that receive signals from similar retinal locations and that are tuned

to similar frequencies and orientations. Complex cells compute

envelope or energy responses from neighboring pairs of ‘‘simple cell’’

neurons arranged in phase quadrature. The responses of the other

complex cells are similarly normalized.

Fig. 3. Left: Concept of center-surround processing of the visual signal

at the retina. This is closely modeled by 2-D spatial linear filters that

spatially decorrelate the signal, the basis of predictive coding.

Right: A spatial filtermodel that provides good fits tomeasured retinal

responses are 2-D DoG functions of diverse scales, bandwidths, and

orientations. This data decomposition serves many purposes, one of

which is to collectively debias and decorrelate the retinal signal.
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space time), multiple-frequency (in space) decomposition

[48] that is approximately space–time separable [49].

These low-level spatio–temporal feature coefficients are

transmitted to various brain centers, but notably, an entire

retinotopic map is sent (i.e., en masse, representing the

entire visual field) to middle temporal (MT) visual area

V5, which is implicated in the formation of coherent

motion representations over large spatial areas. Good

models of visual processing in area MT exist [50], [51] and

have been applied to the VQA problem [52].

While accounting for motion statistics in videos has

proved difficult, motion percepts are relevant to under-

standing the visibility of temporal distortions. The

development of temporal masking models is of high

interest. Although temporal masking models have been

proposed that simply mirror spatial models (e.g., using

local energy normalization [53], [52]), the actual picture

appears to be somewhat different.

Very recently, an observed visual ‘‘motion silencing’’

phenomenon has been described by Suchow and Alvarez and

demonstrated through a series of remarkable visual illusions

[54]. They have shown that the presence of large coherent

object motions in a video renders local changes in luminance,

hue, shape, or size of the objects invisible. Objects that are set

in collective appear to stop changing [54]. This dramatic

form of dynamic ‘‘change blindness’’ has exciting implica-

tions for understanding temporal distortion perception.

While there is not yet any definitive explanation of this

remarkable effect [55], our own studies suggest that motion

coherency, foveation, and spatial and temporal ‘‘crowding’’

all play a role. We have developed a spatio–temporal filter

model that accurately predicts when human subjects will

judge that silencing has occurred, as a function of average

object change rate and object velocity [56].

V. THE CHANNEL MODEL: ARTIFICIAL
DISTORTIONS

Referring again to Fig. 1, next we will consider distortions

that arise from sources between the ‘‘natural transmitter’’

and the ‘‘natural receiver.’’

Within the digital processing flow indicated by the red

arrows in Fig. 1, digital images are subject to a wide variety

of distortions, including, but hardly limited to, blur,

noise, compression, blocking, false contours, ringing,

overexposure/underexposure, quantization, and under

sampling. Videos suffer from these spatial distortions and

from additional temporal ones: ghosting, mosquitoing,

texture flutter, jerkiness, motion estimation errors, and

many others.

Models of specific distortion abound, e.g., for estimat-

ing the severity of JPEG blocking [57]–[61], ringing from

JPEG2000 [62], blur [63]–[67] (e.g., via edge loss or the

perceptually relevant ‘‘just-noticeable blur’’), combina-

tions of noise, blur and blocking [68], and MPEG-4 source/

channel distortions [69]. Most of these focus on making

direct measurements of the artifacts introduced, e.g., by

analyzing spatial image structure or loss of structure, but

without using a model of the underlying visual signal, or

of the human receiver (with some exceptions, e.g., [65]

and [66]).

However, it has been observed that the statistics of

natural scenes are predictably modified by distortion

[70], making it possible to determine the presence and

severity of distortions without the need for specific

distortion models. For example, Fig. 5 (left) plots the

empirical histograms of 80 different natural images, each

distorted by four common processes (JPEG, JPEG2000,

white noise, and blur), then normalized via (5); each

distortion characteristically affects the image distribution.

Fig. 5. The histograms of normalized distorted images are predictably modified. Left: Histograms of the natural image in Fig. 2 after being

distorted in five different ways. Right: Histograms of products of adjacent pixels from the same distorted images.
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The two-parameter generalized Gaussian distribution

(GGD)

f1ðaÞ ¼ A1 exp �
a
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provides a good fit to the empirical histograms of distorted

(and undistorted, when � � 2 and � � 1) images [41],

[71], [72]. Estimates of the shape and scale parameters �
and � can be used for identifying and/or assessing

distortions, as we will see later (Section VIII).

Moreover, distortions typically introduce unnatural

spatial dependencies, which can be measured by examin-

ing the distributions of local image correlations (products

of adjacent pixels) following normalization (4). Letting

KðxÞ ¼ ĴðxÞĴðx� 1Þ denote the product between a

normalized pixel and any of its eight neighbors (along

cardinal or diagonal directions), then the asymmetric

generalized Gaussian distribution (AGGD) model [73]
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captures the shapes and distortion-driven asymmetries in

the products KðxÞ (in the absence of distortion, the

distribution of KðxÞ is symmetric [74]). Fig. 5 (right)

depicts histograms of normalized distorted images showing

distinct distortion signatures: spreads, degree of skew, and

asymmetry. These are highly reliable indicators of

distortions [75].

The model parameters ð�; �Þ in (6) and (�, �L, and �R

as well as the mean �) are distorted scene statistics (DSS)

or conversely, quality-aware features that can be used to

create IQA models. These kinds of features play an

important role in image quality models that use little or no

reference information, as described in Sections VII and

VIII. These kinds of features are also important in VQA

models, when applied on a frame-difference basis [24].

VI. FULL REFERENCE VISUAL QUALITY
ASSESSMENT AND APPLICATIONS

It is usual to divide image and video quality assessment

models into three broad categories: full reference (FR),

reduced reference (RR), and no reference (NR) or ‘‘blind.’’

There exist a number of broad surveys [76]–[79], books

[80], [81], and publicly available comparative studies

[82]–[84] already. Source code for many IQA and VQA

models is available at [85] and [86].

As such, we will not attempt a review, but rather

discuss some representative high-performing models and

how the underlying principles outlined in the preceding

sections guides their function. Most existing IQA and VQA

models can be regarded as utilizing some combination of

elements of the transmitter, receiver, and channel models

that we have been discussing.

We will also examine how I/VQA algorithms can be

used in quality-driven applications of image and video

processing, transmission, and analysis, and will follow this

pattern also when discussing RR and NR algorithms in

ensuing sections.

An FR IQA or VQA index assumes that a pristine signal is

available to compare distorted versions of the signal against.

While a reference is extremely useful, this also, of course,

limits the applicability of these models in many applications.

The most commonly used metric remains the mean squared

error (MSE) or its equivalent, the peak-signal-to-noise ratio

(PSNR). However, the MSE does not predict subjective

judgments of visual quality well, despite its computational

and analytic convenience [87]. Thus, perceptually relevant

methods are rapidly gaining popularity.

Certainly the most successful perceptual FR IQA

algorithm is the SSIM index [88], which can be made

very fast [89], and which delivers highly competitive image

quality predictions against human judgments, particularly

in multiscale implementation (MS–SSIM) [90]. SSIM is

defined as a product of three terms computed over small

image patches: a ‘‘structural similarity’’ term sðxÞ, a

luminance similarity term lðxÞ, and a contrast similarity

term cðxÞ. The ‘‘structure’’ term measures the linear

correlation similarity between corresponding reference

and distorted image patches. The second term lðxÞ has two
virtues: it compares the luminance similarity between

corresponding reference and distorted image patches, but

also is a vanishing function of the ratio D�I=�I, where �I is

the mean luminance of the pristine patch and D�I is the

deviation from it in the distorted image. Thus, the SSIM

index embodies a Weber–Fechner principle. Likewise, the

contrast similarity term measures similarity between patch

contrasts, but also, for a fixed contrast difference, cðxÞ
diminishes with the reference contrast. Thus, the SSIM

index also has a contrast masking behavior. The MS–SSIM

index thus contains all of the basic spatial perceptual

principles discussed in Section IV.

However, the SSIM index can also be interpreted using

natural scene models [91]. Indeed, under the GSM model,

the SSIM index equates closely with another top-

performing IQA index called visual information fidelity

(VIF) [92], if the luminance similarity term is omitted.

Some other IQA algorithms also deliver good performance:

the visual-signal-to-noise ratio (VSNR), which uses multi-

scale modeling of contrast masking to detect distortion

visibility and subsequently assesses contrast degradation

[93], the most apparent distortion (MAD) model [94],

which uses a similar strategy to assess quality differently
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depending on whether distortions are severe or moderate,

and FSIM [95], which deploys comparisons of phase

coherency, an idea first proposed in [96]. Variations of

SSIM are also abundant, e.g., by weighting SSIM or MS–

SSIM scores by saliency [26], by the type of image content

[97], by local information measures [98], or by applying

perceptual weights to the three SSIM terms [99].

SSIM models remain quite competitive with these

variations on FR IQA, and are much simpler to implement

than most. Because of this, SSIM has become a de facto
choice for IQA applications. FR IQA models like SSIM can

be used to benchmark image processing algorithms, since

in simulation of algorithm performance, a reference image

is usually available. The SSIM index is used to validate and

compare the results of all kinds of image processing

algorithms (far too many to list). A good practical example

is the inclusion of SSIM in the H.264 video compression

standard JM reference software [100], where it can be used

to compare the before-and-after quality of video compres-

sion. Many examples of SSIM-driven algorithm bench-

marking are given in [87] and [101].

A very exciting direction is the idea of perceptual
optimization of image processing algorithms using SSIM or

other IQA indices. SSIM was first used to perceptually

optimize image restoration, by showing that the optimi-

zation can be cast as quasi-convex [102]. By expressing

SSIM using a discrete cosine transform (DCT) formula-

tion, it was shown possible to derive rate bounds on image

DCT quantization under SSIM [103]. Since then, the SSIM

index has been used to optimize multichannel image

restoration [104], image histogram shaping [105], image

denoising [106], [107], perceptually optimized image com-

pression [108] including JPEG 2000 [109], and for estimating

realistic compressed video distortions using variations of

SSIM [110]. Recently, Brunet et al. [111] developed a number

of interesting metric properties of SSIM useful for percep-

tually optimizing image processing problems in a natural and

rigorous manner.

One method of ‘‘live’’ optimization that is of particular

interest is perceptual rate control of compressed video. In

the H.264 standard, the method for rate control is not

dictated, and so there is considerable room for design

control. A straightforward method of perceptual rate-

distortion (R–D) optimization is to seek to minimize the

cost functional

C ¼ R þ �ð1� SSIMÞ (8)

where � is a Lagrange multiplier that mediates a tradeoff

between bit rate R and distortion 1-SSIM. Given a target

bitrate, the perceptually relevant SSIM index is used to

estimate the R–D curve in the interframe predictor.

Huang et al. [112] and Ou et al. [113] solve this problem

using a simple exponential model of distortion as a function

of rate, achieving as much as a 25% improvement over the

H.264 JM reference software recommendation.

The astute reader may have noticed that the SSIM

index as used in these video applications is not a true VQA

model, in the sense that it does not embody temporal

models of either video statistics or perception. While

extensions of SSIM to video have been shown to perform

well [22], [114], the best performers on publicly available

video quality databases are the ST–MAD [115] and MOVIE

[52] indices, both of which are based on temporal

perceptual designs. ST–MAD builds on the still image

MAD model described earlier, while MOVIE uses a model

of extra-cortical area MT motion perception. However,

these algorithms require computing motion vectors, which

is a considerable overhead for real-time applications such

as rate control. The older ITU standard algorithm VQM

[116] is fast, but only delivers performance similar to the

spatial-only MS–SSIM index [84]. Other algorithms using

perceptual criteria for FR VQA are those in [117] and [118]

(‘‘TetraVQM’’); both model QA performance using per-

ceptual factors based on motion computations, and deliver

QA prediction performance comparable to VQM [116].

Since these algorithms require motion computations,

real-time implementations are probably in the future.

However, high-performing VQA algorithms such as those

outlined above are ideally suited for benchmarking video

processing algorithms and codecs.

VII. REDUCED REFERENCE VISUAL
QUALITY ASSESSMENT AND
APPLICATIONS

In real-world image quality monitoring applications, the

requirement of a reference image or video signal is often

problematic. This might be because no high-quality

reference signal is available at all, in which case IQA/

VQA must be done using an NR model, which is the topic

of Section VIII.

However, if a reference signal is available, but is too

costly to supply in toto to the location where quality

assessment is to be accomplished, then reduced-reference

(RR) approaches that transmit only a very small fraction of

the reference information are of great interest.

For brevity, we will not consider distortion-specific RR

algorithms here. The most prominent general-purpose RR

IQA algorithms are based on NSS models. For example, the

‘‘quality-aware image’’ RR IQA method [119] deploys a

GGD model (6) of the wavelet coefficients of images, and

embeds NSS-based quality-aware features into the image

via a watermarking method. Thus, no side channel is

needed. Likewise, the ‘‘divisive normalization’’ RR IQA

model in [120] operates under the GSM model (1)–(5) on

the wavelet coefficients [121] of the reference and

distorted images. Following a divisive normalization stage

similar to (5), the histograms of wavelet coefficients of the

original and distorted images are fit to parametric
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distributions and compared using a mutual information

measure. More recently, the RRED indices [122] are a

family of RR IQA models that also use the GSM model.

Rather than employing divisive normalization, these

models compute wavelet-domain entropies conditioned

on the variance field. IQA is then based on comparing the

conditional entropies of reference and distorted images.

It is difficult to closely contrast the performance of RR

IQA models, since the amount of ‘‘side’’ information that

may be sent varies. Generally, the quality prediction power

they offer is somewhat better than that of PSNR when very

little information is sent (e.g., the ‘‘single number’’ version

of RRED [122]), but close to the performance of the best

FR models when a lot is sent (still a very small percentage

of that sent by an FR algorithm).

Models for general-purpose RR video QA are few in

number. This owes in part to the slow development of video

statistics models and motion masking models. Neverthe-

less, the need for algorithms of this type is quite significant.

A good example is the cable television quality monitoring

problem depicted in Fig. 6. Cable viewers have constantly

increasing expectations of larger, higher quality viewing

experiences in the ‘‘home theater,’’ so cable providers

expend considerable effort in testing and maintaining video

quality. However, highly visible video impairments are

common. Several companies offer products for accomplish-

ing point-to-point video quality testing, some using SSIM

and others using proprietary FR, RR, or NR algorithms. The

latter generally test for technical error conditions rather

than using perceptual or video source models, so there is

considerable room for improvement.

In this direction, the RRED concept has been extended

to the RR VQA problem, by applying the GSM model (1)–

(3) to video frame differences, computing wavelet-domain

conditional entropies on these differences, then comparing

the entropic differences between reference and distorted

videos [24]. In direct comparisons with top-performing FR

VQA algorithms such as VQM, MOVIE, and ST-MAD, the

so-called spatio–temporal RRED (ST–RRED) indices

perform quite competitively, at much lower cost, since

no motion computations are required. Source code is

freely available at [86].

VIII . NO-REFERENCE VISUAL QUALITY
ASSESSMENT AND APPLICATIONS

If no image or video reference information is available,

then IQA/VQA must be conducted without it. This so-

called NR I/VQA or ‘‘blind’’ problem is the most

interesting and potentially the most important practical

QA problem. The numerous applications that are appear-

ing in the video-intensive handheld and mobile landscape

do not allow the possibility of reference data. Further, the

concept of ‘‘reference signal’’ is very difficult to define; any

signal suffers from distortion. A broad review of the many

challenges and possible sources of information embedded

in the NR QA problem is given in [123].

Many algorithms have appeared that seek to blindly

assess a single distortion or combination of distortions.

These are too many and diverse to comprehensively

survey, but they include methods to blindly assess blur

[63]–[67], blocking (e.g., from JPEG) [57]–[61], [126],

ringing (e.g., from JPEG2000) [62], [127], combinations of

these [68], [124], [125], and MPEG/H.264 distortions [69],

[128], [129]. The idea of identifying and distinguishing

Fig. 6. Diagram of cable television broadcast system and points at which reference and ‘‘test’’ videosmay be defined. Qualitymay be compared

between any two points along the path from signal source to set-top box. However, the green circles � indicate points where reference

videos may be defined for comparison with the signal further along the path. Possible points of testing the quality relative to reference are

indicated by red circles�. Another possibility is that the cable provider may test the videos arriving from content providers using an

NR video quality assessment algorithm, indicated by orange circles �.
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multiple distortions was introduced in [70] and of quality

assessing them in [130].

Of broader interest are blind IQAmodels that, like SSIM,

are agnostic to distortion type. While the idea is not new

[131], general-purpose NR IQA models that provide com-

petitive performance have only recently begun to appear

within the last two years [72], [73], [75], [130], [132]–[137].

These methods usually deploy some form of training,

clustering, or other kind of machine learning principle,

since the mapping from specific distortions to perception is

poorly modeled. Through the use of suitable ‘‘quality-aware’’

NSS features in the wavelet domain [72], [130], [135], the

DCT domain [132], [133] (generalizing the Laplacian model

of DCT statistics [134]), or the spatial domain [73], [75], or

using features that reflect NSS, such as image edges [136], or

that map perceptual features [137], algorithms can be created

that learn human responses to distortion by training them on

large databases of human opinion scores [82], [138]. These

algorithms achieve performance that is comparable to the

best FR and RR IQA algorithms, with the caveat that their

range of application is limited to the distortion types they

have been trained on.

The NR IQA Blind/Referenceless Image Spatial QUality

Evaluator (BRISQUE) index [73], [75] is simple to under-

stand and apply, particularly since we have done most of the

work defining it already. Utilizing the model of point NSS

statistics (6), which has two feature parameters � and �, and
the point-product NSSmodel (7), which has four features (�,
�L, �R, and �) measured along four directions (the two

cardinal and the two diagonal) results in 18 features; these

are measured over two scales in BRISQUE yielding a total of

only 36 features extracted from each image, all of which can

be extracted at relatively little cost. Like other general-

purpose NR models, BRISQUE is trained on large databases

of human opinion scores, expressed as either mean opinion

scores (MOS), or a variation, difference MOS (DMOS),

which is a method of debiasing opinions from content (e.g.,

an image of something attractive should not rate higher than

one of something unappealing, if they are distorted at the

same perceptual level). In [73], a machine learning engine

known as support vector regressor (SVR) is used to train the

BRISQUE index. In application, BRISQUE computes the

same 36 features from the image to be quality assessed (an

efficient process), these are fed to the SVR, and a quality

score is produced. Currently, BRISQUE delivers the high-

est level of predictive IQA performance among general-

purpose NR IQA models on the LIVE database of distorted

images [82], [138], while also offering computational

efficiency.

However, it is possible to achieve nearly the same level

of quality predictive performance using the same percep-

tual features, without training on human opinions of

distorted images [139] or without exposure to any kind of

distortion at all [140]. This is done by comparing the

empirical distribution of each image to be quality assessed

against that of a representative (and sufficiently large)

corpus of high-quality images. The resulting ‘‘completely

blind’’ natural image quality evaluator (NIQE) model is

thus really a measure of ‘‘image naturalness’’ [140].

General-purpose NR VQA algorithms are only very

recently being developed. One promising model, termed

ST–BLIINDS [141], extends a DCT-domain NR IQA index

Fig. 7. General-purpose image repair using quality-aware NSS features to identify the dominant distortion type afflicting an image and

assess the perceptual quality level resulting from it. Once the distortion is identified, an off-the-shelf image repair (denoising, deblurring,

deblocking, etc.) algorithm is applied to reverse the distortion. Importantly, an inner perceptual optimization loop selects the repair

algorithm parameters to deliver the highest quality image. Once repaired, the image being processed returns to the outer loop,

and the process iterates until a good enough quality is reached, or another stopping criteria is met.
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to the temporal domain by training an SVR on an NVS

model of frame differences [24], and by weighting the

features using a measure of spatial coherency inspired by

the Suchow–Alvarez phenomenon. ST–BLIINDS is com-

petitive with FR VQA algorithms, although ostensibly

limited to the video distortions in the database it is

trained on.

A particularly exciting application of NR IQA (and

eventually NR VQA) models is the possibility of applying

quality-aware features to conduct automatic picture repair

and capture [142]. This requires that the concept of NR

IQA be extended to a two-stage process, whereby the

dominant distortion type in the image is identified by the

QA algorithm. This two-stage distortion identification

followed by quality-assessment model was first proposed in

[130] and fully developed in the two-stage DIIVINE index

[72]. The BRISQUE model we have been describing also

can be implemented in this manner with high efficiency.

Fig. 7 depicts the overall concept [138]. Two perceptual

optimization loops occur: in the outer loop, the image is

processed to determine the dominant distortion (from

among those the system is trained on) in the image, and

the perceptual quality assessed. If the quality is inade-

quate, the distorted image is passed through a multiplexer

that guides it to an appropriate state-of-the-art image

repair engine, to conduct denoising, deblurring, deblock-

ing, etc. The parameters of the repair algorithm are found

using the quality-aware features in an inner perceptual
optimization loop. Once repaired, processing returns to the
outer distortion identification/quality assessment loop.

Fig. 8 shows an example of this iterative process.

This broad framework for image repair is quite

different from any existing method. It simultaneously

offers the opportunity for achieving new levels of

performance in perceptual image repair, but also presents

new challenges regarding how to differentiate distortion

type and how to determine the convergence of a particular

implementation of the model. Of course, the simplest way

to ensure convergence is to limit the number of iterations,

and output the maximum quality image created across

iterations.

One immediate application of this general paradigm,

modified for acquisition rather than postprocessing, is

digital camera control, wherein control of the camera

parameters, such as ISO, aperture, exposure, etc., are

perceptually optimized before the image is ‘‘snapped.’’ In

this application, quality-aware features would be used as

above to perceptually optimize each setting via an inner

perceptual optimization loop while an outer loop deter-

mines which (if any) setting needs to optimized next.

IX. THE FUTURE OF VISUAL
QUALITY ASSESSMENT

At this point, we have begun to reach the ‘‘outer limits’’ of

image quality research. Yet, there are a few areas of pressing

interest not touched on here, since work on these topics

remains in an early stage.

Color quality is an important consideration, yet there

are not currently any well-accepted models of perceptual

quality prediction of color images. However, pretty good

results and some improvement relative to ‘‘luminance-

only’’ processing can be obtained by applying standard

single-channel QA models to one or more chromatic

channels, then combining these in various ways [143]–

[146]. However, progress remains to be made on this

problem, given the complexities of color perception,

including opponency [147], [148], and the lack of current

models of color distortion perception.

Assessing the quality of stereoscopic (3-D) images is

also a topic of pressing interest. The main problem is

geometry and visual comfort, which is difficult to ensure

without a large Hollywood budget (and even then!).

Fig. 8. Example of perceptually optimized general-purpose image

repair. Thedistorted image isprocessedbya two-stageNRIQA index to

determine the dominant distortion type and quality level at each

iterationof theouter imagerepair loop. The lowerplotshows theouter

loop iterations and the dominant distortion identified at each iteration

from among four possibilities: additive white noise (WN), JPEG

compression, JPEG2K compression, orGaussianblur. At each iteration,

the parameters of the repair algorithm are perceptually optimized

using quality-aware features. The vertical axis is quality expressed in

terms of human opinion (DMOS) learned from the LIVE image quality

database, where lower scores indicate higher quality.
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However, our topic here is the perception of distortions,

and the role of depth on distortion perception remains

quite murky, and like color, no entirely successful method

of stereo image quality assessment has been found. While

several approaches have been proposed for 3-D stereo-

scopic QA [149]–[152], 2-D quality models applied to

stereopairs commonly perform as well as, or better than,

3-DQAmodels that utilize depth or computed disparitymaps

[153]. Generally, the development of effective 3-D QA

models has been hindered by poor definitions of stereoscopic

distortions and 3-D distortion perception. Moorthy et al.
[153] observe this and obtain promising results by carefully

modeling several 3-D perceptual processes [154].

The statistics of natural chromatic images and of 3-D

depth or disparity images are worth deeply exploring for

the same reasons as monochromatic 2-D natural image and

video statistics. The statistics of color and depth appear to

be quite regular [155]–[157], are likely to be implicated in

the function of the color and depth senses, and are likely

relevant to chromatic and 3-D image quality.

Last, an exciting direction of inquiry is the interaction

between visual quality and visual task. Certainly, quality
plays a role that should be defined within the context of

the visual task that is being conducted, and specifically,

with regards to how measured quality affects execution of

the task. Of course, the main visual task is viewing images

or videos for information or entertainment [158], which is

the context we have been discussing.

Hemami et al. take a broad view of quality versus visual

task [159]–[161]. Recognizing the importance of percep-

tual principles in both visual tasks and in quality

assessment, the authors study human and machine

recognition of objects as a function of objective image

quality as measured by the MS–SSIM and VIF IQA indices.

They find that perception-driven FR IQA indices can

successfully predict image recognizability. Likewise,

Bedagkar-Gala and Shah [162] find that SSIM can be

used to predict the performance of tracking algorithms with

a high degree of confidence.

A small body of work exists on how quality affects

biometric tasks (human recognition from iris, face, or

fingerprint) [163]–[169]. The area is rather new and key

ideas are ill-defined; e.g., recognizability is often used

interchangably with quality. For example, ISO/IEC 19794-5

[170] specifies a list of factors (spectacles, pose, expression,

head shape, and so on) affecting ‘‘face quality.’’ While these

do affect detection and recognition, they are not aspects of

visual quality as normally defined (e.g., a high-quality image

may be taken of a smudged fingerprint or an averted face;

conversely, a pristine fingerprint image may be impaired by

blur, compression, and/or transmission distortions, thus

impairing recognizability).

In any case, as these diverse fields converge with

mutual recognition of the importance of understanding,

measuring, monitoring, and acting upon the quality of

visual signals, principled approaches are certain to emerge

whereby the effects of blindly measured quality degrada-

tions on visual tasks can be established.

It is quite possible that within a few years, image and

video quality ‘‘agents’’ will be pervasive and a normal

element of switches, routers, wireless access points,

cameras and other mobile devices, as well as displays.

Agents such as these could interact over large-scale

networks, enabling distributed control and optimization

of visual quality as the traffic becomes increasingly

congested. h
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